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Abstract

We extend apparent parameter technique introduced in [2] to the case of Whitney holo‐

morphic functions and give its application.

§1. Introduction

In the paper T. Aoki, N. Honda and S. Yamazaki [2], we have established compat‐

ibility of composition of analytic pseudodifferential operators \mathscr{E}_{X}^{\mathbb{R}} , which is defined in

two ways; one comes from Leibniz�s rule in the symbol theory of g_{X}^{\mathbb{R}} as in [1] and the

other is given by the cohomological residue map, for example, as in [7]. It was a long‐
standing issue to show the compatibility of both the definitions and it has been done in

[2] by employing, so called, an apparent parameter technique. This technique is based

on Theorem 2.3 in Section 2 (see also Proposition 1.3 in [7]) which establishes, roughly
speaking, a certain isomorphism between a local cohomology groups with coefficients

in holomorphic functions and the corresponding ones on the space equipped with an

apparent parameter.
The theorem is not only a crucial key in showing the compatibility but also a useful

tool for several applications. In this paper, as another application of the theorem, we

extend it to the case of Whitney holomorphic functions, and then, show that some

difficulty observed in a Čech representation of holomorphic microfunctions of Whitney
class is overcome by introducing an apparent parameter thanks to the theorem. The

details and proofs of this note are given in our forthcoming paper.
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§2. Local cohomology groups on a vector space

Let X=\mathbb{R}^{m} and let Z be a closed subset in X . Let us consider a continuous

deformation mapping  $\varphi$(x, s):X\times[0, 1]\rightarrow X which satisfies the following conditions

Al., A2. and A3.:

Al.  $\varphi$(x, 1)=x for any x\in X and  $\varphi$(x, s)=x for any x\in Z.

A2.  $\varphi$( $\varphi$(x, s), 0)= $\varphi$(x, 0) for any s\in[0 , 1 ] and x\in X.

A3. Set

(2.1) $\rho$_{ $\varphi$}(x, s):=| $\varphi$(x, s)- $\varphi$(x, 0

Then $\rho$_{ $\varphi$}(x, s) is a strictly increasing function of s outside Z
, i.e., if s_{1}<s_{2} , we

have $\rho$_{ $\varphi$}(x, s_{1})<$\rho$_{ $\varphi$}(x, s_{2}) for any x\in X\backslash Z.

Define, for short,

(2.2) $\rho$_{ $\varphi$}(x) :=$\rho$_{ $\varphi$}(x, 1)=|x- $\varphi$(x, 0

and call it the level function of  $\varphi$.

Example 2.1. Let X=\mathbb{C}^{2} with (z_{1}, z_{2}) and Z=\{z_{1}=0\} . Define

(2.3)  $\varphi$(z, s)=(sz_{1}, z_{2}) .

Then clearly  $\varphi$(z, s) satisfies the above conditions.

Set, for some  0<a< $\pi$ and  r>0,

(2.4)  $\Gamma$:=\{ $\eta$\in \mathbb{C};|\arg $\eta$|<a, 0<| $\eta$|<r\}

and \hat{X} :=X\times \mathbb{C}_{ $\eta$} with coordinates (x,  $\eta$) . We denote by $\pi$_{ $\eta$} the canonical projection
\hat{X}\mapsto X defined by (x,  $\eta$)\mapsto x . Let G\subset X be a closed subset and U\subset X an open

subset. For  $\rho$>0 , we define the subsets \hat{G} and Û in \hat{X} as follows:

\hat{G} :=\{( $\varphi$(x, s),  $\eta$)\in X\times $\Gamma$;$\rho$_{ $\varphi$}(x)\leq $\rho$| $\eta$|, 0\leq s\leq 1, x\in G\}

(2.5) =\displaystyle \bigcup_{0\leq s\leq 1}\{( $\varphi$(x, s),  $\eta$)\in X\times $\Gamma$;$\rho$_{ $\varphi$}(x)\leq $\rho$| $\eta$|, x\in G\},
Û :=\{(x,  $\eta$)\in X\times $\Gamma$;x\in U, $\rho$_{ $\varphi$}(x)< $\rho$| $\eta$|\}.

