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ABSTRACT. In previous work with A. Vasy and J. Wunsch, the author established an

asymptotic expansion for the radiation field on asymptotically Minkowski spacetimes and

showed that the exponents seen in the expansion are given by the poles of a meromorphic
family of operators on the spacetime�s �boundary at infinity�. This note provides an

explicit accounting of these poles when the spacetime is 3+1‐dimensional Minkowski

space. We conclude by stating the �resonant states� for the first few resonances and

then posing a combinatorial problem.

1. INTRODUCTION

For a forward solution u of the inhomogeneous wave equation on Minkowski space,

\square  u=f\in C_{\mathrm{c}}^{\infty}(\mathbb{R}^{3}\times \mathbb{R}) ,

(or, equivalently, a solution u of the homogeneous wave equation with compactly sup‐

ported initial data), the Friedlander radiation field of u encodes the behavior of u near

null infinity. With A. Vasy and J. Wunsch [1, 2], the author established an asymptotic
expansion of the radiation field on a class of asymptotically Minkowski spacetimes and

showed that the exponents of the expansion were given by the poles of a meromorphic
family of operators (called P_{ $\sigma$}^{-1} in those papers) on the boundary at infinity. The pur‐

pose of this note is to identify explicitly these poles in the setting of (3+1)‐dimensional
Minkowski space. In particular, we prove the following theorem:

Theorem 1. The poles of P_{ $\sigma$}^{-1} are simple and located at - $\iota$(k+1) for k=0 , 1, 2, . . . .

The rank of the polar part of P_{ $\sigma$}^{-1} at  $\sigma$=- $\iota$(k+1) is \displaystyle \sum_{J^{=0}}^{k}\dim(E_{j})=(k+1)^{2} ,
where E_{J}

is the eigenspace of \triangle_{\mathrm{S}^{2}} with eigenvalue j.

The rest of the introduction is devoted to explaining and motivating Theorem 1.

Suppose that u is the solution of the homogeneous wave equation (or, equivalently, \mathrm{a}

forward solution of the inhomogeneous wave equation) o\mathrm{n}^{\mathrm{t}}3+1‐dimensional Minkowski

space:

\square  u=\partial_{t}^{2}-\triangle u=0 \mathrm{i}\mathrm{n}\mathbb{R}\times \mathbb{R}^{3}
(u, \partial_{t}u)|_{t=0}=( $\phi,\ \psi$)\in C_{c}^{\infty}(\mathbb{R}^{3})\times C_{c}^{\infty}(\mathbb{R}^{3})

We now introduce polar coordinates (r,  $\omega$) in the spatial variables as well as a
�  $\iota$

lapse�
parameter  s=t-r and define an auxiliary function

v(r, s, $\omega$)=r^{-1}u(s+r,r $\omega$) .
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Friedlander [3] observed that the function v is smooth in  $\rho$=r^{-1} and so can be extended

to  $\rho$=0 . The Friedlander radiation field of u is then given by

\displaystyle \mathcal{R}_{+}[u](s,  $\omega$)=\lim_{r\rightarrow\infty}\partial_{s}v(r, s,  $\omega$) .

In Minkowski spaces (and other static spacetimes), the radiation field has a number of

desirable properties: Not only is it a unitary translation representation of the wave group,
it can also be thought of as generalizing the Radon transform of the initial data. (Indeed,
in \mathbb{R}\times \mathbb{R}^{3} , if the initial data are (0,  $\psi$) ,

then the radiation field is just the Radon transform
of  $\psi$.)

