Generalization of multi-specializations and multi-asymptotics

Bу

Naofumi HONDA* and Luca PRELLI**

Abstract

The purpose of this paper is to report on a new description of geometry appearing in the multi-specialization along a general family of submanifolds and to extend the multispecialization. The notion of multi-asymptotic expansions is also extended. Locally we can construct new sheaves of multi-asymptotically developable functions closely related with asymptotics along a subvariety with a simple singularity such as a cusp.

§1. Introduction

Asymptotically developable expansions of holomorphic functions on a sector are an important tool to study ordinary differential equations with irregular singularities.

Their functorial nature was proven by V. Colin in [1] thanks to formal specialization and more recently in [9] by specializing the (subanalytic) sheaf of Whitney functions.

In higher dimension H. Majima introduced in [7] the notion of strongly asymptotically developable functions along a normal crossing divisor. These functions are related with Whitney holomorphic functions on a multi-sector, as proven in [2].

A natural question arises: can we construct functorially Majima's asymptotics? A positive answer was given in [3], thanks to the multi-specialization applied to Whitney holomorphic functions.

²⁰¹⁰ Mathematics Subject Classification(s): Primary 32C35; Secondary 35A27.

Key Words: multi-normal deformation, multi-specialization, multi-asymptotics.

^{*}Department of Mathematics, Faculty of Science, Hokkaido University, 060-0810 Sapporo, Japan.

^{**} Dipartimento di Matematica, Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italia.

The aim of this paper is to give a new description of geometry appearing in the multi-specialization along a general family of submanifolds and to extend the multi-specialization. The notion of multi-asymptotic expansions is also extended. Locally we can construct new sheaves of multi-asymptotically developable functions closely related with asymptotics along a subvariety with a simple singularity such as a cusp. The results are extracted from [4].

§2. Sheaves on a subanalytic site

The results of this section are extracted from [6] (see also [8] for a more detailed study).

Let X be a real analytic manifold and let k be a field. Denote by $Op(X_{sa})$ the category of open subanalytic subsets of X. One endows $Op(X_{sa})$ with the following topology: $S \subset Op(X_{sa})$ is a covering of $U \in Op(X_{sa})$ if for any compact K of X there exists a finite subset $S_0 \subset S$ such that $K \cap \bigcup_{V \in S_0} V = K \cap U$. We will call X_{sa} the subanalytic site.

Let $\operatorname{Mod}(k_{X_{sa}})$ denote the category of sheaves on X_{sa} and let $\operatorname{Mod}_{\mathbb{R}-c}(k_X)$ be the Abelian category of \mathbb{R} -constructible sheaves on X.

We denote by $\rho: X \to X_{sa}$ the natural morphism of sites. We have functors

$$\operatorname{Mod}_{\mathbb{R}-c}(k_X) \subset \operatorname{Mod}(k_X) \xrightarrow{\rho_*}_{\rho^{-1}} \operatorname{Mod}(k_{X_{sa}}).$$

The functors ρ^{-1} and ρ_* are the functors of inverse image and direct image associated to ρ . The functor ρ^{-1} admits a left adjoint, denoted by $\rho_!$. The sheaf $\rho_! F$ is the sheaf associated to the presheaf $\operatorname{Op}(X_{sa}) \ni U \mapsto F(\overline{U})$.

The functor ρ_* is fully faithful and exact on $\operatorname{Mod}_{\mathbb{R}-c}(k_X)$ and we identify $\operatorname{Mod}_{\mathbb{R}-c}(k_X)$ with its image in $\operatorname{Mod}(k_{X_{sa}})$ by ρ_* .

Let X, Y be two real analytic manifolds, and let $f: X \to Y$ be a real analytic map. We get the internal operations $\mathcal{H}om$, \otimes and the external operations f^{-1} and f_* , which are always defined for sheaves on Grothendieck topologies. For subanalytic sheaves we can also define the functor of proper direct image $f_{!!}$. The notation $f_{!!}$ is due to the fact that $f_{!!} \circ \rho_* \not\simeq \rho_* \circ f_!$ in general. While the functors f^{-1} and \otimes are exact, the functors $\mathcal{H}om$, f_* and $f_{!!}$ are left exact and admit right derived functors. The functor $Rf_{!!}$ admits a right adjoint, denoted by $f^!$, and we get the usual isomorphisms like projection formula, base change formula, Künneth formula.

