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Abstra欧河

Decades ago, Holevo established quantum statistical decision theory. How‐

ever, this formulation arises from theoretical interests and still is unsatisfactory

compared with the classical counterpart. From the viewpoint in modern statis‐

tics and aiming at more rich framework, we reformulate quantum statistical

decision theory.

1 Introduction

Suppose that we have a quantum system described by a parametrized density op‐

erator, say,  $\rho$( $\theta$) . Carefully prepared n‐iid system, i.e.,  $\sigma$( $\theta$):= $\rho$( $\theta$)^{\otimes n} is available as

a source. Our main task is to perform a good measurement to the system  $\sigma$( $\theta$) , to

collect measurement outcome as data, and finally to estimate the unknown parameter

 $\theta$ based on the data. This is a typical setting of quantum estimation theory, where

many authors have investigated. However, we introduce the following additional re

striction.

In addition, suppose that we have only a restricted class of measurements, say,  $\Gamma$.

From theoretical viewpoint, this assumption seems quite strange because most of

all theoretical physicists only focus on fundamental accuracy, theoretical bound of

estimation error. However, from a practical viewpoint, the above restriction is not
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surprizing. For example, in a qubit experiment, only two‐outcome projective valued‐

measurements for each system are available. In a poor laboratory, they can only

prepare noisy measurements. In this case, such measurements are not projection any

more. Our main concern here is how to formulate statistical inference with  $\Gamma$ given

and how to find out the best/better strategy to obtain information on the microscopic

system with  $\Gamma$ given.

In Section 2, we formulate our problems in a mathematical form. Most of them

follows usual formulation in quantum statistical decision theory. However, we define

additional concepts like implementable measurements. In Section 3, in our formula‐

tion, fundamental results are shown. An example is presented in Section 4.

2 Problem Setting

2.1 Density operator and positive‐operator‐valued measure

Let \mathcal{H} be a separable Hilbert space. A linear operator on \mathcal{H} is called a density

operator if it is positive and of trace one. We assume that a prepared quantum system

is described by a density operator  $\rho$ . Suppose that we perform a measurement for the

prepared system. According to Holevo [14], any continuous probability distribution

of a measurement outcome  $\omega$\in $\Omega$ is given by the following form:

 $\omega$\sim \mathrm{T}\mathrm{r} $\rho$ \mathrm{M}(\mathrm{d} $\omega$) ,

where \mathrm{M} is a map from Borel sets B( $\Omega$) to a positive operator on \mathcal{H} satisfying

\mathrm{M}( $\Omega$)=I, \mathrm{M}(B)\geq 0,\forall B\in B( $\Omega$) ,

\displaystyle \sum_{j=1}^{\infty}\mathrm{M}(B_{j})=\mathrm{M}(\bigcup_{j=1}^{\infty}B_{j}) , B_{j}\cap B_{k}=\emptyset \mathrm{i}\mathrm{f}j\neq k.
The map \mathrm{M} is called a positive‐operator‐valued measure (POVM). For the discrete

probability distribution with  $\Omega$ at most countably infinite, we may write

 $\omega$\displaystyle \sim \mathrm{T}_{\mathrm{T}} $\rho$ \mathrm{M}_{ $\omega$}, \sum_{ $\omega$}\mathrm{M}_{ $\omega$}=I, \mathrm{M}_{ $\omega$}\geq 0,\forall $\omega$\in $\Omega$.
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We symbolically write

 $\omega$\sim \mathrm{M}(\mathrm{d} $\omega$)

even if a probability distribution does not have a continuous component. In physical

experiments, there are various kinds of measurements like counting pulse, voltage,

intensity of a current etc. Thus we also write a measurement as (\mathrm{M}, B( $\chi$)) , which

implies that the outcome space is  $\chi$ and the domain of \mathrm{M} is the Borel sets B( $\chi$) .

2.2 Decision space

Let  $\Theta$ a compact metric space. We assume that  $\sigma$( $\theta$) as a map from  $\Theta$ to the set

of all density operators is one to‐one (identifiability) and regular [13]. The regularity

is a slightly stronger condition than the continuity with respect to the trace norm.

Usually the regularity is satisfied thus we omit the definition of the regularity. (See,

e.g., Tanaka [23].) This map is called a quantum statistical model.

In statistical decision theory, statistical inference based on finite data (parameter

estimation, hypothesis testing, etc.) is regarded as a statistical decision. For example,

in parameter estimation, our decision is to determine an estimate of the unknown pa‐

rameter  $\theta$ based on a measurement outcome, say,  x\in X . This decision is represented

by a function from X to the parameter space  $\Theta$ . For hypothesis testing, our decision

whether we accept null hypothesis or reject depends on  x . It is written as a function

from X to a finite set \{0 ,
1 \} . In this sense, any statistical inference as a decision is

given Uy a function from the space of the measurement outcome to the set of possible

decisions, which we call the decision space. This function is called a decision function.

Generally we denote the decision space as U and assume that U is also a compact

metric space.
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2.3 Loss functions

In order to evaluate whether the decision, say u(x) is better or not in a quantitative

way, we introduce a loss function.

Definition 1. Let w: $\Theta$\times U\rightarrow \mathrm{R}\cup\{+\infty\} be a lower semicontinuous function. We

call w a loss function if it is bounded from below, w( $\theta$, u)>-M>-\infty,\forall $\theta$,\forall u for a

constant M.

For simplicity, we assume that w( $\theta$, u)\geq 0 . One typical example of the loss function

is the squared loss w( $\theta$, u)=| $\theta$-u|^{2} , which is often used in the parameter estimation

problem.

Definition 2. For a quantum statistical model  $\sigma$( $\theta$) , a decision space U and a loss

function w( $\theta$, u) , we call the triplet ( $\sigma$, U, w) a quantum statistical decision problem

(QSD problem).

Classical statistical inference is usually formulated as a statistical decision problem.

Likewise, quantum statistical inference including quantum estimation, quantum state

discrimination is formulated as a QSD problem. (See, e.g., references in Kumagai

and Hayashi [16] for recent works in this direction, although they deal with non‐

Bayesian hypothesis testing.) Interestingly enough, quantum state cloning [2, 4] and

benchmark fidelity [7, 8, 9, 18], which are purely physical topics, are also described in

the framework (See, e.g., Tanaka [22] for the relation between quantum benchmark

and quantum estimation of pure states).

In classical statistics, the observation x is a random variable and its distribution

is given as a member of a parametric model \{p(x| $\theta$)\} . We only have to specify a
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decision function  $\delta$ :  x\mapsto $\delta$(x) . In the quantum setting, however, we have to specify

a measurement over the quantum system, which is described by a POVM. After we

fix a POVM, the distribution of the observation x is specified by this POVM and

the density operator of the quantum system. Then, we have to specify a decision

function.