In previous work [1, 2], the author and collaborators showed that the radiation field ad‐

mits an asymptotic expansion for suitably nice data. Indeed, on a class of asymptotically
Minkowski spacetimes, the radiation field exists and admits an asymptotic expansion in

powers of s^{-1} . The exponents seen arise as the poles of a meromorphic family of Fredholm

operators, denoted P_{ $\sigma$}^{-1} on the �boundary at infinity��
We let M denote the radial compactification of Minkowski space with a defining function

 $\rho$ for the boundary. In other words, we can consider \mathbb{R}\times \mathbb{R}^{3} as the interior of a compact
manifold with boundary via the coordinate change

t=\displaystyle \frac{1}{ $\rho$}\cos $\theta$,  x=\displaystyle \frac{1}{ $\rho$} $\omega$ sine,

where  $\omega$_{j}\in \mathrm{S}^{2} and  $\theta$\in \mathrm{S}^{1} . We denote by c_{\pm} (depending on the sign of t) the regions of

the boundary sphere X\cong \mathrm{S}^{3} corresponding to where |t|\gg|x| , while we denote by C_{0}
the region of X where |t|\ll|x| . These regions of X naturally inherit conformal families

of metrics; on Minkowski space, c_{\pm} are naturally conformal to \mathbb{H}^{3} and C_{0} is naturally
conformal to 2+1‐dimensional de Sitter space.

It is the region where |t|\sim|x| that is of the most interest; we denote these regions
by s_{\pm} depending on the sign of t . By blowing up (in the algebro‐geometric sense) the

submanifolds s_{\pm} in M
, we obtain a manifold with corners that has two new boundary

faces, denoted \mathcal{I}^{\pm} and corresponding to past and future null infinity. Figure 1 provides a

schematic view of this blow‐up. The radiation field \mathcal{R}_{+}[u] is then the rescaled restriction

of u to \mathcal{I}^{+}.

FIGURE 1. A schematic view of the blow‐up. The lapse function s increases

along \mathcal{I}^{+} towards C_{+} . In the typical Penrose diagram of Minkowski space,

c_{\pm} are collapsed to  i\pm and  C_{0} is collapsed to i_{0}.

Conjugating \square by  $\rho$ , multiplying by  $\rho$^{-2} , and then taking the Mellin transform in  $\rho$

yields a family of operators  P_{ $\sigma$} on the boundary sphere X\cong \mathrm{S}^{3} . This has the effect of
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replacing all factors of  $\rho$\partial_{ $\rho$} in  $\rho$^{-3}\square  $\rho$ by  $\iota \sigma$ . Although  P_{ $\sigma$} is semiclassically hyperbolic
(because \square is hyperbolic), on c_{\pm} it is classically elliptic (indeed, it can be conjugated
to the spectral family for the Laplacian on hyperbolic space). On C_{0}, P_{ $\sigma$} is hyperbolic
and can be conjugated to a Klein‐Gordon equation on de Sitter space, while at s_{\pm} it is

degenerate.
The Hamilton vector field of the symbol of P_{ $\sigma$} is radial at the conormal bundle of s_{\pm}

and so techniques dating back to Melrose [5] and refined by Vasy [6] provide a blueprint
for establishing propagation estimates there.

The operator family P_{ $\sigma$} is not Fredholm on standard Sobolev spaces, but it is when

considered on variable‐order Sobolev spaces whose regularity lies below some threshold at

S_{-} (depending on the imaginary part of  $\sigma$ ) and is larger than a similar threshold at  s_{+}
(again, depending on the imaginary part of  $\sigma$ ). As  P_{ $\sigma$} is then invertible on these spaces for

very large {\rm Im} $\sigma$ , we may invert to obtain a meromorphic family of Fredholm operators  P_{ $\sigma$}^{-1}.
Because all light rays in Minkowski space escape to infinity, P_{ $\sigma$}^{-1} has only finitely many

poles in any horizontal strip in \mathbb{C} . The main result of both previous papers [1, 2] is that

the radiation field for a forward solution has an asymptotic expansion whose exponents
are these poles, which are identified as the resonances of the asymptotically hyperbolic
operator at C_{+}.