§3. Multi-normal deformation

We refer to [5] for the definition of the classical normal deformation. For simplicity, we assume $X = \mathbb{C}^n$, with coordinates $z = (z_1, \ldots, z_n)$. Let $\chi = \{M_1, \ldots, M_\ell\}$ be a family of submanifolds, $M_j = \{z_i = 0, i \in I_j\}, I_j \subseteq \{1, \ldots, n\}$. We associate to χ an action $\mu_j(z, \lambda) = (\lambda^{a_{j1}} z_1, \ldots, \lambda^{a_{jn}} z_n)$ with $a_{ji} \in \mathbb{N}_0$ ($\mathbb{N}_0 := \mathbb{N} \cup \{0\}$), we call A_{χ} the matrix (a_{ji}) associated to the action.

Let $A_{\chi} = (a_{ji})$ be an $\ell \times n$ matrix with $a_{ji} \in \mathbb{N}_0$, $a_{ji} \neq 0$ if $i \in I_j$, $a_{ji} = 0$ otherwise. We can define a general normal deformation $\widetilde{X} = \mathbb{C}^n \times \mathbb{C}^\ell$ with the map $p : \widetilde{X} \to X$ defined by

$$p(x,t) = (\varphi_1(t)x_1, \dots, \varphi_n(t)x_n)$$

with

(3.1)
$$\varphi_i(t) = \prod_{j=1}^{c} t_j^{a_{j_i}} \qquad (i = 1, 2, \dots, n)$$

Comparing with the matrix A_{χ} , when $t \in (\mathbb{R}^+)^{\ell}$ we have

$$(\log \varphi_1, \ldots, \log \varphi_n) = (\log t_1, \ldots, \log t_\ell) A_{\chi}$$

Set $S_{\chi} = \{t_1 = \cdots = t_{\ell} = 0\}$. Let $s : S_{\chi} \hookrightarrow \widetilde{X}$ be the inclusion, $\Omega = \{t_1, \ldots, t_{\ell} > 0\}$, $M = \bigcap_{i=1}^{\ell} M_i$. We get a commutative diagram

For simplicity we assume that $\ell \leq n$ and the $\ell \times \ell$ submatrix $A_{\chi\ell}$ made from the first ℓ columns and the first ℓ -rows in A_{χ} is invertible (for the cases without these assumptions, see [4]). We are interested in the zero section S_{χ} of \widetilde{X} defined by $\{t_i = 0, i = 1, \ldots, \ell\}$. In particular (for simplicity) points $\xi = (\xi_1, \ldots, \xi_n), \xi_i \neq 0, i = 1, \ldots, \ell$.

Example 3.1. Let us consider some examples in \mathbb{C}^2 .

(Majima) Let
$$X = \mathbb{C}^2 = (z_1, z_2), M_i = \{z_i = 0\}, i = 1, 2$$
. Consider the matrix $A_{\chi} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \varphi_1 = t_1, \quad \varphi_2 = t_2.$

We have $X = (z_1, z_2, t_1, t_2), p : (z_1, z_2, t_1, t_2) \rightarrow (z_1t_1, z_2t_2).$

(Takeuchi) Let $X = \mathbb{C}^2 = (z_1, z_2), M_1 = \{0\}, M_2 = \{z_2 = 0\}$. Consider the matrix

$$A_\chi=egin{pmatrix} 1\ 1\ 0\ 1 \end{pmatrix}, \ \ arphi_1=t_1, \ \ arphi_2=t_1t_2.$$

We have $\tilde{X} = (z_1, z_2, t_1, t_2), p : (z_1, z_2, t_1, t_2) \to (z_1t_1, z_2t_1t_2)$. This is the binormal deformation of [10].

(Cusp) Let $X = \mathbb{C}^2 = (z_1, z_2), M_1 = M_2 = \{0\}$. Consider the matrix

$$A_{\chi} = \begin{pmatrix} 3 \ 2 \\ 1 \ 1 \end{pmatrix}, \ \ \varphi_1 = t_1^3 t_2, \ \ \varphi_2 = t_1^2 t_2$$

We have $\widetilde{X} = (z_1, z_2, t_1, t_2), \ p: (z_1, z_2, t_1, t_2) \to (z_1 t_1^3 t_2, z_2 t_1^2 t_2).$