2.4 Decision POVM

Let a QSD problem ( $\sigma$, U, w) and some statistical procedures be given. Each statis‐

tical procedure is given by a measurement (\mathrm{M}, B( $\chi$)) for the system  $\sigma$( $\theta$) (we assume

that it is written in a mathematical form.) and a decision function u(x) . Suppose

that we want to compare statistical procedures. The performance of each statistical

procedure is evaluated through the risk function, a generalization of the average esti‐

mation error. As we shall see later, the risk function depends only on the POVM over

the decision space U constructed in the following manner. (See, e.g., Helstrom [11],

Holevo [12].)

As an example, we consider the parameter estimation. Suppose that we perform a

finite‐valued measurement described by the POVM over  $\chi$, (| $\chi$|<\infty) .

x\sim \mathrm{E}_{x}

and use a specific estimate (e.g. the maximum likelihood estimate) u(x) . Then, the

POVM over  $\chi$ and the estimator  u(x) yield the following POVM,

\displaystyle \mathrm{N}_{u}=\sum_{x:u(x)=u}\mathrm{E}_{x},\forall u\in $\Theta$.
Clearly the set of \mathrm{N}_{u} is the POVM over the parameter space  $\Theta$ . If we consider the

quantum state discrimination, we take a POVM over a finite set.

Thus, every statistical procedure yields a POVM over the decision space  U , which

we call a decision POVM. Let us denote \mathcal{P}o(U) as the set of all decision POVMs.
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2.5 Risk function and the average risk

In order to evaluate the performance of a statistical procedure, we consider the

average loss function called the risk junction. For simplicity, we consider finite‐valued

measurements. Naive definition is as follows:

R( $\theta$;\displaystyle \mathrm{E},u(x)):=\sum_{x}w( $\theta$, u(x))\mathrm{T}\mathrm{r} $\sigma$( $\theta$)\mathrm{E}_{x}.
We rewrite the risk function as

R( $\theta$;\displaystyle \mathrm{E},u(x))=\sum_{u}\sum_{x:u(x)=\mathrm{u}}w($\theta$_{\rangle}u(x))\mathrm{T}\mathrm{r} $\sigma$( $\theta$)\mathrm{E}_{x}

=\displaystyle \sum_{u}w( $\theta$, u)\mathrm{T}\mathrm{r} $\sigma$( $\theta$)(\sum_{x:u(x)=\mathrm{u}}\mathrm{E}_{x})
=\displaystyle \sum_{\mathrm{u}}w( $\theta$, u)\mathrm{T}\mathrm{r} $\sigma$( $\theta$)\mathrm{N}_{u},

where in the last line we set \displaystyle \mathrm{N}_{u}=\sum_{x:u(x)=u}\mathrm{E}_{x} . As mentioned before, we see that

the risk function depends only on the decision POVM \mathrm{N}= {Nv}. Thus, we write

the risk function as

R( $\theta$;\displaystyle \mathrm{N})=\sum_{\mathrm{u}}w( $\theta$,u)\mathrm{T}\mathrm{r} $\sigma$( $\theta$)\mathrm{N}_{\mathrm{u}}.
Formal definition is given below.

Definition 3. For a QSD problem ( $\sigma$( $\theta$), U, w) , the risk function for the decision

POVM \mathrm{N}\in \mathcal{P}o(U) is

R( $\theta$;\displaystyle \mathrm{N})=\int_{U}w( $\theta$, u)\mathrm{R} $\sigma$( $\theta$)\mathrm{N} (du).

Main concern in all of statistical problems is to make the risk function smaller by

choosing a good decision POVM. However, it is impossible to achieve the smallest

risk for every  $\theta$ . Thus, in the present article, we adopt the Bayesian optimality. That
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is, we assume a prior distribution  $\pi$(\mathrm{d} $\theta$)\in \mathcal{P}( $\Theta$) over the parameter space  $\Theta$ and

consider the minimization of the following average.

 R_{ $\pi$}(\displaystyle \mathrm{M}):=\int R( $\theta$;\mathrm{M}) $\pi$(\mathrm{d} $\theta$) .

Until now, we basically follow the original work done by Holevo [13]. Now we

mention our own new approach. First, all of previous works in Holevo�s framework

only focus on the theoretical value for the average risk, which is in our notation,

written as

\displaystyle \inf\{R_{ $\pi$}(\mathrm{M}):\mathrm{M}\in \mathcal{P}o(U)\}.

Certainly, these works are so valuable in a mathematical sense and they bring us deep

insight of quantum correlation in a physical sense. However, even if we obtain an

explicit form of the optimal decision POVM, which is almost useless for practitioners.

For example, when the quantum state is given by a tensor product  $\sigma$( $\theta$)= $\rho$( $\theta$)^{\otimes n},

the optimal POVM uses full quantum correlation over the n‐system, which is almost

impossible to implement except for smaller n , say, n=1 , 2. Thus, this formulation

itself is meaningful for theoretical analysis but not for practical purpose. Thinking of

the usefulness in classical statistical decision theory, the quantum counterpart is not

satisfactory.

Thus, we switch the strategy into more practical ones. We deal with the proper

subset of decision POVMs \mathcal{P}\subset \mathcal{P}o(U) and consider the following minimization prob‐

lem.

\displaystyle \inf\{R_{ $\pi$}(\mathrm{M}). :\mathrm{M}\in \mathcal{P}\}

However, it remains how we specify the proper subset \mathcal{P}\underline{\subseteq}\mathcal{P}o(U) . Let us consider

this in the next subsection.
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2.6 Proper subset of decision POVMs

Suppose that we have a set of measurements  $\Gamma$ in a real experiment. Here we assume

that each element in  $\Gamma$ is written in a mathematical form. We call  $\Gamma$ an implementable

class of measurements. Theoretical analysis in quantum statistics should be done for

each implementable class, which is the essence of our formulation. For example, in a

poor laboratory, say, Tanaka‐Labo (TL), they are able to prepare only noisy projective

measurements (i.e., these measurements are not projective measurements). Then,

Tanaka‐Labo�s implementable class  $\Gamma$_{TL} consists of noisy projective measurements.

Of course, detailed mathematical description of noisy projective measurements is

necessary.

Theoretically, a noisy measurement is represented as a randomized measurement.

As we shall see later, nonrandomized measurements are at least equal to or better

than randomized ones. Now, we go to an abstract procedure.