Note that \hat{G}\cap\^{U} is a closed subset in Û.
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Example 2.2. Let X=\mathbb{C}^{2} with (z_{1}, z_{2}) and let us consider the mapping  $\varphi$(z, s) :=

(szl, z_{2} ) where Z=\{z_{1}=0\} . Let G=\{(z_{1}, z_{2});$\rho$^{2}|z_{2}|\leq|z_{1}|\} for  $\rho$>0 . By noticing

$\rho$_{ $\varphi$}(z)=| $\varphi$(z, 1)- $\varphi$(z, 0)|=|z_{1}|,

we have

\displaystyle \hat{G}:=\bigcup_{0\leq s\leq 1}\{( $\varphi$(z, s),  $\eta$)\in\hat{X};$\rho$_{ $\varphi$}(z)\leq $\rho$| $\eta$|, z\in G\}
=\displaystyle \bigcup_{0\leq s\leq 1}\{(sz_{1}, z_{2}, $\eta$)\in \mathbb{C}^{2}\times $\Gamma$;|z_{1}|\leq $\rho$| $\eta$|, $\rho$^{2}|z_{2}|\leq|z_{1}|\}
=\{(z_{1}, z_{2},  $\eta$)\in \mathbb{C}^{2}\times $\Gamma$;|z_{1}|\leq $\rho$| $\eta$|,  $\rho$|z_{2}|\leq| $\eta$|\}

=\{(z_{1},  $\eta$)\in \mathbb{C}\times $\Gamma$;|z_{1}|\leq $\rho$| $\eta$|\}_{\mathbb{C}_{ $\eta$}^{\times}}\{(z_{2},  $\eta$)\in \mathbb{C}\times $\Gamma$;|z_{2}|\leq$\rho$^{-1}| $\eta$|\}.
Since $\pi$_{ $\eta$}^{-1}(G)\cap\^{U} is a closed subset in \hat{G}\cap\^{U} and Û is an open subset in $\pi$_{ $\eta$}^{-1}(U) ,

the canonical morphism \mathcal{F}\rightarrow R$\pi$_{$\eta$_{*}}$\pi$_{ $\eta$}^{-1}\mathcal{F} induces

(2.6) R$\Gamma$_{G\cap U}(U;\mathcal{F})\rightarrow R$\Gamma$_{$\pi$_{ $\eta$}^{-1}(G)\cap$\pi$_{ $\eta$}^{-1}(U)}($\pi$_{ $\eta$}^{-1}(U);$\pi$_{ $\eta$}^{-1}\mathcal{F})\rightarrow R$\Gamma$_{\hat{G}\cap\hat{U}}( Û; $\pi$_{ $\eta$}^{-1}\mathcal{F}) .

We are now ready to state the theorem:

Theorem 2.3 (Propostion 1.3 [7]). Let \mathcal{F} be a complex of Abelian sheaves on X.

Assume that U satisfies \displaystyle \sup_{x\in U}$\rho$_{ $\varphi$}(x)< $\rho$ r . Then the above canonical morphism

(2.7) R$\Gamma$_{G\cap U}(U;\mathcal{F})\rightarrow$\Gamma$_{\hat{G}\cap\hat{U}}( Û; $\pi$_{ $\eta$}^{-1}\mathcal{F})

is isomorphic.

Now we extend the above theorem to the case of Whitney holomorphic functions.

We consider the following situation: Let X=\mathbb{C}^{n}=\mathbb{R}^{2n} with the complex coordinates

(x)=(x_{1}, \ldots , x_{n}) ,
and let Z be a closed subanalytic subset in X . Set

(2.8)  $\Gamma$:=\{ $\eta$\in \mathbb{C};|\arg $\eta$|<a, | $\eta$|<r\}\subset \mathbb{C}

for some  0<a< $\pi$ and  r> O. Define \hat{X} :=X\times \mathbb{C}_{ $\eta$} with complex coordinates (x, $\eta$)
and the canonical projection $\pi$_{ $\eta$} : \hat{X}\rightarrow X in the same way as those at the beginning of

this section. Let  $\varphi$(x, s):X\times[0, 1]\rightarrow X be a continuous deformation mapping which

satisfies the conditions Al., A2. and A3. introduced already and the following additional

one:

A4. The  $\varphi$ is a  C^{1} subanalytic map and it satisfies

(2.9) \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}_{\mathbb{R}}(d_{\mathbb{R}^{2n}\mathrm{x}(0,1)} $\varphi$)=2n on (X\backslash Z)\times(0,1)
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and

(2.10) d_{\mathbb{R}^{2n}}$\rho$_{ $\varphi$}|_{\wedge d_{\mathrm{R}^{2n}} $\varphi$=0}\neq 0 on (X\backslash Z)\times(0,1) .