§4. Multi-sectors

Let $\xi = (\xi_1, \ldots, \xi_n) \in S_{\chi}$ with $\xi_i \neq 0, i = 1, \ldots, \ell$. Let $\epsilon > 0$, and let $W = W_1 \times \cdots \times W_n$, W_i open conic cone in \mathbb{C} containing the direction ξ_i . Set $|z|_{\ell} = (|z_1|, \ldots, |z_{\ell}|)$. A multi-sector $S(W, \epsilon)$ is an element of the family $C(\xi)$ defined as follows:

$$S(W,\epsilon) = \left\{ \begin{aligned} z_i \in W_i & (i = 1, \dots, n), \\ (z_1, \dots, z_n); & \varphi_i^{-1}(|z|_\ell) < \epsilon & (i \le \ell), \\ & |\xi_i| - \epsilon < \frac{|z_i|}{\varphi_i(\varphi^{-1}(|z|_\ell))} < |\xi_i| + \epsilon & (i > \ell) \end{aligned} \right\},$$

where $\epsilon > 0$, and W_i are cones in \mathbb{C} containing the direction ξ_i and φ_i^{-1} is such that $\varphi_i(\varphi^{-1}(z)) = z_i, i = 1, \ldots, \ell$. Comparing with the matrix A_{χ} , when $t \in (\mathbb{R}^+)^{\ell}$ we have

$$(\log \varphi_1^{-1},\ldots,\log \varphi_\ell^{-1}) = (\log t_1,\ldots,\log t_\ell)A_\chi^{-1}.$$

We say that $S(W', \epsilon') < S(W, \epsilon)$ $(S(W', \epsilon')$ is properly contained in $S(W, \epsilon)$ if $\overline{W'} \setminus \{0\} \subset W$ and $\epsilon' < \epsilon$. The main geometrical properties of a multi-sector $S := S(W, \epsilon)$ are the following:

- S is locally cohomologically trivial. That is, $R\mathcal{H}om(\mathbb{C}_S;\mathbb{C}_X)=\mathbb{C}_{\overline{S}}$,
- S is 1-regular, that is, there exists a constant C > 0 satisfying that, for any point p and q in S, there exists a rectifiable curve in V which joins p and q and whose length is $\leq C|p-q|$.

Example 4.1. Let us consider some examples in \mathbb{C}^2 .

$$A_{\chi}^{-1} = \begin{pmatrix} 1 \ 0 \\ 0 \ 1 \end{pmatrix}, \quad \varphi_1^{-1} = t_1, \quad \varphi_2^{-1} = t_2.$$

We have

$$C(\xi) \ni S(W,\epsilon) = \left\{ z \in X; \begin{array}{ll} z_i \in W_i & (i=1,2), \\ |z_i| < \epsilon & (i=1,2) \end{array} \right\},$$

where $\epsilon > 0$ and W_i conic open subset containing ξ_i .

(Takeuchi) Let $X = \mathbb{C}^2 = (z_1, z_2), M_1 = \{0\}, M_2 = \{z_2 = 0\}$. Then

$$A_{\chi}^{-1} = \begin{pmatrix} 1 - 1 \\ 0 & 1 \end{pmatrix}, \quad \varphi_1^{-1} = t_1, \quad \varphi_2^{-1} = \frac{t_2}{t_1}$$

We have

$$C(\xi)
i S(W,\epsilon) = egin{cases} z_i \in W_i & (i=1,2), \ z \in X; \ |z_1| < \epsilon \ |z_2| < \epsilon |z_1| \end{bmatrix},$$

where $\epsilon > 0$ and W_i a conic open subset containing ξ_i . These are the multi-sectors of [10].

(Cusp) Let $X = \mathbb{C}^2 = (z_1, z_2), M_1 = M_2 = \{0\}$. Then

$$A_{\chi}^{-1} = \begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}, \quad \varphi_1^{-1} = \frac{t_1}{t_2}, \quad \varphi_2^{-1} = \frac{t_2^3}{t_1^2}$$

We have

$$C(\xi) \ni S(W, \epsilon) = \left\{ \begin{aligned} z_i \in W_i \quad (i = 1, 2), \\ z \in X; \ |z_1| < \epsilon |z_2| \\ |z_2|^3 < \epsilon |z_1|^2 \end{aligned} \right\}$$

where $\epsilon > 0$ and W_i a conic open subset containing ξ_i .