2.6.1 lmplementable decision POVMs

We construct a proper subset of decision POVMs based on  $\Gamma$ . First we fix an

arbitrary implementable measurement (\mathrm{M}, B( $\chi$))\in $\Gamma$ . Then for any Borel measurable

function  u :  $\chi$\rightarrow U , we can construct a decision POVM (\mathrm{M}, B(U))\in \mathcal{P}o(U) . \mathrm{A}

function f : X\rightarrow Y is called a Borel measurable if f^{-1}(B)\in B(X) , \forall B\in B(Y) . For

each measurement, we obtain decision POVMs through this procedure. Let us denote

$\Gamma$_{U} the whole set of the decision POVMs obtained by this change of variables. By

definition $\Gamma$_{U} is a subset of \mathcal{P}o(U) .

Definition 4. Let a QSD problem ( $\sigma$( $\theta$), U,w) and an implementable class of mea‐

surements  $\Gamma$ be given. We call  $\Gamma$_{U} a naive set of implementable decision POVMs.

Intuitively, the above subset of decision POVMs is very natural. However, according
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to classical statistical decision theory, we have to include all randomized decisions [21].

For example, it is possible to use a randomly chosen estimator u_{j}(x) among several

estimators u_{1}(x) , u_{2}(x) ,
. .. . It seems quite strange but there exists the case where a

randomized decision is minimax in classical statistical decision problem.

A randomized procedure is mathematically represented by a Markov kernel  $\kappa$(du|x) .

It includes any nonrandomized function u(x) as a special case. Thus, we write the

whole set of decision POVMs constructed by a Markov kernel with an implementable

measurement as  $\kappa$ U( $\Gamma$) . Clearly $\Gamma$_{U}\subseteq $\kappa$ U( $\Gamma$) holds.

Likewise, we can use a randomly chosen decision POVM among  $\kappa$ U( $\Gamma$) . Mathe‐

matically it is represented by a closed convex hull of  $\kappa$ U( $\Gamma$) . Technically speaking,

we adopt the weak topology in \mathcal{P}o(U)[13] . Thus we finally obtain the following

definition.

Definition 5. Let a QSD problem ( $\sigma$( $\theta$), U, w) and an implementable class of mea‐

surements  $\Gamma$ be given. Let us call

\prime p_{\mathrm{r}:=\overline{\mathrm{c}\mathrm{o}($\kappa$_{U}( $\Gamma$))}}

implementable decision POVMs generated by  $\Gamma$ , where \overline{\mathrm{c}\mathrm{o}(A)} denotes a closed convex

hull of a set A.

Lemma 1. Let U be a compact metric space and  $\kappa$(\mathrm{d}u) be a probability measure

on U . For every  $\epsilon$>0 and continuous functions f_{1} , . . . , f_{rn}\in C(U) , there exists a

number A and a finite subset \{\prime u^{(1)}, . . . , u^{(A)}\}\subset U such that

|\displaystyle \frac{1}{A}\sum_{a=1}^{A}f_{1}(u^{(a)})-\int_{U}f_{1}(u) $\kappa$(\mathrm{d}u)|< $\epsilon$,

|\displaystyle \frac{1}{A}\sum_{a=1}^{A}f_{7n}(u^{(a)})-\int_{U}f_{7n}(u) $\kappa$(\mathrm{d}u)|< $\epsilon$ . (1)
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Proof. Let  $\epsilon$>0 be fixed. Let us consider sampling over U,

u^{(1)}, \cdots, u^{(A)^{i.i}}\sim^{d}.  $\kappa$(\mathrm{d}u) .

For notational convenience, we denote for each j=1 ,
. . . , m,

\displaystyle \overline{f}_{j,A}:=A\sum_{a=1}^{A}f_{j}(u^{(a)}) , E[f_{j}]:=\int_{U}f_{j}(u) $\kappa$(\mathrm{d}u) .

Due to elementary probability theory, for a large number A , we obtain

P(\displaystyle \sum_{j=1}^{7n}|\overline{f_{j,A}}-E[f_{j}]|^{2}\geq $\epsilon$)<1,
which implies that there exists a finite subset of U, \{u^{(1)}, . . . , u^{(A)}\} satisfying the

inequalities (1). \square 

The following lemma describes the uniform approximation of a finite set of measur‐

able functions. Since its proof is straightforward, it is omitted.

Lemma 2. Let X be a topological space with Borel algebra \mathcal{B}(X) and q_{1} , . . .

, q_{7n} be

probability measures on (X, B(X)) . Suppose that measurable functions h_{1} , . . . , h_{7n}

are integrable with respect to q_{1} ,
. . . , q_{rn} respectively. Then, for every  $\epsilon$>0 , there

exists a finite collection of mutually disjoint subsets \{Z_{1}, . . . , Z_{S}\}\subseteq B(X) of X and

points \{z_{1}, . . . , z_{\mathcal{S}}\}\subseteq X satisfying the following:

X=Z_{1}\cup\cdots\cup Z_{S},

z_{s}\in Z_{s}, s=1, \cdots, S,

|\displaystyle \sum_{s=1}^{S}h_{j}(z_{s})q_{j}(Z_{S})-\int_{X}h_{j}(x)q_{j}(\mathrm{d}x)|< $\epsilon$, j=1, \cdots, m . (2)

Using the above lemmas, we obtain a fundamental result.

Theorem 1. Let a QSD problem ( $\sigma$( $\theta$), U,w) and an implementable class of mea‐

surements  $\Gamma$ be given. Then,
\mathcal{P}\mathrm{r}=\overline{\mathrm{c}\mathrm{o}($\Gamma$_{U})}

holds.
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Proof. Since \mathcal{P}_{ $\Gamma$}\supseteq\overline{\mathrm{c}\mathrm{o}($\Gamma$_{U})} holds, we show \mathcal{P}_{ $\Gamma$}\subseteq\overline{\mathrm{c}\mathrm{o}($\Gamma$_{U})} . It is enough to show that

 $\kappa \sigma$( $\Gamma$)\subseteq\overline{\mathrm{c}\mathrm{o}($\Gamma$_{U})}.

According to Holevo [13], an arbitrary neighborhood of \mathrm{N} in \mathcal{P}o(U) is given by

\mathcal{U}(\mathrm{N})=\{\mathrm{M}\in \mathcal{P}o(U) : |\displaystyle \int_{U}f_{1}(u)\mathrm{T}_{\mathrm{Y}}$\rho$_{1}\mathrm{M} (du) -\displaystyle \int_{U}f_{1}(u)\mathrm{T}\mathrm{r}$\rho$_{1}\mathrm{N}(\mathrm{d}u)|<$\epsilon$_{1} , \cdots ,

|f_{U}f_{7n}(u)\mathrm{T}\mathrm{r}p_{m}\mathrm{M} (du) -\displaystyle \int_{U}f_{rn}(u)\mathrm{T}\mathrm{r}p_{rn}\mathrm{N}(\mathrm{d}u)|<$\epsilon$_{7n}\},
where $\epsilon$_{1} , . . . , $\epsilon$_{7h} are positive numbers, $\rho$_{1} , . . . , $\rho$_{ $\tau$ n} are density operators, and

f_{1} , . . . , f_{7n} are continuous functions. For simplicity, we set  $\epsilon$_{1}=\cdots=$\epsilon$_{\ovalbox{\tt\small REJECT} n}= $\epsilon$ and we

fix density operators  $\rho$_{1} , . ..

