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Monodromy of confluent hypergeometric system with
two irregular singular points

By

MasafumiY OSHINO*

Abstract

This paper studies the monodromy of a coonfluent hypergeometric system with two irregular
singular points and regular singular points. By using the convergent semi-formal solution
introduced in [1] we will show a concrete formula of the monodromy around irregular singular
and regular singular points.

§1. Introduction

In [2] we gave the concrete formula of the monodromy for the confluent Hamiltonian
system with an irregular singular point. The system was obtained by the confluence
of regular singular points of a hypergeometric system. We used the expression of con-
vergent semi-formal solutions given by first integrals of the Hamiltonian system. (See
also [1]). In this note we continue to study the monodromy of confluent hypergeometric
systems in a Hamiltonian form with two irregular singular points. We will give concrete
formula of the monodromy by using the semi-formal theory. We will see that equations
with two irregular singular points and a regular singular point have different monodromy
about the irregular singular point compared to the equations with one irregular singular
point.

This paper is organized as follows. In section 2 we study the convergent semi-formal
solutions. In section 3 we introduce a class of confluent hypergeometric system written
in a Hamiltonian form. In section 4 we construct functionally independent first integrals
and calculate the monodromy for a certain example.
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§2. Semi-formal solution via first integrals
Let n > 2 and ¢ > 1 be integers. Consider the system

dq dp
20 24 — 20 2V .
(21) z dZ VPH(Z’ Qap)a z dZ VQH(Z’ q,P),

where ¢ = (g2,-..,4n), P = (P2;-.-,Pn), and where H(z,q,p) is analytic in z € C in
some neighborhood of the origin and entire in (¢g,p) € C*~! x C"~1. We note that; by
taking g1 = z as a new unknown function (2.1) is written in an equivalent form for the
Hamiltonian function H, H(q1,q,p1,p) = p1g?° + H(q1,4,p)

(22) ‘jl =HP1 = qfa’ Zil = _HQ1 = —2UPIQJ2,U-1 - anH(QDQ,p),

‘j= va = va(QI, q,p), p = _qu = _qu(q11 ‘bP)»

The solution of (2.1) is given in terms of that of (2.2) by taking g1 = z as an independent
variable. _

Semi-formal solution. We define the semi-formal solution of (2.1) following [1]. Let
0(5‘0) be the set of holomorphic functions on Sy, where Sy is the universal covering
space of the punctured disk of radius r, Sy = {|z| < 7} \ {0} for some r > 0. The
(2n — 2)-vector Z(z, c) of formal power series of c

(2.3) Z(z,¢) 1= Z E,(2)c” = Zo(z) + X(2)c + Z Z,(z)c”

lv|>0 lv[>2

is said to be a semi-formal solution of (2.1) if Z, € (0(S5;))**~2 and (¢(z,¢), p(2,¢)) ==
Z(z,c) is the formal power series solution of (2.1). As for the properties of the semi-
formal series (2.3) we refer to [1]. Here X(2) is a (2n—2) square matrix with component
belonging to O(Sp). If X(2) is invertible, then we say that (¢(z,c), p(z,c)) is a complete
semi-formal solution. We say that a semi-formal solution is a convergent semi-formal
solution (at the origin) if the following condition holds. For every compact set K in
S there exists a neighborhood U such that the formal series converges for ¢; € K and
¢ € U. The semi-formal solution at the general point zy € C is defined similarly.
Monodromy function. We consider (2.1). Let 2o be any point in C and let ¢ and
p be semi-formal solutions of (2.1) around zy. We define the monodromy function v(c)

around zy by

(24) (0,9)((z — 20)€*™ + 29,v(c)) = (q,p)(2, ¢),

where v(c) = (v;(c)). The existence of v(c) in the class of formal power series of ¢ is
proved in [1]. If we denote the linear part of v(c) by M~lc, then by considering the
linear part of the monodromy relation we have X ((z — 2p)e?™ + zp) = X (2)M. Hence
M is the so-called monodromy factor.
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In the following we will show that the convergent semi-formal solutions of (2.1) can
be obtained by solving certain system of nonlinear equations given by first integrals.
We consider (2.2). Given functionally independent first integrals H(g1,q,p1,p) and
¥ = ¥i(q,q,p) (= 1,2,...,2n —2) of (2.2), where the functional independentness
means that there exists a neighborhood V of the origin of (g, p, p1) such that the matrix