§5. Multi-specialization

The multi-specialization along χ is the functor

$$\nu_{\chi}: D^{b}(\mathbb{C}_{X_{sa}}) \to D^{b}(\mathbb{C}_{S_{\chi}})$$
$$F \mapsto \rho^{-1}s^{-1}R\Gamma_{\Omega}p^{-1}F$$

where $\rho : S_{\chi sa} \to S_{\chi}$ is the natural functor of sites (here D^b denotes the bounded derived category of sheaves). Thanks to the functor $\rho^{-1} : D^b(\mathbb{C}_{Ssa}) \to D^b(\mathbb{C}_S)$ we can calculate the fibers at $\xi \in S_{\chi}$ which are given by

$$(H^j \nu_{\chi} F)_{\xi} \simeq \underset{S(W,\epsilon)}{\underset{K \to 0}{\lim}} H^j(S(W,\epsilon);F),$$

where $S(W, \epsilon)$ ranges through the family $C(\xi)$.

Let $\mathcal{O}_X^w \in D^b(\mathbb{C}_{X_{sa}})$ denote the subanalytic sheaf of Whitney holomorphic functions. The sheaf of multi-asymptotically developable holomorphic functions is the multispecialization of \mathcal{O}_X^w :

$\nu_{\chi} \mathcal{O}_X^{\mathrm{w}}.$

§6. Multi-asymptotics

Let \mathcal{P}_{ℓ} be the set of nonempty subsets of $\{1, \ldots, \ell\}$. Let $J \in \mathcal{P}_{\ell}$. We use the following notations:

- $I_J = \bigcup_{j \in J} I_j$,
- $M_J = \bigcap_{i \in J} M_j$,

•
$$z_J = (z_i)_{i \in I_J}, \, z_J^C = (z_i)_{i \notin I_J},$$

- $\mathbb{N}_0^J = \{(lpha_1, \dots, lpha_n) \in \mathbb{N}_0^n, \, lpha_i = 0 \, i \notin I_J\}$
- $\pi_J: X \to M_J$ the projection,
- given $S \subset X$, $S_J = \pi_J(S)$.

Let $S := S(W, \epsilon)$ be a multi-sector. We say that $F = \{F_J\}_{J \in \mathcal{P}_{\ell}}$ is a total family of coefficients of multi-asymptotic expansion along χ on S if each F_J consists of a family $\{f_{J,\alpha}\}_{\alpha \in \mathbb{N}_{0}^{J}}$ of holomorphic functions on S_J .

Given a total family of coefficients $F = \{F_J\}_{J \in \mathcal{P}_{\ell}}$ and $N = (n_1, \ldots, n_{\ell}) \in \mathbb{N}_0^{\ell}$, the approximate function of degree N of F is

$$\operatorname{App}^{$$

where

$$A_J(N) = \left\{ lpha \in \mathbb{N}_0^J; \sum_{i \in I_j} a_{ji} lpha_i < n_j ext{ for any } j \in J
ight\}.$$

(i.e., $\alpha \cdot (j$ -th line of $A_{\chi}) < n_j$).

We say that f is multi-asymptotically developable to $F = \{F_J\}$ along χ on $S = S(W, \epsilon)$ if and only if for any cone $S' = S(W', \epsilon')$ properly contained in S and for any $N = (n_1, \ldots, n_\ell) \in \mathbb{N}_0^\ell$, there exists a constant C such that

$$\left|f(z) - \operatorname{App}^{< N}(F; z)\right| \le C \prod_{1 \le j \le \ell} \varphi_j^{-1}(|z|_{\ell})^{n_j} \qquad (z \in S').$$

Example 6.1. Let us consider some examples in \mathbb{C}^2 .

(Majima) Let $M_{\{1\}} = \{z_1 = 0\}, M_{\{2\}} = \{z_2 = 0\}, M_{\{1,2\}} = \{0\},$

$$S(W,\epsilon) = \left\{ z \in X; \frac{z_i \in W_i \quad (i=1,2),}{|z| < \epsilon} \right\},\$$

where the norm |z| denotes max{ $|z_1|$, $|z_2|$ }. We have $S_{\{1,2\}} = \{\text{pt}\}$ and

$$S_{\{1\}} = \left\{ z \in M_1; \frac{z_2 \in W_2}{|z| < \epsilon} \right\}, \quad S_{\{2\}} = \left\{ z \in M_2; \frac{z_1 \in W_1}{|z| < \epsilon} \right\}.$$