For 3+1‐dimensional Minkowski space, however, this asymptotically hyperbolic op‐
erator is the spectral family of the Laplacian on \mathbb{H}^{3}

, which has no resonances. In this

case, the resonant.states associated to the poles of P_{ $\sigma$}^{-1} must be supported in s_{+} (rather
than \overline{C_{+}}). Theorem 1 describes the locations of these poles and the dimension of the

corresponding nullspace of P_{ $\sigma$}.
The proof of Theorem 1 proceeds in several steps. We first recall from [1] that any

resonant state must be supported at the intersection of the light cones and the boundary
at infinity because odd‐dimensional hyperbolic space has no resonances. This reduces the

problem of finding the poles of P_{ $\sigma$}^{-1} (and the corresponding resonant states) to under‐

standing when P_{ $\sigma$} has nullspace consisting of a distribution of the form

\displaystyle \sum_{k=0}^{M}a_{k}$\delta$^{(k)}(v)\otimes$\phi$_{ $\lambda$},
where $\phi$_{ $\lambda$} is a spherical harmonic with eigenvalue  $\lambda$ . This immediately implies that the

poles of  P_{ $\sigma$}^{-1} are contained in the negative imaginary integers and reduces the problem of

finding the null spaces of an explicit family of matrices. For  $\sigma$=- $\iota$(M+1) , P_{ $\sigma$} preserves
the family of such distributions and so the problem of finding the null space of P_{ $\sigma$} reduces

to a linear algebra problem. We write down the matrix representing P_{ $\sigma$} and compute
its determinant explicitly. This shows that the matrix has one‐dimensional null space

precisely when  $\lambda$=k(k+1) for k=0 , 1, . . .

,
M and hence that P_{- $\iota$(M+1)} has null space

of dimension

\displaystyle \sum_{k=0}^{M}\dim(E_{k}) ,

where E_{k} is the space of spherical harmonics with eigenvalue k(k+1) .

Unfortunately, finding the elements of the null space explicitly is sufficiently compli‐
cated that we were unable to solve it here by purely combinatorial means. It is perhaps
surprising how difficult it is to find an explicit expression for elements of the nullspace
of P_{- $\iota$(k+1)} . However, given the connection of the radiation field with the Radon trans‐

form, such an expression would provide an explicit formula for the Radon transform in
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terms of spherical harmonics. Such formulas exist but are similarly complicated (and have

representation‐theoretic underpinnings).
In Section 2 we describe some of the geometry of the radial compactification of Minkowski

space, and then in Section 3 we define the operator P_{ $\sigma$} and recall some of its properties.
We also introduce a convenient coordinate system that simplifies the linear algebra in the

following section. Section 4 recasts the problem of describing the poles and corresponding
resonant states in terms of linear algebra and finishes the proof of Theorem 1. Included

in Section 4 is the exact form of the resonant states corresponding to the first few poles
of P_{ $\sigma$}^{-1} . Finally, in Section 5 we conclude by appealing for a combinatorial expression for

the elements of the null space of P_{ $\sigma$} in this context.

2. GEOMETRY

The radiation field is the rescaled restriction of a solution u of the wave equation to

null infinity. In this section we describe a compactification of Minkowski space on which

this statement is a natural one.

We begin by introducing coordinates on Minkowski space given by

 t=\displaystyle \frac{1}{ $\rho$}\cos $\theta$
 x=\displaystyle \frac{1}{ $\rho$}$\omega$_{j}\sin $\theta$

where  $\omega$_{J}\in \mathrm{S}^{2} . In terms of these coordinates, the metric on Minkowski space is given by

g:=-dt^{2}+\displaystyle \sum_{j=1}^{3}dx_{j}^{2}=-\cos 2 $\theta$\frac{d$\rho$^{2}}{$\rho$^{4}}-4\sin $\theta$\cos $\theta$\frac{d $\theta$}{ $\rho$}\frac{d $\rho$}{$\rho$^{2}}+\cos 2 $\theta$\frac{d$\theta$^{2}}{$\rho$^{2}}+\sin^{2} $\theta$\frac{dw^{2}}{$\rho$^{2}}
We now replace the coordinate  $\theta$ by  v=\cos 2 $\theta$ to obtain