Here d_{\mathbb{R}^{2n}\times(0,1)} and d_{\mathbb{R}^{2n}} denote the differentials with respect to the real coordi‐

nate variables ({\rm Re} x, {\rm Im} x, s) and ({\rm Re} x, {\rm Im} x) respectively, and $\rho$_{ $\varphi$} is regarded as a

function on X\times(0,1) , i.e., $\rho$_{ $\varphi$} is independent of the variable s.

Let V be an open subanalytic subset and K a compact subanalytic subset. Set, for

 $\sigma$>0,

\hat{V} :=\{( $\varphi$(x, s), $\eta$)\in\hat{X};|$\rho$_{ $\varphi$}(x)|\leq $\sigma$| $\eta$|, 0<s\leq 1, x\in V\},
(2.11)

\hat{K}:=\{(x,  $\eta$)\in K\mathrm{x}\overline{ $\Gamma$};|$\rho$_{ $\varphi$}(x)|\leq $\sigma$| $\eta$|\}.
Note that \hat{V} and \hat{K} are subanalytic subsets and \hat{V}\cap\hat{K} is an open subset in \hat{K} . Set

(2.12) \mathfrak{D}_{\hat{X}} := $\Gamma$(\hat{X}, D_{\hat{X}}) and \mathfrak{M}:=\mathfrak{D}_{\hat{X}}/\mathfrak{D}_{\hat{X}}\partial_{ $\eta$},

where \mathcal{D}_{\hat{X}} denotes the sheaf of hnear analytic differential operators on \hat{X} . In what

follows, we extensively use the theory of Whitney tensor product \mathrm{e}\otimes \mathrm{w}\mathcal{O}_{X} and that of

sheaves on subanalytic sites, in particular, the sheaf \mathcal{O}_{X_{ $\epsilon$ a}}^{t} of temperate holomorphic
functions and \mathcal{O}_{X_{sa}}^{\mathrm{w}} of Whitney holomorphic functions on the subanalytic site X_{sa} . For

these notions, refer the readers to [3], [4] and [5]. Now we can state the counterpart of

the previous theorem:

Theorem 2.4. Assume the condition \displaystyle \sup_{x\in K}$\rho$_{ $\varphi$}(x)\leq $\sigma$ r . Then we have the canonical

isomorphism in D^{b}(\mathbb{C})

\mathrm{R} $\Gamma$(X, \mathbb{C}_{V\cap K}\otimes \mathrm{w}\mathcal{O}_{X})\rightarrow^{\sim}\mathrm{R}\mathrm{H}\mathrm{o}\mathrm{m}_{\mathfrak{D}_{\overline{X}}}(\mathfrak{M}, \mathrm{R} $\Gamma$(\hat{X}, \mathbb{C}_{\hat{V}\cap\hat{K}}\otimes \mathrm{w}\mathcal{O}_{X}
§3. Application to holomorphic microfunction of Whitney class

In this section, we give an application of Theorem 2.4 to a Čech representation of

holomorphic microfunctions of Whitney class.

A holomorphic microfunction in the complex domain is a counterpart of a well‐

known Sato�s microfunction in the real domain. Let X=\mathbb{C}^{n} with complex coordinates

(z)=(z', z and Y a closed complex submanifold with its complex codimension d>0.

We assume Y to be defined by \{z=0\} . We denote by T_{Y}^{*}X the conormal bundle of

Y . Then the sheaf \mathscr{C}_{Y|X}^{\mathbb{R}} of holomorphic microfunctions on T_{Y}^{*}X is defined by

(3.1) \mathscr{C}_{Y|X}^{\mathbb{R}} :=$\mu$_{Y}(\mathcal{O}_{X})[d],
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where $\mu$_{\mathrm{Y}}() is the microlocalization functor along Y (see [7]). We can also obtain the

sheaf \mathscr{C}_{Y|X}^{\mathbb{R},t} of temperate holomorphic microfunctions and the sheaf \mathscr{C}_{Y|X}^{\mathbb{R},\mathrm{w}} of holomorphic
microfunctions of Whitney class by replacing the sheaf \mathcal{O}_{X} with \mathcal{O}_{X_{\mathrm{s}a}}^{t} and \mathcal{O}_{X_{sa}}^{\mathrm{w}} in (3.1)
respectively, see [6] for details.