A total family of coefficients is

$$F = \left\{ \{f_{\{1\},\alpha_1}(z_2)\}_{\alpha_1 \in \mathbb{N}_0}, \{f_{\{2\},\alpha_2}(z_1)\}_{\alpha_2 \in \mathbb{N}_0}, \{f_{\{1,2\},\alpha}\}_{\alpha \in \mathbb{N}_0^2} \right\},\$$

where $f_{\{1\},\alpha_1}(z_2)$ (resp. $f_{\{2\},\alpha_2}(z_1)$) is holomorphic in $S_{\{1\}}$ (resp. $S_{\{2\}}$) and $f_{\{1,2\},\alpha} \in \mathbb{C}$. Let

$$A_{oldsymbol{\chi}}=egin{pmatrix}1\ 0\ 0\ 1\end{pmatrix}, \quad N=(n_1,n_2)\in\mathbb{N}_0^2.$$

We have

$$egin{aligned} &A_{\{1\}}(N) = \{lpha_1 \in \mathbb{N}_0, \, lpha_1 < n_1\}, \ &A_{\{2\}}(N) = \{lpha_2 \in \mathbb{N}_0, \, lpha_2 < n_2\}, \ &A_{\{1,2\}}(N) = \{(lpha_1, lpha_2) \in \mathbb{N}_0^2, \, lpha_1 < n_1, \, lpha_2 < n_2\} \end{aligned}$$

and

$$\begin{split} \operatorname{App}^{$$

A holomorphic function f is strongly asymptotically developable if, for any multisector S' properly contained in $S(W, \epsilon)$ and for any $N = (n_1, n_2) \in \mathbb{N}_0^2$, there exists a positive constant $C_{S',N}$ such that

$$|f(z) - \operatorname{App}^{< N}(F; z)| \le C_{S', N} |z_1|^{n_1} |z_2|^{n_2}$$

with $z \in S'$. This corresponds to Majima's asymptotics of [7].

(Takeuchi) Let
$$M_{\{1\}} = \{0\}, M_{\{2\}} = \{z_2 = 0\}, M_{\{1,2\}} = \{0\},$$

$$S(W, \epsilon) = \left\{ \begin{aligned} z_i \in W_i \quad (i = 1, 2), \\ z \in X; \ |z_1| < \epsilon, \\ |z_2| < \epsilon |z_1| \end{aligned} \right\}.$$

We have $S_{\{1\}} = S_{\{1,2\}} = \{\text{pt}\}$ and

$$S_{\{2\}} = \left\{ z \in M_2; \frac{z_1 \in W_1}{|z| < \epsilon} \right\}.$$

A total family of coefficients is

$$F = \left\{ \{f_{\{1\},\alpha}\}_{\alpha \in \mathbb{N}_0^2}, \{f_{\{2\},\alpha_2}(z_1)\}_{\alpha_2 \in \mathbb{N}_0}, \{f_{\{1,2\},\alpha}\}_{\alpha \in \mathbb{N}_0^2} \right\},\$$

where $f_{\{2\},\alpha_2}(z_1)$ is holomorphic in $S_{\{2\}}$ and $f_{\{1\},\alpha}, f_{\{1,2\},\alpha} \in \mathbb{C}$. Let

$$A_{\chi} = \begin{pmatrix} 1 \ 1 \\ 0 \ 1 \end{pmatrix}, \quad N = (n_1, n_2) \in \mathbb{N}_0^2.$$

We have

$$egin{aligned} &A_{\{1\}}(N) = \{(lpha_1, lpha_2) \in \mathbb{N}_0^2, \, lpha_1 + lpha_2 < n_1\}, \ &A_{\{2\}}(N) = \{lpha_2 \in \mathbb{N}_0, \, lpha_2 < n_2\}, \ &A_{\{1,2\}}(N) = \{(lpha_1, lpha_2) \in \mathbb{N}_0^2, \, lpha_1 + lpha_2 < n_1, \, lpha_2 < n_2\} \end{aligned}$$

and

$$\begin{split} \operatorname{App}^{$$

A holomorphic function f is strongly asymptotically developable if, for any multisector S' properly contained in $S(W, \epsilon)$ and for any $N = (n_1, n_2) \in \mathbb{N}_0^2$, there exists a positive constant $C_{S',N}$ such that

 $|f(z) - \operatorname{App}^{< N}(F; z)| \le C_{S', N} |z_1|^{n_1 - n_2} |z_2|^{n_2}$

with $z \in S'$. This corresponds to Takeuchi's asymptotics of [3].