 g=-v\displaystyle \frac{d$\rho$^{2}}{$\rho$^{4}}+\frac{dv}{ $\rho$}\frac{d $\rho$}{$\rho$^{2}}+\frac{v}{4(1-v^{2})}\frac{dv^{2}}{$\rho$^{2}}+\frac{1-v}{2}\frac{d$\omega$^{2}}{$\rho$^{2}}
The inverse metric (in coordinates ( $\rho$, v,  $\omega$) ) is then given by

g^{-1}\displaystyle \rightarrow (2(1^{-v$\rho$^{4}}-v^{2})$\rho$^{3}0 4v(1-v^{2})$\rho$^{2}2(1-v^{2})$\rho$^{3}0 \frac{2$\rho$^{2}}{1-v}h^{-1}00) ,

where h is the standard (round) metric on \mathrm{S}^{2}.
This radial compactification of Minkowski space has two distinguished submanifolds

where  $\rho$=0 and v=0, \mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\grave{\mathrm{h}} we call s_{\pm}(S_{\pm} are distinguished by the sign of t-S_{+} is the

set in the future where  $\rho$=0 and v=0 , while S_{-} is the corresponding set in the past).

3. THE OPERATORS

The central object of study is the operator L , given by

L=$\rho$^{-3}\square _{g} $\rho$.
Here the conjugation by  $\rho$ should be thought of as accounting for the standard decay for

solutions of the wave equation, while the prefactor of  $\rho$^{-2} turns a �scattering operator��
in the sense of Melrose [5] into a b‐‐operator�� [4].
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We record here the precise form of L :

L=v( $\rho$\partial_{ $\rho$})^{2}+(2+4v) $\rho$\partial_{ $\rho$}-4(1-v^{2}) $\rho$\partial_{ $\rho$}\partial_{v}

-4v(1-v^{2})\displaystyle \partial_{v}^{2}-4(1-v-3v^{2})\partial_{v}-\frac{2}{1-v}\triangle_{w}+(2+3v)
The operator P_{ $\sigma$} is the reduced normal operator \hat{N}(L)( $\sigma$) , which effectively replaces

 $\rho$\partial_{ $\rho$} by  $\iota \sigma$ and is obtained by conjugating  L by the Mellin transform in  $\rho$ :

 P_{ $\sigma$}=-v$\sigma$^{2}+(2+4v) $\iota \sigma$-4 $\iota \sigma$(1-v^{2})\partial_{v}

-4v(1-v^{2})\displaystyle \partial_{v}^{2}-4(1-v-3v^{2})\partial_{v}-\frac{2}{1-v}\triangle_{ $\omega$}+(2+3v)
Although the expression above for P_{ $\sigma$} is useful for the global problem of identifying the

Fredholm properties of F_{ $\sigma$} , for our explicit computation it is more conveniènt to work with

a different coordinate system valid near S_{+} . For the remainder of this note, we instead
take

 $\rho$=\displaystyle \frac{1}{t+r}, v=\frac{t-r}{t+r}.
In these coordinates, we may write

\displaystyle \square =\partial_{t}^{2}-\partial_{r}^{2}-\frac{2}{r}\partial_{r}-\frac{1}{r^{2}}\triangle_{ $\omega$}
=4$\rho$^{2}[- $\rho$\displaystyle \partial_{ $\rho$}\partial_{\bullet}-\partial_{v}-v\partial_{v}^{2}+\frac{1}{1-v}( $\rho$\partial_{ $\rho$}+(1+v)\partial_{v})-\frac{1}{(1-v)^{2}}$\Delta$_{ $\omega$}]

We then have

L=$\rho$^{-3}\displaystyle \square  $\rho$=4[- $\rho$\partial_{ $\rho$}\partial_{v}-2\partial_{v}-v\partial_{v^{2}}+\frac{1}{1-v}( $\rho$\partial_{ $\rho$}+1+(1+v)\partial_{v})-\frac{1}{(1-v)^{2}}\triangle_{ $\omega$}]
and