, $\rho$_{rn} , continuous functions f_{1} , ..
.

, f_{ $\gamma$ n}\in C(U) . We show

that \mathcal{U}(\mathrm{N})\cap \mathrm{c}\mathrm{o}($\Gamma$_{U})\neq\emptyset for an arbitrary neighborhood of \mathrm{N}\in $\kappa$ U( $\Gamma$) . It imphes that

\mathrm{N} is a closure point of \mathrm{c}\mathrm{o}($\Gamma$_{U}) , i.e., \mathrm{N}\in\overline{\mathrm{c}\mathrm{o}($\Gamma$_{U})} . We construct a decision POVM

\mathrm{M}_{0}\in \mathcal{U}(\mathrm{N})\cap \mathrm{c}\mathrm{o}($\Gamma$_{U}) in the following manner.

First we fix \mathrm{N}\in $\kappa$ U( $\Gamma$) . Since \mathrm{N} is decomposed into a Markov kernel and an

implementable measurement, say, \mathrm{M}(\mathrm{d}x)\in $\Gamma$ , we rewrite the terms related to \mathrm{N} as

follows. For j=1 ,
. . .

, m,

\displaystyle \int_{U}f_{j}(u)\mathrm{T}\mathrm{r}p_{j}\mathrm{N} (du) =\displaystyle \int_{X}(\int_{U}f_{j}(u) $\kappa$(\mathrm{d}u|x))\mathrm{T}\mathrm{r}$\rho$_{j}\mathrm{M} (dx )

=\displaystyle \int_{X}h_{J'}(x)q_{j} (dx). (3)

In the last line, we set

h_{j}(x)=\displaystyle \int_{U}f_{j}(u) $\kappa$(\mathrm{d}u|x) , q_{j}(\mathrm{d}x)=\mathrm{T}_{\mathrm{Y}}$\rho$_{j}\mathrm{M}(\mathrm{d}x) ,
where q_{j} is a probability measure on X and h_{j} is a bounded function over X , thus,

also q_{j} ‐integrable. Then, due to Lemma 2, we take a finite collection of subsets

\{Z_{1}, . . . , Z_{S}\} and points \{z_{1}, . .., z_{s}\} satisfying (2).

Next, for every s=1 , . . . , S , the following integrals

h_{j}(z_{s})=\displaystyle \int_{U}f_{j}(u) $\kappa$(\mathrm{d}u|z_{s}) , j=1, \cdots, m
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are simultaneously approximated by mean of sample points on U due to Lemma 1. It

might depend on s . Thus, we write u_{s}^{(1)} , . . . , u_{s}^{(A)} as those sample points. Then the

following holds:

|\displaystyle \frac{1}{A}\sum_{a=1}^{A}f_{j}(u_{s}^{(a)})-\int_{U}f_{j}(u) $\kappa$(\mathrm{d}u|z_{\mathrm{s}})|< $\epsilon$, j=1, \cdots, m.
Note that we take the same number of points A for each s . Summing over s , we

obtain the following inequality,

|\displaystyle \sum_{s=1}^{S}h_{j}(z_{s})q_{j}(Z_{s})-\sum_{s=1}^{s}\{\frac{1}{A}\sum_{a=1}^{A}f_{j}(u_{s}^{(a)})\}q_{j}(Z_{s})|
\displaystyle \leq\sum_{s=1}^{s}q_{j}(Z_{s})|h_{j}(z_{s})-\frac{1}{A}\sum_{a=1}^{A}f_{j}(u_{s}^{(a)})|
< $\epsilon$\displaystyle \sum_{s=1}^{s}q_{j}(Z_{s})
= $\epsilon$ . (4)

Finally, we define \mathrm{M}^{(1)} , .. . , \mathrm{M}^{(A)}\in$\Gamma$_{U} in the following manner. Let us define

measurable functions u^{(a)} : X\rightarrow U, a=1 ,
. . . , A such that

u^{(a)}(x):=\left\{\begin{array}{l}
(a)\\
u_{1}, x\in Z_{1},\\
(a)\\
u_{S}, x\in Z_{S}.
\end{array}\right.
Through this change of variables, from \mathrm{M}(\mathrm{d}x) , we define decision POVMs \mathrm{M}^{(a)}(\mathrm{d}u)\in

$\Gamma$_{U}, a=1 ,
.. .

,
A . Then, for a=1 , . . ., A , we can rewrite as follows:

\displaystyle \int_{U}f_{j}(u)\mathrm{T}\mathrm{r}p_{J}\prime \mathrm{M}^{(a)} (du) =\displaystyle \int_{X}f_{j}(u^{(a)}(x))\mathrm{R}$\rho$_{j}\mathrm{M} (dx )

=\displaystyle \sum_{s=1}^{S}\int_{Z_{s}}f_{j}(u^{(a)}(x))\mathrm{T}\mathrm{r}$\rho$_{j}\mathrm{M} (da)

=\displaystyle \sum_{s=1}^{s}\int_{Z_{s}}f_{J}\prime(u_{s}^{(a)})q_{j} (dx)

=\displaystyle \sum_{s=1}^{S}f_{j}(u_{s}^{(a)})q_{j}(Z_{s}) . (5)
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We claim that \displaystyle \mathrm{M}_{0}=\frac{1}{A}\sum_{a=1}^{A}\mathrm{M}^{(a)}(\mathrm{d}u)\in \mathrm{c}\mathrm{o}($\Gamma$_{U}) is in the neighborhood of N.

Indeed, by using (3), (4), and (5),

|\displaystyle \int_{U}f_{j}(u)\mathrm{T}\mathrm{r}$\rho$_{j}\mathrm{N}(\mathrm{d}u)-\int_{U}f_{j}(u)^{r} $\Gamma$ \mathrm{r}$\rho$_{j}\mathrm{M}_{0}(\mathrm{d}u)|
=|\displaystyle \int_{U}f_{j}(u)\mathrm{T}\mathrm{r}p_{j}\mathrm{N}(\mathrm{d}u)-\int_{U}f_{j}(u)\mathrm{T}\mathrm{k}$\rho$_{j}(\frac{1}{A}\sum_{a=1}^{A}\mathrm{M}^{(a)}(\mathrm{d}u))|
=|\displaystyle \int_{X}h_{j}(x)q_{j}(\mathrm{d}x)-\sum_{s=1}^{s}\frac{1}{A}\sum_{a=1}^{A}f_{j}(u_{s}^{(a)})q_{j}(Z_{s})|
\displaystyle \leq|\int_{X}h_{j}(x)q_{j}(\mathrm{d}x)-\sum_{s=1}^{S}h_{j}(z_{s})q_{j}(Z_{s})|

+|\displaystyle \sum_{s=1}^{S}h_{J'}(z_{s})q_{j}(Z_{s})-\sum_{s=1}^{s}\frac{1}{A}\sum_{a=1}^{A}f_{j}(u_{s}^{(a)})q_{j}(Z_{s})|
<2 $\epsilon$.

holds for every j=1 , . . . , m.