Let p :=(0;dz_{1})\in T_{Y}^{*}X . Then it follows from a fiber formula of microlocalization

that a stalk of  $\zeta$ \mathscr{E}_{\mathrm{Y}|X}^{\mathbb{R}} at p is defined by

(3.2) \displaystyle \mathscr{C}_{Y|X_{p}}^{\mathbb{R}},=\lim_{\rightarrow}\mathrm{H}_{G}^{d}(U;\mathcal{O}_{X}) ,

u, G

where U is an open neighborhood of the origin in X and G has a form  G\times \mathbb{C}^{n-d}\subset

\mathbb{C}^{d}\times \mathbb{C}^{n-d}=\mathbb{C}^{n} with G^{J} being a closed conic cone in \mathbb{C}^{d} containing the vector dz_{1}=

(1, 0, \ldots

, O). That is,  G is a closed wedge whose edge is Y.

Similarly, a stalk of \mathscr{C}_{Y|X}^{\mathbb{R},\mathrm{w}} is

(3.3) c\displaystyle \mathscr{E}_{Y|X_{p}}^{\mathbb{R},\mathrm{w}},=\lim_{\rightarrow}\mathrm{H}^{d}(X;\mathbb{C}_{W\cap\overline{U}}\otimes \mathrm{w}\mathcal{O}_{X}) ,

u, w

where U is a subanalytic open neighborhood of the origin in X and W has a form

W'\times \mathbb{C}^{n-d}\subset \mathbb{C}^{d}\times \mathbb{C}^{n-d}=\mathbb{C}^{n} with W�

being a subanalytic open conic cone in \mathbb{C}^{d}

containing the vector dz_{1} . That is,  $\Omega$ is an open wedge whose edge is  Y.

One of reasons why these objects seem interesting and important in analysis is that

a section of, for example, \mathscr{C}_{Y|X}^{\mathbb{R}} is given by a boundary value of a holomorphic function

locally defined on a cone along Y
,

which can be seen through Čech representation of

local cohomology groups. As a matter of fact, let us consider the following simple case:

Let X=\mathbb{C}^{2} with coordinates (z_{1}, z_{2}) and Y=\{0\} . Define open subsets, for  $\epsilon$>0,

U=\{|z|< $\epsilon$\},
(3.4) S=\{z\in U;|\arg z_{1}- $\pi$|< $\pi$/2+ $\epsilon$\},

V=\{z\in U;|z_{1}|< $\epsilon$|z_{2}|\},

where |z|=\displaystyle \max\{|z_{1}|, |z_{2}|\} . Then a pair \{\{U, S, V\}, \{S, V\}\} becomes a covering of the

pair \{U, U/G\} in (3.2). Clearly U, S and V are Stein open subsets, and hence, the

higher cohomology groups of \mathcal{O}_{X} on these open subsets vanish, i.e.,

(3.5) \mathrm{H}^{k}(U;\mathcal{O}_{X})=\mathrm{H}^{k}(V;\mathcal{O}_{X})=\mathrm{H}^{k}(S;\mathcal{O}_{X})=0 (k\neq 0) .

Therefore, by the theory of Čech cohomology groups, we have obtained

(3.6) \displaystyle \mathscr{C}_{Y|X_{p}}^{\mathbb{R}},=\lim_{\vec{ $\epsilon$>0}}\mathcal{O}_{X}(S\cap V)/(\mathcal{O}_{X}(S)+\mathcal{O}_{X}(V)) .

As a conclusion, a holomorphic microfunction at p is represented by a boundary value

of a holomorphic function defined on a cone S\cap V.
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Now let us define, for a subanalytic open subset  $\Omega$ in  X,

(3.7) OT( $\Omega$) :=\mathrm{H}^{0}( $\Omega$;\mathcal{O}_{X_{sa}}^{t})= {f\in \mathcal{O}_{X}( $\Omega$);f has a temperate growth along \partial $\Omega$}.

Since the higher cohomology groups of \mathcal{O}_{X_{sa}}^{t} on U, S and V still vanish, i.e.,

(3.8) \mathrm{H}^{k}(U;\mathcal{O}_{X_{\mathrm{s}a}}^{t})=\mathrm{H}^{k}(V;\mathcal{O}_{X_{\mathrm{s}a}}^{t})=\mathrm{H}^{k}(S;\mathcal{O}_{X_{\mathrm{s}a}}^{t})=0 (k\neq 0) ,

by the same argument as that for \mathscr{C}_{Y|X}^{\mathbb{R}} , we also have

(3.9) \displaystyle \mathscr{C}_{Y|X_{p}}^{\mathrm{N},t},=\lim_{\vec{ $\epsilon$>0}}OT(S\cap V)/(OT(S)+OT(V)) .