P_{ $\sigma$}=4[-( $\iota \sigma$+2)\displaystyle \partial_{v}-v\partial_{v}^{2}+\frac{ $\iota \sigma$+1}{1-v}+\frac{1+v}{1-v}\partial_{v}-\frac{1}{(1-v)^{2}}\triangle_{ $\omega$}].
We may then multiply P_{ $\sigma$} by (1-v)^{2}/4 and group the terms with the same degree of

homogeneity:

\displaystyle \frac{(1-v)^{2}}{4}P_{ $\sigma$}=[-( $\iota \sigma$+1)\partial_{v}-v\partial_{v}^{2}]
+[2( $\iota \sigma$+2)v\partial_{v}+2v^{2}\partial_{v}^{2}+( $\iota \sigma$+1)- $\Delta \omega$]
+[-( $\iota \sigma$+3)v^{2}\partial_{v}-v^{3}\partial_{v}^{2}-( $\iota \sigma$+1)v]

4. THE POLES OF P_{ $\sigma$}^{-1}
At each pole of P_{ $\sigma$}^{-1} , the residue can be identified with an operator whose image is

\mathrm{a} (�resonant state�� As P_{ $\sigma$} is not self‐adjoint, the residue operators do not project onto

these states, but we abuse terminology by calling them resonant states anyway. We know
from the results of [1] that if f is supported away from \overline{C_{-}} , then P_{ $\sigma$}^{-1}f is supported in

\overline{C_{+}} . Moreover, if P_{ $\sigma$}^{-1}f is not supported in s_{+} , then the pole (and corresponding state)
can be identified with a resonance of a Laplace‐like operator on C_{+} . In n+1‐dimensional

Minkowski space, this operator is the Laplacian on \mathbb{H}^{n}.
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Because \mathbb{H}^{3} has no resonances, we can conclude that all resonant states of P_{ $\sigma$}^{-1} on

3+1‐dimensional Minkowski space must be supported in s_{+} . The resonant states must

therefore be sums of the following form:

(1) \displaystyle \sum_{k=0}^{M}$\alpha$_{k}$\delta$^{(k)}(v)\otimes$\phi$_{ $\lambda$}( $\omega$) ,
where $\phi$_{ $\lambda$} is a spherical harmonic with eigenvalue  $\lambda$.

In the rest of this section, we prove Theorem 1 in several steps. We first compute the

action of P_{ $\sigma$} on such a sum, which shows that P_{ $\sigma$} has no null space unless  $\sigma$=- $\iota$(M+1)
for M=0 , 1, . . . . For such a  $\sigma$

,
we then interpret \displaystyle \frac{(1-v)^{2}}{4}P_{ $\sigma$} (which has the same null

space as P_{ $\sigma$} when acting on such distributions) as a family of matrices depending on  $\lambda$.

We compute this determinant and show that the matrix has a 1‐dimensional null space

exactly when  $\lambda$=k(k+1) for k=0 , 1, . . .

,
M . Appealing to the well‐known dimension

of the space of spherical harmonics with eigenvalue k(k+1) then completes the proof of

Theorem 1.

We now record the action of \displaystyle \frac{(1-v)^{2}}{4}P_{ $\sigma$} on distributions of the form above (1). We rely
on the following well‐known fact:1

v^{r}$\delta$^{k}(v)=\displaystyle \frac{k!}{(k-r)!}$\delta$^{(k-r)}(v)
We then have the following:

\displaystyle \frac{(1-v)^{2}}{4}P_{ $\sigma$}($\delta$^{(k)}(v)\otimes$\phi$_{ $\lambda$}( $\omega$))=[(- $\iota \sigma$+1)+(k+2)]$\delta$^{(k+1)}\otimes$\phi$_{ $\lambda$}
+[-( $\iota \sigma$+1)(2k+1)+2(k+1)^{2}+ $\lambda$]$\delta$^{(k)}\otimes$\phi$_{ $\lambda$}
+[-( $\iota \sigma$+1)k^{2}+k^{2}(k+1)]$\delta$^{(k-1)}\otimes$\phi$_{ $\lambda$}