\square 

By definition, every implementable decision POVM is (almost) implementable in

an experiment. Note that \mathcal{P}_{ $\Gamma$} includes closure points, where pathological decision

POVMs hke the Cantor distribution appear.

3 Main Result

In classical statistics, almost all of statistical problems are formulated in statistical

decision theory [5, 25]. As a mathematical problem, we can consider statistical meth‐

ods and their theoretical justification. Directly or indirectly, theoretical results bring

many real application.

As a straightforward extension, quantum statistical decision theory was established

decades ago [12]. Each statistical problem in a quantum physics experiment is writ‐

ten as a QSD problem ( $\sigma$( $\theta$), U, w) . However, main interests have been mathematical
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formulation itself and effect of entanglements [2, 17]. In other words, Holevo�s QSD

theory and asymptotic theory in this framework [6, 10, 15, 24] lacks the original

significance in classical counterpart, i.e., yielding useful statistical methods to exper‐

imenters.

Our claim is that we should consider each QSD problem with a restricted class of

decision POVMs \mathcal{P}_{ $\Gamma$} according to  $\Gamma$ , where  $\Gamma$ reflects a real capability of preparing

experiments in each laboratory. As we shall see in Section 4, considering decision

POVMs among \mathcal{P}_{ $\Gamma$} yields directly useful statistical methods to experimenters. Many

examples will be presented for another occasion. Here we mainly focus on foundational

results.

3.1 Existence theorem of Bayes POVMs and minimax POVMs

Now we consider the best decision POVM among the restricted class, \mathcal{P}_{ $\Gamma$} . Since \mathcal{P}_{ $\Gamma$}

inherits good mathematical properties from \mathcal{P}o(U) , some theoretical results still hold

if we replace \mathcal{P}o(U) with \mathcal{P}_{ $\Gamma$} . First we define two kinds of optimality.

Definition 6. Let a QSD problem ( $\sigma$( $\theta$), U,w) , an implementable class of measure

ments  $\Gamma$ and a prior distribution  $\pi$\in \mathcal{P}( $\Theta$) be given. If a decision POVM \mathrm{M}_{*}\in \mathcal{P}_{ $\Gamma$}

achieves the infimum of the average risk

\displaystyle \inf_{\mathrm{M}\in \mathcal{P}_{ $\Gamma$}}R_{ $\pi$}(\mathrm{M})=R_{ $\pi$}(\mathrm{M}_{*}) ,

then it is called a \mathcal{P}_{ $\Gamma$}‐Bayes decision POVM (w.r.t.  $\pi$) . If a decision POVM \mathrm{M}_{*}\in \mathcal{P}_{ $\Gamma$}

achieves the infimum of the worst risk

\displaystyle \inf_{\mathrm{M}\in \mathcal{P}\mathrm{r}}\sup_{ $\theta$}R( $\theta$;\mathrm{M})=\sup_{ $\theta$}R( $\theta$;\mathrm{M}_{*}) ,

then it is called a \mathcal{P}_{ $\Gamma$}‐minimax decision POVM.

When implementable decision POVMs are clear, we often omit \mathcal{P}_{ $\Gamma$} . Theoretical

results with respect to existence were given by the author [23]. We summarize them

58



for readers� convenience.

Theorem 2. Let a QSD problem ( $\sigma$( $\theta$), U, w) and an implementable class of mea‐

surements  $\Gamma$ be given.

(i) For every prior distribution  $\pi$\in \mathcal{P}( $\Theta$) , there exists a \mathcal{P}\mathrm{r}‐Bayes decision POVM.

(ii) There exists a \mathcal{P}_{ $\Gamma$}‐minimax decision POVM.

(iii) \mathcal{P}_{ $\Gamma$}‐minimax decision POVM is written as \mathrm{a}\mathcal{P}_{ $\Gamma$}‐Bayes decision POVM with

respect to a prior distribution.

Proof. For (i) and (ii), each proof follows the same route as \mathcal{P}_{ $\Gamma$}=\mathcal{P}o(U) , which is

shown by Holevo [13] (See also Ozawa [19]) and by Bogomolov [1] respectively. (iii)

is a consequence of quantum minimax theorem [23]. \square 

3.2 Extremal point theorem

From the definition, a subset of decision POVM \mathcal{P}_{ $\Gamma$} is generally too abstract. Indeed,

it includes pathological POVMs like the Cantor distribution. However, our following

result implies that the \mathcal{P}_{ $\Gamma$}- Bayes decision POVM is not pathological any more in

usual cases.

Definition 7. Let a QSD problem ( $\sigma$( $\theta$), U, w) be given. For every subset \mathcal{K} of Po(U) ,

a decision POVM \mathrm{M}\in \mathcal{K} is called an extremal decision POVM of \mathcal{K} if it satisfies the

following

\displaystyle \mathrm{M}=\sum_{a=1}^{A}$\lambda$_{a}\mathrm{M}_{a}, $\lambda$_{1}>0, \cdots , $\lambda$_{A}>0, \sum_{a=1}^{A}$\lambda$_{a}=1;\mathrm{M}_{1}, \cdots , \mathrm{M}_{A}\in \mathcal{K}
\Rightarrow \mathrm{M}_{1}=\cdots=\mathrm{M}_{A}=\mathrm{M}.

Let us denote the whole extremal decision POVMs of \mathcal{K} as ex(\mathcal{K}) .

If we consider a convex subset \mathcal{K} , then the above definition reduces to the usual

definition, i.e., A=2 . Unfortunately, this simple definition is not suitable for noncon‐
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vex sets. Suppose that we have only four decision POVMs, \mathcal{K}=\{\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}, \mathrm{M}_{4}\}

and \mathrm{M}_{4} has the unique representation of \displaystyle \mathrm{M}_{4}=\frac{1}{3}(\mathrm{M}_{1}+\mathrm{M}_{2}+\mathrm{M}_{3})/3 . Then \mathrm{M}_{4} is

not written as a mixture of any pair of decision POVMs in \mathcal{K} . If we fixed A=2 in

the above definition, then \mathrm{M}_{4} would be an extremal point, which is not desired in

Theorem 4.