Hence we can see that a temperate holomorphic microfunction at p is a holomorphic
microfunction whose representative has a temperate growth along boundary of S\cap V.

We now expect a similar fact that \mathscr{C}_{Y|X}^{\mathbb{R},\mathrm{w}} has the same kind of representation as that

for \mathscr{C}_{Y|X}^{\mathbb{R}} or \mathscr{C}_{\mathrm{Y}|X}^{\mathbb{R},t} . Let us define, for a subanalytic open subset  $\Omega$,

(3.10)

OW( $\Omega$) :=\mathrm{H}^{0}(X;\mathbb{C}_{\overline{ $\Omega$}}\otimes \mathrm{w}\mathcal{O}_{X})= { f\in \mathcal{O}_{X}( $\Omega$);f extends to X as a C^{\infty} function}.

Contrary to the case for either \mathcal{O}_{X} or \mathcal{O}_{X_{sa}}^{t} , we cannot show vanishing of higher coho‐

mology groups for Whitney holomorphic functions on the Stein open subset V . In fact,
we have the following lemma.

Lemma 3.1. We have

\mathrm{H}^{1}(X;\mathbb{C}_{\overline{V}^{\otimes \mathcal{O}_{X})}}^{\mathrm{w}}\neq 0.
Furthermore, we also have

\mathrm{H}^{1}(V;\mathcal{O}_{X_{\mathrm{s}a}}^{\mathrm{w}})\neq 0.

Hence we can no longer expect a formula like

\displaystyle \mathscr{C}_{\mathrm{Y}|X_{p}}^{\mathbb{R},\mathrm{w}},=\lim_{\vec{ $\epsilon$>0}}OW(S\cap V)/(OW(S)+OW(V))
because \{\{\overline{U}, \overline{S}, \overline{V}\}, \{\overline{S}, \overline{V}\}\} is not a relative Leray covering of the pair \{\overline{U}, \overline{U}/W\} in

(3.3) with respect to the functor R $\Gamma$(X;\mathbb{C} \otimes \mathrm{w}\mathcal{O}_{X}) as the above lemma shows.

To overcome difficulty mentioned above, by the aide of Theorem 2.4, we consider the

representation of \mathscr{C}_{Y|X}^{\mathbb{R},\mathrm{w}} with an apparent parameter in the following way: We consider

the problem in the original geometrical situation, that is, X=\mathbb{C}^{n}, Y=\mathbb{C}^{n-d}=
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\{(z', z z'=0\} and p= (0 ; dzl). It follows from (3.3) and Theorem 2.4 (\hat{V} and \hat{K} in

the theorem correspond to \hat{W}_{ $\epsilon$} and \overline{\hat{U}_{ $\epsilon$}} in the equation below, respectively) that we have

(3.11) \displaystyle \mathscr{C}_{Y|X_{p}}^{\mathbb{R},\mathrm{w}},=\lim_{\vec{ $\epsilon$>0}}\{u\in \mathrm{H}^{d}(\hat{X};\mathbb{C}_{\overline{W}_{$\epsilon$^{\cap\hat{U}_{ $\epsilon$}}}^{-}}\otimes \mathrm{w}\mathcal{O}_{\hat{X}});\partial_{ $\eta$}u=0\},
where

(3.12) \hat{U}_{ $\epsilon$} :=\{(z,  $\eta$)\in X\times $\Gamma$;|z_{1}|< $\epsilon$| $\eta$|, |z|< $\epsilon$, | $\eta$|< $\epsilon$\}

and

(3.13) \hat{W}_{ $\epsilon$} :=\{(z,  $\eta$)\in\hat{X};|\arg z_{1}|< $\pi$/2- $\epsilon$,  $\epsilon$|z_{k}|<| $\eta$|(k=2, \ldots, d

Set Û :=\hat{U}_{ $\epsilon$} for simplicity and

\hat{V}^{(1)}:= \{z\in\^{U}; |\arg z_{1}- $\pi$|< $\pi$/2+ $\epsilon$\},
\langle 3.14)

\hat{V}^{(k)}:= \{z\in\^{U}; | $\eta$|< $\epsilon$|z_{k}|\} (2\leq k\leq d) .