In particular, for a sum of the form (1) to lie in the null space of P_{ $\sigma$} , the leading term

must vanish and so M+1- $\iota \sigma$=0 , i.e.,  $\iota \sigma$=M+1 . We may then take  $\sigma$=- $\iota$(M+1) ,

apply P_{ $\sigma$} to such a sum, and rearrange the terms to find the following:
(2)

\displaystyle \frac{(1-v)^{2}}{4}P_{- $\iota$(M+1)}(\sum_{k=0}^{M}$\alpha$_{k}$\delta$^{(k)}(v)\otimes$\phi$_{ $\lambda$}( $\omega$))=\sum_{k=0}^{M}[(k-1-M)$\alpha$_{k-1}
+( $\lambda$+2k^{2}-M(2k+1))$\alpha$_{k}

+(k+1)^{2}(M-k)$\alpha$_{k+1}]$\delta$^{(k)}(v)\otimes$\phi$_{ $\lambda$}( $\omega$)
We have now reduced the problem to finding a vector of coefficients $\alpha$_{k} so that the

sum (2) vanishes. This is equivalent to finding the null space of a matrix  $\lambda$ I-A_{M} , where

A_{M} is the tridiagonal (M+1)\times(M+1)‐matrix with the following entries:

a_{k,k}=(M-k)(2k+1)+k

a_{k-1,k}=-k^{2}(M+1-k)
a_{k,k-1}=M+1-k

Here all indices (k and k-1 ) should be interpreted as taking the values 0 , 1, . . .

, M.

�This formula is a priori valid only for r\leq k , but if we interpret (k-r)!= $\Gamma$(k-r+1) , then the

denominator is infinite for r>k and so the right‐hand side is zero there.
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The rest of the proof of Theorem 1 then follows from the following proposition:

Proposition 2. The matrix A_{M} has simple eigenvalues k(k+1) for k=0 , 1, . . .

, M. In

particular, we have that

\det( $\lambda$ I-A_{M})=p_{M}( $\lambda$) ,

where

p_{k}( $\lambda$)=\displaystyle \prod_{J^{=0}}^{k}( $\lambda$-j(j+1
Proposition 2 follows immediately by taking k=M in the following lemma:

Lemma 3. Let d_{k} be the determinant of the (k+1)\times(k+1) ‐minor of  $\lambda$ I-A_{M} consisting
of the first k+1 columns and rows of the matrix (i.e_{f} the columns and rows labeled

0 , 1, . . .

, k) . If p_{k}( $\lambda$) is as in Proposition 2, then

d_{k}=\displaystyle \sum_{l=0}^{k+1}c_{k.\ell}(\prod_{j=1}^{p}(M-k+P-j))p_{k-\ell}( $\lambda$) ,

where

c_{k,l}=\displaystyle \frac{(-1)^{\ell}}{\ell!}(\frac{(k+1)!}{(k+1-l)!})^{2}
and we interpret p_{-1}( $\lambda$)=1.

Observe that all terms containing p_{k-\ell}( $\lambda$) with \ell\geq 1 in the expression for d_{k} in Lemma 3

are multiplied by a factor (M-k) and hence vanish when k=M
, leaving only the term

c_{M,\mathrm{f}\}}p_{M}( $\lambda$)=p_{M}( $\lambda$) .

Proof of Lemma 3. The matrix A_{M} is tridiagonal, so d_{k} can be computed recursively:

d_{k}=( $\lambda$-a_{k,k})d_{k-1}+a_{k,k-1}a_{k-1,k}d_{k-2}.
We therefore proceed by induction, interpreting d_{-1}=1 so that the lemma holds for

k=-1 . In particular, we have c_{-1,0}=1 and c_{-1,\ell}=0 for \ell\geq 1.
In computing below, we use the following relationship between the p_{k} :