(2.5) t (Vapor H, Vapp ¢j)j,],1,2,...,2n—2

has full rank 2n — 1 on (q1,p1,4,p) € Sy x V. We assume that every coefficient of );
expanded in the power series of g, p is holomorphic with respect to g; on So.
Let the point (g1,0,P1,0,90,P0) and the values ¢jo (j = 1,2,...,2n — 2) satisfy that

(2.6) H{q1,0,p1,0,90,P0) =0, 9¥;(q1,0,90,P0) = ¢j0, (j =1,2,...,2n —2).

For ¢; = & + ¢jp, € = (€1,...,062n—2) € C~2 we consider the system of equations of
p1,9 a'nd D
(27) H(QIaPhq,P) = 07 ¢J(¢I1,q,P) = Cj, (J = 1721 L) 52n e 2)

If (2.7) has a solution, then we denote it by ¢ = q(q1,¢), p = p(q1,¢), p1 = p1(q1,¢). We
see that ¢, p and p; are holomorphic functions of ¢; in Sy and & in some neighborhood
of the origin if we assume (2.5). We have

Theorem 2.1. Suppose that H(q1,q,p1,p) and ¥; = ¥i(q1,9,p) (1 =1,2,...,
2n — 2) be functionally independent. Assume (2.6). Then the solution of (2.7) gives the
convergent complete semi-formal solution (¢(z,c),p(z,¢)) (g1 = 2) of (2.1) provided q
or p is not a constant function.

The proof of Theorem 2.1 was given in [2].

§3. Confluent hypergeometric equation

We consider a class of hypergeometric system

dv
3.1 -C)—=A
(3.1) (=~ O)F = Av,
where C is a diagonal matrix and A is a constant matrix. The system has only regular
singular points on C U {c0}. Set v = *(g,p) € C™ and assume that C and A are block

diagonal matrices

(32) C = diag(A1, A1), A = diag(4;,—"4)
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where A; and A; are n — 1 square diagonal and constant matrices, respectively such
that A1A1 = A1A1. Define
(3:3) H:=((z— A1)7'p, A1g).

Then one can write (3.1) in the Hamiltonian form

dq .
(34) dZ = H, (Z q,P )7 d_z = —Hq(z7 q,P)-
First, by setting z = 1/¢ in (3.4) we have
d 1
(35) 7" (— M) Mg, 2= "M -a)T

Subsitute ¢ = 5‘117 in (3.5). Replace A, with e}, if v € J and multiply the p-th
row of A; with e™! if 4 € J'. Then we let ¢ — 0. Define the diagonal matrix 2 by
A := diag (™A1,...,9,) where 2, is given by —A\;lifv € J and (71 —A,) " tifp € J,
respectively. Then we obtain

5dg

2dp 4
(3-6) g =AAq, —-n°— i = A 2p.

We will write (3.6) in a Hamiltonian form. Set n = ¢1, and define H by

(3.7) H(q1,p1,4,p) := p1d; — (A(q1)A14,p).

One can easily see that ¢ = n23—f7 and p = nzj—z. Because —AA;1q = H, and —*A,p =
Hy, one easily sees that (3.6) is equivalent to the Hamiltonian system with the Hamil-
tonian function (3.7). »

We will introduce the. irregular singularity by the confluence of singularities. We
assume A; # 0 for all j. Suppose that A;’s are mutually different. Then it follows
from A1 A; = A;A; that A; is a diagonal matrix. Denote the diagonal entries of A;
by 7;. Let J, J' and J” be the nonempty disjoint subsets of {2,3,...,n} such that
JUuJ'uJ” ={2,3,...,n}. The characteristic roots A; corresponding to j € J and
7 € J' merge to 1 and 0, respectively. Then, by the confluence of singular points we
obtain the Hamiltonian