Theorem 3. If we take the average risk R_{ $\pi$}(\mathrm{M}) as a functional over the P_{ $\Gamma$} , then it

achieves the minimum at least on the extremal points of \mathcal{P}\mathrm{r} . That is,

\displaystyle \mathrm{M}\in P_{ $\Gamma$}\mathrm{M}\in ex(\mathcal{P}\mathrm{r}\rangle\min R_{ $\pi$}(\mathrm{M})=\dot{\mathrm{m}}\mathrm{n}R_{ $\pi$}(\mathrm{M})
holds.

Proof. This proof follows the same route as \mathcal{P}_{ $\Gamma$}=\mathcal{P}o(U) , which is shown by

Holevo [13]. \square 

Theorem 3 tells us that it is enough to seek the Bayes decision POVM in ex(\mathcal{P}_{ $\Gamma$})

instead of \mathcal{P}_{ $\Gamma$} . On the other hand, it tells us nothing about these extremal points

ex(\mathcal{P}_{ $\Gamma$}) . By Theorem 1, \mathcal{P}_{ $\Gamma$}=\overline{\mathrm{c}\mathrm{o}($\Gamma$_{U})} holds and it is natural to expect that ex(\mathcal{P}_{ $\Gamma$})

is almost equal to the extremal points of $\Gamma$_{U} . However, we must be careful for taking

closure. The mathematical operation of taking a closed convex hull of a subset A

implies that weak closure points are added to \mathrm{c}\mathrm{o}(A) . When we find out the Bayes

decision POVM (basically by a numerical method), these additional points would be

troublesome. However, the following theorem assures that no additional point appear

as an extremal point after taking closure.

Theorem 4. Let a QSD problem ( $\sigma$( $\theta$), U,w) and an implementable class of mea‐

surements  $\Gamma$ be given. Then,

 ex('P_{ $\Gamma$})\subseteq ex(\overline{$\Gamma$_{U}})

holds.
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The following lemma is useful to show Theorem 4.

Lemma 3. Let A and B be subsets of a hnear space. Then,  B\subseteq A\Rightarrow B\cap ex(A)\subseteq

 ex(B) .

Now we show Theorem 4.

Proof. By Theorem 1, \mathcal{P}\mathrm{r}=\overline{\mathrm{c}\mathrm{o}($\Gamma$_{U})}=\overline{\mathrm{c}\mathrm{o}(\overline{$\Gamma$_{U}})} holds. In Lemma 3, setting A=\mathcal{P}_{ $\Gamma$}

and B=\overline{$\Gamma$_{U}}, we obtain \overline{$\Gamma$_{U}}\cap ex(\mathcal{P}_{ $\Gamma$})\subseteq ex(\overline{$\Gamma$_{U}}) .

Since \overline{$\Gamma$_{U}} is a closed, hence, a compact, subset of \mathcal{P}o(U) , all extremal points of \mathcal{P}_{ $\Gamma$}

arise from points in \overline{$\Gamma$_{U}}. (Chap. V, section 8.3, lemma 5, in Dunford and Schwartz [3]).

That is, ex(\mathcal{P}_{ $\Gamma$})\subseteq\overline{$\Gamma$_{U}}. Therefore, ex(\mathcal{P}_{ $\Gamma$})\subseteq ex(\overline{$\Gamma$_{U}}) .

\square 

Due to Theorem 1, if \overline{$\Gamma$_{U}} is convex, clearly \overline{$\Gamma$_{U}}=\mathcal{P}_{ $\Gamma$} . If \overline{$\Gamma$_{U}} is nonconvex, then $\Gamma$_{U}

is also nonconvex (Contraposition of A is convex \Rightarrow\overline{A} is convex and ex(\overline{$\Gamma$_{U}}) is

not necessarily equal to ex(\mathcal{P}_{ $\Gamma$}) . Theorem 4 also tells us that a pathological decision

POVM does not appear as the unique Bayes decision POVM in usual cases. If so,

such a decision POVM must be the extremal point and included in ex(\overline{$\Gamma$_{U}})\subseteq\overline{$\Gamma$_{U}},

which is not likely to happen in a real experiment.

3.2.1 Finite‐dimensional case

When the dimension of the underlying Hilbert space is finite, the above result

becomes very simple.

Theorem 5. Let a QSD problem ( $\sigma$( $\theta$), U, w) on the finite‐dimensional Hilbert space

be given. Let an implementable class of measurements  $\Gamma$ be a closed subset of \mathrm{p}\mathrm{r} $\sigma$-

jective valued measurements (PVM). Then,

ex(\overline{$\Gamma$_{U}})=$\Gamma$_{U}

holds.
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Note that in a finite‐dimensional Hilbert space, every PVM is identified with a finite

set of mutually orthogonal projections summing to the identity.

Proof. By definition, every element of $\Gamma$_{U} is given by a finite‐set of orthogonal \mathrm{p}\mathrm{r} $\alpha$-

jection matrix \{\mathrm{E}_{\mathrm{u}}1, . .., \mathrm{E}_{\mathrm{u}}k\} . Since  $\Gamma$ is closed,  $\Gamma$_{U} is also closed. Every projective

measurement in $\Gamma$_{U} is an extremal point (See, Chap. 1, Prop. 6.2, Holevo [14]). Thus,

ex(\overline{$\Gamma$_{U}})=ex($\Gamma$_{U})=$\Gamma$_{U}. \square 

This theorem assures that the \mathcal{P}_{ $\Gamma$}‐Bayes decision POVM is necessarily in $\Gamma$_{U} if

an implementable class of measurements  $\Gamma$ is a closed subset of PVM. Thus, it is

constructed by a PVM in  $\Gamma$ and a Bayes estimate. At least we can find the \mathcal{P}_{ $\Gamma$}‐Bayes

decision POVM by a brute force method.

4 Example

We set n=4m, m=1 , 2, . . . . Suppose that we have 4m‐iid quantum system

described by  $\sigma$( $\theta$):= $\rho$( $\theta$)^{\otimes 4rn} , where

p( $\theta$):=\displaystyle \frac{1}{2}\left(\begin{array}{llll}
1+ & $\theta$_{1} & $\theta$_{2} & \\
$\theta$_{2} &  & 1- & $\theta$_{1}
\end{array}\right).
We set {\rm Im}$\rho$_{12}={\rm Im}$\rho$_{21}=0 for simplicity.

We consider parameter estimation from 4m iid sample. The parameter space and

the decision space are given by

U= $\Theta$=\{ $\theta$=($\theta$_{1}, $\theta$_{2})\in \mathrm{R}^{2}:\Vert $\theta$\Vert\leq 1\}.