 $\lambda$ p_{k-1-l}( $\lambda$)=p_{k-\ell}( $\lambda$)+(k-\ell)(k-l+1)p_{k-1-l}( $\lambda$)
We now compute the two terms in the recursive expression for d_{k} . We first have the

following:

( $\lambda$-a_{k,k})d_{k-1}

=( $\lambda$-(M-k)(2k+1)-k))\displaystyle \sum_{l=0}^{k}c_{k-1,\ell}(\prod_{j=1}^{\ell}(M-k+1+\ell-j))p_{k-1-\ell}( $\lambda$)
=\displaystyle \sum_{l=0}^{k}c_{k-1,l}(\prod_{j=0}^{\ell-1}(M-k+P-j))p_{k-\ell}( $\lambda$)

+\displaystyle \sum_{\ell=1}^{k+1}c_{k-1,\ell-1}[(k-\ell+1)(k-\ell+2)-(M-k)(2k+1)-k].
(_{J}\displaystyle \prod_{=1}^{l-1}(M-k+\ell-j))p_{k-p}( $\lambda$)
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The second term is given by

a_{k,k-1}a_{k-1,k}d_{k-2}=-\displaystyle \sum_{\ell=2}^{k+1}c_{k-2,\ell-2}(M+1-k)^{2}k^{2}(\prod_{j=1}^{\ell-1}(M-k+\ell-j))p_{k-l}( $\lambda$)
Adding the two terms and equating coefficients with the desired expression for d_{k} , we find
that

(M-k)c_{k,l}=(M-k+l)c_{k-1,\ell}
+[(k-\ell+1)(k-P+2)-(M-k)(2k+1)-k]c_{k-1,\ell-1}
-k^{2}(M-k+1)c_{k-2,\ell-2}.

We rewrite this equation suggestively:

(M-k)c_{k,\ell}=(M-k)(c_{k-1,\ell}-(2k+1)c_{k-1,l-1}-k^{2}c_{k-2,l-2})
(3)

+Pc_{k-1,\ell}+((k-\ell+1)(k-P+2)-k)c_{k-1,l-1}-k^{2}c_{k-2,l-2}
To prove the lemma, it therefore suffices to show that c_{k,\ell} is an integer. We prove this

fact by induction. We have already seen that c_{-1,0}=1 and c_{-1,\ell}=0 for \ell\geq 1 . By the
induction hypothesis, we assume that

c_{k',\ell'}=\displaystyle \frac{(-1)^{\ell'}}{(\ell)!}(\frac{(k'+1)!}{(k'+1-\ell)!})^{2}
for all (k',P')<(k,P) , where we define (a', b')<(a, b) if either

b'<b , or

b'=b and a'<a.

We turn first to the second line of equation (3). By the induction hypothesis,

\ell c_{k-1,\ell}+((k-P+1)(k-\ell+2)-k)c_{k-1,\ell-1}-k^{2}c_{k-2,l-2}

=\displaystyle \frac{(-1)^{p}}{(\ell-1)!}(\frac{k!}{(k-\ell+1)!})^{2}((k-P+1)^{2}-(k-\ell+1)^{2}-(k-\ell+1)+k-(\ell-1))=0
Equation (3) and the induction hypothesis then imply that

\mathcal{C}_{k,\ell=c_{k-1,l}-(2k+1)c_{k-1,\ell-1}-k^{2}c_{k-2},p-2}

=\displaystyle \frac{(-1)^{p}}{\ell!}(\frac{k!}{(k-\ell+1)!})^{2}((k-\ell+1)^{2}+(2k+1)P-\ell(\ell-1))
=\displaystyle \frac{(-1)^{\ell}}{\ell!}(\frac{(k+1)!}{(k-l+1)!})^{2}

finishing the proof of the lemma. \square 

4.1. The first few resonant states. In this section we record the first five sets of

eigenvectors of the matrix A_{M}.
For M=0 , we have that A_{0}=(0) , so its only eigenvalue is 0 with eigenvector (1).
For M=1

, we have that

A_{1}=\left(\begin{array}{ll}
1 & \mathrm{l}\\
1 & 1
\end{array}\right),
so that the eigenvectors are