We also set, for a non‐empty subset a in \{ 1, 2, . . . , d\},

\overline{\hat{V}^{( $\alpha$)}}:=\cap\overline{\hat{V}^{(k)}}.
 k\in $\alpha$

Then, since we have

\hat{W}_{ $\epsilon$}\cap\overline{\hat{U}_{ $\epsilon$}}=(\overline{\hat{U}}\backslash \neg\hat{V}^{(1)}\cap\cdots\cap(\overline{\hat{U}}\backslash \overline{\hat{V}^{(d)}})
and since \mathbb{C}

Û \backslash \overline{\hat{V}(k)}
is isomorphic to the complex

\mathscr{L}_{k}:0\rightarrow \mathbb{C}_{\hat{U}}-\rightarrow \mathbb{C}_{\overline{\hat{V}(k)}}\rightarrow 0,
we have isomorphisms

\displaystyle \mathbb{C}_{\overline{W}_{e}\cap\hat{U}_{ $\epsilon$}}-\simeq \mathscr{L}_{1}\bigotimes_{\mathbb{C}}\ldots\bigotimes_{\mathbb{C}}\mathscr{L}_{d}
(3.15)

\displaystyle \simeq 0\rightarrow \mathbb{C}_{\hat{U}}-\rightarrow\bigoplus_{\# $\alpha$=1}\mathbb{C}_{\overline{\hat{V}( $\alpha$)}}\rightarrow\bigoplus_{\# $\alpha$=2}\mathbb{C}_{\overline{\hat{V}( $\alpha$)}}\rightarrow\cdots\rightarrow\bigoplus_{\# $\alpha$=d}\mathbb{C}_{\overline{\hat{V}( $\alpha$)}}\rightarrow 0.
The subset \hat{V}^{( $\alpha$)} appearing in the above sequence is Stein, which also enjoys the following

good property for \mathcal{O}_{\hat{X}}^{\mathrm{w}} :

Lemma 3.2. We have

\mathrm{H}^{k}(\hat{X};\mathbb{C}_{\^{U}}\otimes \mathrm{w}\mathcal{O}_{\hat{X}})=\mathrm{H}^{k}(\hat{X};\mathbb{C}_{\overline{\hat{V}( $\alpha$)}}\otimes \mathrm{w}\mathcal{O}_{\hat{X}})=0 (k\neq 0)
for any non‐empty subset  $\alpha$ in \{ 1, . . .

, d\}.
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We put (3.15) into (3.11), and then, take its d‐th cohomology group, by noticing the

above lemma, we finally obtain the following representation:

Proposition 3.3. We have

(3.16) \displaystyle \mathscr{C}_{Y|X_{p}}^{\mathbb{R},\mathrm{w}},=\lim_{\vec{ $\epsilon$>0}}\{u\in\frac{OW(\hat{V}^{(*)})}{\bigoplus_{\# $\alpha$=d-1}OW(\hat{V}^{( $\alpha$)})};\partial_{ $\eta$}u=0\}.
Here the set OW( $\Omega$) of Whitney holomorphic functions is defined in the same way as

that in (3.10), that is, for a subanalytic open subset  $\Omega$\subset\hat{X},
(3.17)

OW( $\Omega$) :=\mathrm{H}^{0}(\hat{X};\mathbb{C}_{\overline{ $\Omega$}}\otimes \mathrm{w}\mathcal{O}_{\hat{X}})= { f\in \mathcal{O}_{\hat{X}}( $\Omega$);f extends to \hat{X} as a C^{\infty} function},

and \hat{V}^{(*)} :=\hat{V}^{(1)}\cap\cdots\cap\hat{V}^{(d)} , i. e.,

(3.18) \hat{V}^{(*)}=\{(z, $\eta$)\in X\times $\Gamma$;| $\eta$|< $\epsilon$|z_{k}|<$\epsilon$^{2}(k=2,..d)|\arg z_{1}- $\pi$|< $\pi$/2+ $\epsilon$,.|z_{1},|< $\epsilon$| $\eta$|\}.
As a consequence, we see that a holomorphic microfunction of Whitney class at p

is represented by a holomorphic function with an apparent parameter on the cone \hat{V}^{(*)}
which extends to \hat{X} as a C^{\infty} function and which is cohomologically independent of the

variable  $\eta$ , that is, its  $\eta$ derivative becomes zero as a cohomology class.
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