(Cusp) Let $M_{\{1\}} = M_{\{2\}} = M_{\{1,2\}} = \{0\},\$

$$S(W,\epsilon) = \left\{ \begin{aligned} z_i \in W_i \quad (i = 1, 2), \\ z \in X; \ |z_1| < \epsilon |z_2|, \\ |z_2|^3 < \epsilon |z_1|^2 \end{aligned} \right\}$$

We have $S_{\{1\}} = S_{\{2\}} = S_{\{1,2\}} = \{0\}$. A total family of coefficients is given by

$$F = \left\{ \{f_{\{1\},\alpha}\}_{\alpha \in \mathbb{N}_0^2}, \{f_{\{2\},\alpha}\}_{\alpha \in \mathbb{N}_0^2}, \{f_{\{1,2\},\alpha}\}_{\alpha \in \mathbb{N}_0^2} \right\},\$$

where $f_{\{1\},\alpha}, f_{\{2\},\alpha}, f_{\{1,2\},\alpha} \in \mathbb{C}$. Let

$$A_{oldsymbol{\chi}}=egin{pmatrix} 3\,2\1\,1 \end{pmatrix}, \quad N=(n_1,n_2)\in\mathbb{N}_0^2.$$

We have

$$\begin{split} A_{\{1\}}(N) &= \{(\alpha_1, \alpha_2) \in \mathbb{N}_0^2, \, 3\alpha_1 + 2\alpha_2 < n_1\}, \\ A_{\{2\}}(N) &= \{(\alpha_1, \alpha_2) \in \mathbb{N}_0^2, \, \alpha_1 + \alpha_2 < n_2\}, \\ A_{\{1,2\}}(N) &= \{(\alpha_1, \alpha_2) \in \mathbb{N}_0^2, \, 3\alpha_1 + 2\alpha_2 < n_1, \, \alpha_1 + \alpha_2 < n_2\} \end{split}$$

and

$$\begin{split} \operatorname{App}^{$$

A holomorphic function f is strongly asymptotically developable if, for any multisector S' properly contained in $S(W, \epsilon)$ and for any $N = (n_1, n_2) \in \mathbb{N}_0^2$, there exists a positive constant $C_{S',N}$ such that

$$|f(z) - \operatorname{App}^{< N}(F; z)| \le C_{S', N} |z_1|^{n_1 - 2n_2} |z_2|^{3n_2 - n_1}$$

with $z \in S'$.

§7. Multi-specialization and multi-asymptotics

One can check that multi-asymptotics on a multi-sector S are Whitney on S' < S. Moreover the geometrical properties of a multi-sector imply vanishing of the cohomology of multi-specialization. Combining these two results we have that the sheaf $\nu_{\chi} \mathcal{O}_X^{w}$ is concentrated in degree zero and we have

 $\nu_{\chi}\mathcal{O}_{X}^{w}(S) = \{f \text{ holomorphic and multi-asymptotically developable on } S\}.$

Set $Z := \bigcup_{j=1}^{\ell} M_j$. Let \mathcal{O}_X^{w} , $\mathcal{O}_{X|X\setminus Z}^{w}$, $\mathcal{O}_{X|Z}^{w}$ denote the sheaves on the subanalytic site X_{sa} of Whitney holomorphic functions, flat Whitney holomorphic functions and Whitney holomorphic functions on Z respectively. See [3] for more details.

We can prove functorially the exactness of the sequence

(7.1)
$$0 \to \nu_{\chi} \mathcal{O}_{X|X\setminus Z}^{\mathsf{w}} \to \nu_{\chi} \mathcal{O}_{X|Z}^{\mathsf{w}} \to \nu_{\chi} \mathcal{O}_{X|Z}^{\mathsf{w}} \to 0.$$

In the case of Majima's asymptotics we have the isomorphisms (outside the zero section)

$$\begin{split} \mathcal{A}_{X} &\stackrel{\sim}{\rightarrow} \nu_{\chi} \mathcal{O}_{X}^{\mathrm{w}}, \\ \mathcal{A}_{X}^{<0} &\stackrel{\sim}{\rightarrow} \nu_{\chi} \mathcal{O}_{X|X\setminus Z}^{\mathrm{w}}, \\ \mathcal{A}_{X}^{CF} &\stackrel{\sim}{\rightarrow} \nu_{\chi} \mathcal{O}_{X|Z}^{\mathrm{w}}, \end{split}$$

where as usual, we denote by \mathcal{A}_X , $\mathcal{A}_X^{\leq 0}$, \mathcal{A}_X^{CF} the sheaves of strongly asymptotically developable functions, flat asymptotics and consistent families of coefficients. In this case (7.1) is the Borel-Ritt exact sequence for Majima's asymptotics.