\mathrm{v}_{0}=\left(\begin{array}{l}
-1\\
\mathrm{l}
\end{array}\right), \mathrm{v}_{2}=\left(\begin{array}{l}
1\\
1
\end{array}\right).
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For M=2 , we have

A_{2}=\left(\begin{array}{lll}
2 & 2 & 0\\
2 & 4 & 4\\
0 & 1 & 2
\end{array}\right),
with eigenvectors

\mathrm{v}_{0}=\left(\begin{array}{l}
2\\
-2\\
\mathrm{l}
\end{array}\right), \mathrm{v}_{2}=\left(\begin{array}{l}
-2\\
0\\
1
\end{array}\right), \mathrm{v}_{6}=\left(\begin{array}{l}
2\\
4\\
1
\end{array}\right)
For M=3 , we record the matrix

A_{3}=\left(\begin{array}{llll}
3 & 3 & 0 & 0\\
3 & 7 & 8 & 0\\
0 & 2 & 7 & 9\\
0 & 0 & 1 & 3
\end{array}\right),
so that the eigenvectors are

\mathrm{v}_{0}=\left(\begin{array}{l}
-6\\
6\\
-3\\
1
\end{array}\right), \mathrm{v}_{2}=\left(\begin{array}{l}
6\\
-2\\
-1\\
1
\end{array}\right), \mathrm{v}_{6}=\left(\begin{array}{l}
-6\\
-6\\
3\\
1
\end{array}\right), \mathrm{v}_{12}=\left(\begin{array}{l}
6\\
18\\
9\\
\mathrm{l}
\end{array}\right)
Finally, for M=4 , the matrix is

A_{4}=\left(\begin{array}{lllll}
4 & 4 & 0 & 0 & 0\\
4 & \mathrm{l}0 & \mathrm{l}2 & 0 & 0\\
0 & 3 & 12 & 18 & 0\\
0 & 0 & 2 & 10 & \mathrm{l}6\\
0 & 0 & 0 & 1 & 4
\end{array}\right),
so that the eigenvectors are

\mathrm{v}_{0}=\left(\begin{array}{l}
24\\
-24\\
12\\
-4\\
1
\end{array}\right), \mathrm{v}_{2}=\left(\begin{array}{l}
-24\\
12\\
0\\
-2\\
\mathrm{l}
\end{array}\right), \mathrm{v}_{6}=\left(\begin{array}{l}
24\\
12\\
-\mathrm{l}2\\
2\\
1
\end{array}\right), \mathrm{v}_{12}=\left(\begin{array}{l}
-24\\
-48\\
0\\
8\\
1
\end{array}\right), \mathrm{v}_{20}=\left(\begin{array}{l}
24\\
96\\
72\\
16\\
\mathrm{l}
\end{array}\right)
5. A COMBINATORIAL PROBLEM

We conclude this note by posing a combinatorial problem. In principle it is possible
to determine the resonant states of P_{ $\sigma$}^{-1} by purely combinatorial means. Specifically, this

would be achieved by explicitly finding the eigenvectors of the matrix A_{M} above. The

computation above shows that the eigenvalues are k(k+1) for k=0 ,
. . .

,
M.

Problem 4. Find a general expression for the eigenvectors of the matrix A_{M}.

The resolution of this problem would provide an explicit formula for the resonant states

of P_{ $\sigma$} on Minkowski space and thus give an explicit expression for the radiation field in

terms of spherical harmonics. Such a formula would then make it feasible to compute the

radiation field explicitly for non‐trivial examples.
Moreover, given the connection between the radiation field and the Radon transform,

such a formula should also recover a formula for the Radon transform in terms of a

spherical harmonic decomposition. Existing formulas typically rely on the Funk‐Hecke
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formula and thus involve the Legendre polynomials. We therefore expect that the general
expression for the eigenvectors of A_{M} ought to be expressible in terms of coefficients of

Legendre polynomials.
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