We adopt the squared error as the loss function, w( $\theta$,u)=\Vert $\theta$-u\Vert^{2} We assume a

family of prior distributions  $\pi$(\mathrm{d} $\theta$)\propto r^{a+1}\mathrm{d}r\mathrm{d} $\varphi$ , where  a\geq 0 is a positive constant and

(r,  $\varphi$) is the polar coordinate with 0\leq r\leq 1 and  0\leq $\varphi$\leq 2 $\pi$ , where  $\theta$_{1}=r\cos $\varphi$, $\theta$_{2}=

rsin  $\varphi$ . We consider the QSD problem ( $\sigma$( $\theta$), U, w) with a prior distribution  $\pi$.
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Next let us consider implementable measurements. We introduce some notations

to write them. First of all, we define the following observable \overline{W}( $\phi$):=(\cos $\phi$)X+

(sm  $\phi$)  Z for  $\phi$\in[0, 2 $\pi$), where  X=\left(\begin{array}{ll}
0 & 1\\
1 & 0
\end{array}\right) and Z=\left(\begin{array}{ll}
1 & 0\\
0 & -1
\end{array}\right) . Then let us define

PVM \mathrm{W}( $\phi$) as the spectral decomposition of \overline{W}( $\phi$) . We symbolically write

\mathrm{W}($\phi$_{1})\otimes \mathrm{W}($\phi$_{2}) ,

which implies that we perform the PVM \mathrm{W}($\phi$_{1}) for the first system and \mathrm{W}($\phi$_{2}) for

the second system.

For each  $\phi$, the experimenter has to prepare the corresponding measurement de‐

scribed by \mathrm{W}( $\phi$) . Suppose that this preparation costs so much and m‐repetition of

the same measurement, \mathrm{W}( $\phi$)^{\otimes 7n} is not so troublesome. Usually, in this situation, an

experimenter prefers to perform two kinds of PVM, say,  $\phi$=0,  $\pi$/2 , for each 2m‐iid

system. However, from the viewpoint of statistical estimation using finite data (i.e.,

m<\mathrm{o}\mathrm{o}) , there is no strong reason to adopt only two kinds of PVM. Thus, we admit

at most four kinds of PVM, say  $\phi$=0, $\pi$/4, $\pi$/2, 3 $\pi$/4 for our choice. General form is

given by

\mathrm{W}($\phi$_{1})^{\otimes m_{1}}\otimes \mathrm{W}($\phi$_{2})^{\otimes rn_{2}}\otimes \mathrm{W}($\phi$_{3})^{\otimes rn\mathrm{s}}\otimes \mathrm{W}($\phi$_{4})^{\otimes 7n4},

where m_{1}, m_{2}, m_{3}, m_{4} is nonnegative integers satisfying m_{1}+m_{2}+m_{3}+m_{4}=4m.

For simplicity, we set m_{1}=m_{2}=m_{3}=m_{4}=m . After the above consideration, we

take our implementable class as

$\Gamma$_{4}:=\displaystyle \{\bigotimes_{j=1}^{4}\mathrm{W}($\phi$_{j})^{\otimes rn}:$\phi$_{1} , .. ., $\phi$_{4}\in[0, 2 $\pi$)\}.
Now our goal is to find the best parameter set  $\phi$=($\phi$_{1}, \cdots, $\phi$_{4}) . It corresponds to

finding the optimal measurement among possible class of measurements in the average

risk. Indeed, due to Theorem 3 and Theorem 5,

\displaystyle \mathrm{M}\in \mathcal{P}_{$\Gamma$_{4}}\mathrm{M}\in$\Gamma$_{4U}\min R_{ $\pi$}(\mathrm{M})=\mathrm{m}\mathrm{j}\mathrm{n},R_{ $\pi$}(\mathrm{M})
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holds. By using Bayesian estimate, the right hand side reduces to the minimization

problem with respect to the four parameter ($\phi$_{1}, \cdots, $\phi$_{4}) . For the squared loss, we

explicitly write

u_{ $\pi$}(x; $\phi$)=\displaystyle \frac{\int $\theta$ p(x| $\theta$; $\phi$) $\pi$( $\theta$)\mathrm{d} $\theta$}{\int p(x| $\theta$; $\phi$) $\pi$( $\theta$)\mathrm{d} $\theta$},
\displaystyle \mathrm{M}\in$\Gamma$_{4U}\mathrm{m}\mathrm{j}\mathrm{n},R_{ $\pi$}(\mathrm{M})=\min_{ $\phi$}\int E_{ $\theta,\ \phi$}[\Vert $\theta$-u_{ $\pi$}(x; $\phi$)\Vert^{2}] $\pi$( $\theta$)\mathrm{d} $\theta$,

where u_{ $\pi$}=(u_{ $\pi$}^{1},u_{ $\pi$}^{2}) is the Bayes estimate with respect to  $\pi$ (for derivation, see, e.g.,

Robert [20], section 2‐5.) and  E_{ $\theta,\ \phi$}[\cdot] denotes the expectation with respect to the

measurement outcome x , whose distribution p(x| $\theta$; $\phi$) is determined by the density

operator  $\rho$( $\theta$)^{\otimes 47n} and projective measurements \otimes_{j=1}^{4}\mathrm{W}($\phi$_{j})^{\otimes 7n} . At least, by brute

force method, we can find the best parameter  $\phi$ numerically.

4.1 Monte Carlo optimization

It is necessary to evaluate the following quantities:

 u_{ $\pi$}(x; $\phi$)=\displaystyle \int $\theta \pi$( $\theta$|x; $\phi$)\mathrm{d} $\theta$=\frac{\int $\theta$ p(x| $\theta$; $\phi$) $\pi$( $\theta$)\mathrm{d} $\theta$}{\int p(x| $\theta$; $\phi$) $\pi$( $\theta$)\mathrm{d} $\theta$},
R_{ $\phi$}(r,  $\varphi$)=E_{ $\theta,\ \phi$}[\Vert $\theta$-u_{ $\pi$}(x; $\phi$)\Vert^{2}]=E_{ $\theta,\ \phi$}[(r\cos $\varphi$-u_{ $\pi$}^{1})^{2}+(r\sin $\varphi$-u_{ $\pi$}^{2})^{2}],

r_{ $\pi$}( $\phi$)=\displaystyle \iint R_{ $\phi$}(r,  $\varphi$)(a+2)r^{c $\iota$+1}\mathrm{d}r\frac{\mathrm{d} $\varphi$}{2 $\pi$}.
In the first line,  $\pi$( $\theta$|x) is the posterior distribution. We use the standard Monte Carlo

method to evaluate each expectation or integral. Each iteration number of the Monte