So we have obtained a general Borel-Ritt exact sequence for multi-asymptotically developable functions.

Example 7.1. We end this paper with some examples of consistent families in \mathbb{C}^2 . For the general definition we refer to [4].

(Majima) The family

$$F = \{\{f_{\{1\},\alpha_1}(z_2)\}, \{f_{\{2\},\alpha_2}(z_1)\}, \{f_{\{1,2\},(\alpha_1,\alpha_2)}\}\}\}$$

is consistent if

 $-f_{\{1\},\alpha_1}(z_2)$ is strongly asymptotically developable to

$$\{f_{\{1,2\},(\alpha_1,\alpha_2)}\}_{\alpha_2\in\mathbb{N}_0}$$

on $S_{\{1\}}$ for each $\alpha_1 \in \mathbb{N}_0$,

 $-f_{\{2\},\alpha_2}(z_1)$ is strongly asymptotically developable to

 ${f_{\{1,2\},(\alpha_1,\alpha_2)}}_{\alpha_1\in\mathbb{N}_0}$

on $S_{\{2\}}$ for each $\alpha_2 \in \mathbb{N}_0$.

(Takeuchi) The family

$$F = \{\{f_{\{1\},(\alpha_1,\alpha_2)}\}, \{f_{\{2\},\alpha_2}(z_1)\}, \{f_{\{1,2\},(\alpha_1,\alpha_2)}\}\}$$

is consistent if

 $- f_{\{1\},(\alpha_1,\alpha_2)} = f_{\{1,2\},(\alpha_1,\alpha_2)}$ for each $(\alpha_1,\alpha_2) \in \mathbb{N}_0^2$, $- f_{\{2\},\alpha_2}(z_1)$ is strongly asymptotically developable to

 ${f_{\{1,2\},(\alpha_1,\alpha_2)}}_{\alpha_1\in\mathbb{N}_0}$

on $S_{\{2\}}$ for each $\alpha_2 \in \mathbb{N}_0$.

(Cusp) The family

$$F = \{\{f_{\{1\},(\alpha_1,\alpha_2)}\}, \{f_{\{2\},(\alpha_1,\alpha_2)}\}, \{f_{\{1,2\},(\alpha_1,\alpha_2)}\}\}$$

is consistent if

$$- f_{\{1\},(\alpha_1,\alpha_2)} = f_{\{2\},(\alpha_1,\alpha_2)} = f_{\{1,2\},(\alpha_1,\alpha_2)} \text{ for each } (\alpha_1,\alpha_2) \in \mathbb{N}_0^2.$$

References

- Colin, V., Specialization of formal cohomology and asymptotic expansions, *Publ. RIMS*, Kyoto Univ. 37 (2001), 37–69.
- [2] Galindo, F. and Sanz, J., On strongly asymptotically developable functions and the Borel-Ritt theorem, Studia Math. 133 (1999) 231-248.
- [3] Honda, N. and Prelli, L., Multi-specialization and multi-asymptotic expansions, Advances in Math. 232 (2013) 432–498.
- [4] Honda, N. and Prelli, L., Generalization of multi-specializations and multi-asymptotics, arXiv:1507.04572.
- [5] Kashiwara, M. and Schapira, P., Sheaves on manifolds, Grundlehren der Math. 292, Springer-Verlag, Berlin, 1990.
- [6] Kashiwara, M. and Schapira, P., Ind-sheaves, Astérisque 271, 2001.
- [7] Majima, H., Asymptotic Analysis for Integrable Connections with Irregular Singular Points, Lecture Notes in Math. 1075, Springer-Verlag, Berlin, 1984.
- [8] Prelli, L., Sheaves on subanalytic sites, Rend. Sem. Mat. Univ. Padova 120 (2008) 167-216.
- [9] Prelli, L., Microlocalization of subanalytic sheaves, Mémoires Soc. Math. France 135, 2013.
- [10] Schapira, P. and Takeuchi, K., Déformation normale et bispécialisation, C. R. Acad. Sci. Paris Math. 319 (1994) 707-712.