9P
(3.8) H(q1,p1,9,p) = P11 +]§ X, UPi Z 5y b ,; Ajq— P

§4. Calculation of monodromy

In this section we will calculate the monodromy for the Hamiltonian (3.8) via first
integrals. We assume that A;’s are mutually different. First, we construct first integrals



133

MONODROMY OF CONFLUENT HYPERGEOMETRIC SYSTEM

of the Hamiltonian vector field

0 0 T q;p; 0
4.1 =gia— = 2qupra— — Y Ll —
( ) XH q aql q1P1 ap], J;] J (ql _ )\ 1)2 Bpl

T, 0 0 T q 0 0
BR6kod) Bl n3)
2% g dq; " op; JEZJ M- x T \Pag; Py,

jeJ’
2¢; 0 T. 0 I}
2 etmEa (i vd)
(@ —1)3 (Z X | opy (q1 - 1)2 JEZJ Y9, " Pop;
For k = 2, ...,n we will construct the first integrals in the form grwg(q1). We see that
wy, satisfies
((111—1)2i+— wy=0 ifkelJ,
agl Ak
Tk .
4.2 2 4+ 2 lup=0 ifkelJ
(4.2) 5 (q1 ' ) "
2 Tk N . 17
— +— w,=0 ifkeJ.
(QI o1 Near-Ag')

Hence we have

exp T—k) ifkedJ

Ae(gr — 1)
Tk i
4.3 ' =dexp| — ifkeJ
(4.3) wi(q1) P\ g .
q—l_l) ifkeJ.
Q1 — )‘k :

Next we consider the first integrals w := prur(gi). By (4.1) the equation yyw =0
. —Tk
can be written in a similar form as in the above. Hence we have ug(g1) = ( q—%)
172

if ke J” and = exp (—fq—l) ifkeJ,=exp (_Wf-l)) if £ € J. Hence we have

(44) uj(ql) =wj(q1)_1, ] :2,...,n

By (4.3) and (4.4) we have the first integrals ¥; (j = 2,...,n) and ¥; (j = 2,...,7n)

(4.5) U = quwi(a), ¥ =pjwi(@)
Summing up the above we have

Theorem 4.1. Assume Aj # 0,1 for all j and that \; ’s are mutually different. Then
the Hamitonian vector field (4.1) has 2n — 1 functionally independent first integrals H,
W% and U;’s (j =2,...,n) gwen by (4.5).
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We will determine monodromy using first integral. We take the convergent non
constant semi-formal solution ¢(q1,c), p(g1,¢) and p1(q1,c) defined by (2.7). The mon-
odromy function v(c) around zp is defined by (2.4). In view of the argument in section
2, we will study the monodromy around the origin z9 = 0 or around 2y = )\,;1 for some
k € J. Note that )\,:1 is a regular singular point of the our equation which remains
unchanged under the confluence procedure.

First we consider the case zg = 0. In order to determine the monodromy function
v(c), we first note H(q1e*"*,p1,q,p) = H(q1,p1,4,p). For 2 <j <n—1 we have

(4.6) Tj(q1€*™, ¢,p) = gjw;(q:1*™) =
_ eZﬂ’iTj q;wj (QI) — CjeZﬂ"iTj if_] c JII
gjw;(q1) = ¢ ifjeJul.
Similarly we have
(47) U;(qe*™, q,p) = pjw;(q*™) " =
_ J e mpjwi(@) T = cie T ifje J”
piwi(@) "t =¢ ifjeJuJ.

We define v(c) = (v;(c)); by

(«3) 0(e) = {0162“’“ if2<j<n, jes’

cj if2<j<n,jeJuld.

Similarly we define @(c) = (¥;(c)); by the right-hand side of (4.8) with 7; in (4.8)
replaced by —7;. :

As for the monodromy function around A\, (k € J”) we define the monodromy
function w(® (c) by the right hand side of (4.8) with 7; replaced by —7;d ;. Here & ;
is Kronecker’s delta. We similarly define @) (c) by replacing T; with 7,0 ;.