Carlo loop is set between 10^{3}\sim 2\times 10^{4} respectively according to its accuracy. Thus,

we need to perform, say 10^{4}\times 10^{4}\times 10^{4}=10^{12} iteration for one fixed measurement,

\otimes_{j=1}^{4}\mathrm{W}($\phi$_{j})^{\otimes m} . Stochastic optimization over the full parameter region [0, 2 $\pi$)^{\times 3} is

inefficient. (Note that we fix $\phi$_{1}=0 due to symmetry.) Indeed, we have not finished

yet detailed numerical studies. We only mention what we have done so far. Detailed

analysis will be presented for another occasion.
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4.2 Best 2-\mathrm{P}\vee \mathrm{M}\mathrm{s} with flat prior

Although it seems trivial, we present the best ‐PVMs in order to show how our

method reauy works. We call the pair of observables (\overline{W}( $\phi$), \overline{W}( $\phi$+ $\pi$/2)) ,  $\phi$\in[0, 2 $\pi$)

an orthogonal pair of obseruables. Let us consider the following implementable class

 $\Gamma$_{2}=\{\mathrm{W}($\phi$_{1})^{\otimes 2rn}\otimes \mathrm{W}($\phi$_{2})^{\otimes 2rn}:$\phi$_{1)}$\phi$_{2}\in[0, 2 $\pi$)\}.

Due to symmetry, we can set $\phi$_{1}=0 . Then seeking the optimal decision POVMs in

\mathcal{P}_{$\Gamma$_{2}} reduces to one parameter optimization. It is easily seen that the best PVMs in

$\Gamma$_{2} is \mathrm{W}( $\phi$)^{\otimes 2_{7}n}\otimes \mathrm{W}( $\phi$+ $\pi$/2)^{\otimes 2n $\tau$} . In other words, 2n\mathrm{k}‐repetition of an orthogonal

pair of observables is the best measurement among \mathcal{P}_{$\Gamma$_{2}} . The Bayes decision POVM

is obtained if we set u(x) as the Bayes estimate. We set the minimum r_{2,\min}
(2_{7}n)=

\dot{\mathrm{m}}\mathrm{n}_{\mathrm{M}\in P\mathrm{r}_{2}}R_{ $\pi$}(\mathrm{M}) .

4.3 4-\mathrm{P}\vee \mathrm{M}\mathrm{s} with a prior concentrated on pure states

Instead of $\Gamma$_{4} , we deal with a slightly restricted implementable class

$\Gamma$_{2,2}:=\displaystyle \{\bigotimes_{j=1}^{4}\mathrm{W}($\phi$_{j})^{\otimes 7Yl}:$\phi$_{1}, $\phi$_{3}\in[0, 2 $\pi$);$\phi$_{2}=$\phi$_{1}+ $\pi$/2, $\phi$_{4}=$\phi$_{3}+ $\pi$/2\}.
Due to symmetry, we can set $\phi$_{1}=0 and $\phi$_{3}\in[0,  $\pi$/2). Then seeking the optimal

decision POVMs in \mathcal{P}_{$\Gamma$_{2,2}} reduces to one parameter optimization ($\phi$_{3}) ,

\displaystyle \mathrm{M}\in \mathcal{P}_{$\Gamma$_{2,2}}\mathrm{m}\dot{\mathrm{m}}R_{ $\pi$}(\mathrm{M})=\min_{$\phi$_{3}}r_{ $\pi$}(0,  $\pi$/2, $\phi$_{3}, $\phi$_{3}+ $\pi$/2) .

Numerical computation implies that

(2_{7}n)
r_{2,\dot{\mathrm{m}}\mathrm{n}}=r_{ $\pi$}(0,  $\pi$/2,0,  $\pi$/2)\geq r_{ $\pi$}(0,  $\pi$/2, $\phi$_{3}, $\phi$_{3}+ $\pi$/2)

holds. Thus we define the relative risk difference  $\eta$($\phi$_{3}) as

 $\eta$($\phi$_{3})=\displaystyle \frac{r_{2,\min}^{(2_{7}n)}-r_{ $\pi$}(0, $\pi$/2,$\phi$_{3},$\phi$_{3}+ $\pi$/2)}{r_{2,\dot{\mathrm{m}}\mathrm{n}}^{(2_{7}r $\iota$)}}.
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By definition  $\eta$\leq 1 . We expect  $\eta$($\phi$_{3})\geq 0,\forall$\phi$_{3} and have interests in \displaystyle \max_{$\phi$_{3}} $\eta$($\phi$_{3}) .

FYom several numerical computation (but not fully analyzed), it seems that we

can see the difference more clearly than that with the flat prior (a=0) . Thus,

we set a=10 and the sample size m to be between 30\sim 100 . We directly compare

measurements with $\phi$_{3}=0 and those with $\phi$_{3}= $\pi$/4 . The former is 2m‐repetition of X

and Z while the latter is m‐repetition of X, Z, \displaystyle \frac{X+Z}{\sqrt{2}}, \displaystyle \frac{X-Z}{\sqrt{2}} . The relative improvement

of the estimation error reaches about  $\eta$ (  $\pi$/4) \sim 10% when  m\sim 100.

4.4 Discussion

Numerical results are not enough but at this point they suggest that

(i) The m‐repetition of X, Z, \displaystyle \frac{X+Z}{\sqrt{2}}, \displaystyle \frac{X-Z}{\sqrt{2}} is the best combination in $\Gamma$_{4} . In particu‐

lar, the most natural way, 2m‐repetition of two observables X, Z_{f} is not the best

any more when we estimate the expectations of X and Z.

(ii) If experimenters do not hesitate to prepare several kinds of PVMs, measurement

using many kinds of PVMs may work better than 4 kinds of PVMs.

Theoretically \mathcal{P}_{$\Gamma$_{4}} is a much smaller subset of \mathcal{P}o( $\Theta$) . The latter class includes the

decision POVM using the full quantum correlation (i.e., entanglement over the 4m‐

systems) and it is of course better than the best decision POVM in \mathcal{P}_{$\Gamma$_{4}} . However,

our proposed method based on the m‐repetition of X, Z, \displaystyle \frac{X+Z}{\sqrt{2}} and \displaystyle \frac{X-Z}{\sqrt{2}} is actually

implementable in a usual sense. Our proposed method indicates that imp7vvement in

statistical estimation is possible without any entanglement.

We also note that measurements using quantum correlation (i.e., entanglement

over a composite system) may be included in  $\Gamma$ if the experimenter can prepare

such measurements successfully. Although admitting such measurements makes the

optimization problem much harder than the above example, it is possible and very
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interesting to find out the best decision POVMs among \mathcal{P}_{ $\Gamma$} . Both effective algorithms

dedicated to our formulation and theoretical development of good approximation are

left for future study.
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