Let g and p satisfy (2.7) with ¢;’s given by (4.5). Then we easily see that

(4.9) H(q:1¢*™,p1,4,p) =0, ¢;(q1e®™,q,p) =v;(c), 1<j<2n-—2.

By the uniqueness of semi-formal solution we obtain ¢(g;e2"*,v(c)) = q(q1,¢c) and
p(q1e¥™,v(c)) = p(q1,c). This implies that v(c) is the monodromy function as de-
sired. In the case of other regular singular points we may argue in the same way as in
the case of the origin. Thus we have proved

Theorem 4.2. Assume \; # 0,1 for all j and that \;’s are mutually different.
Then the monodromy functions v(c) about the origin corresponding to the semi-formal
solution of (2.1) defined by (2.7) is given by v(c) and v(c). On the other hand, the
the monodromy functions about g1 = 1 is the identity function, while those around /\,:1
(k € J") are given by w®(c) and w® (c).
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§5. Nonlinear case

Consider the Hamiltonian H + H;, where H and H; are given, respectively, by (3.8)
and

n

=2

where B;(q1,g)’s are holomorphic at the origin with respect to (g1,9) € C x C*~1.
In order to give the formula of the monodromy we will construct first integrals of the
Hamiltonian vector field xzr + x, in the forms grwi(q1) (k =2,...,7n) and pruk(q1) +
Wi(q1,9) (k=2,...,n). Note that xp, is given by

- ]
(5:2) XH, = Z ( 2¢;B Ja Z qv Ja Q?(aQIBj)a_p';> .

=2

As for the first integrals grwi(g1) we have x g, (gxwk(g1)) = 0 because the first integrals
do not contain p and p;. Hence grwy(q1)’s are first integrals of x g + xm,, where wy is
given by (4.3).

We will construct the ﬁrst integrals pkuk(q1)+Wk (g1, q) by solving (xg+Xxr, ) (Pruk+
W) = 0, where up = wy, Yandk=2,...,n. We compare the coefficients of py in the
equation. Because no term containing py, appears from x z, (prux+Ws), we may consider
xu(prug) = 0. We easily see that uj is given by ux = w,;l(ql), where wy(g1) is given
by (4.3). Next we construct Wi by comparing the coefficients of the powers of p} = 1 in
the equation (xu + X, ) (Prux + Wi) = 0. Because x g, Wi = 0 by definition, it follows
that W}, is determined by the equation

n
XaWi = —xm, (Prur) = ux | 20Br + Y _ 470, B;
=2

By expanding Bj(q1,9) =Y, BJ(-E) (q1)¢° and Wi(q1,9) =Y, W,Ee) (q1)q* and setting

RO(qr) = [ 2B (q1) + D (£ + ex — 2¢)) B2 () |,
j=2

where ey, is the k-th unit vector, we see that W}ge) (q1) satisfies
(5.3)

T; 7 Liq T 0 1 (2
+ J£+ L JZ W, = wi(q 1’R()q.
GZJ’ ggl)‘j’h_)‘jl ‘11—1)22 F @) (@)
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In view of (4.2) we can easily see that the solution of the inhomogeneous equation is
given by H?:z w;(q1)%. Hence W,ge) is given by

G4y W= (H wu(qo”") [ oo mOw ] ww*a,

v=2 a y=2

where a € C\ 0 is some fixed point. Note that nge) is analytic on the universal covering
space of C\ {0, )\j—l (4 € J)}. Theseries ), nge) (q1)q* converges if ¢; is on some compact
set in the universal covering space of C\ {0, )\]_—1 (7 € J)} and g is in some neighborhood
of the origin. Note that ), nge) (q1)q* is the convergent semi-formal series. Summing
up the above we have

Theorem 5.1. The Hamiltonian system with the Hamiltonian function H + H
has (2n — 1) functionally independent first integrals of the form, H + Hy, qrwi(q1),
pkwk(QI)_l + Wk(Ql)Q) (k = 2, nee ,n)'

We expect that one can calculate the monodromy of the Hamiltonian system with
the Hamiltonian function H + H; by using the first integrals in Theorem 5.1, which is
left for the future problem.
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