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ABSTRACT. Let (N,g) be a complete smooth Riemannian mani‐

fold with the distance function d(x, y) , U\subset N be relatively com‐

pact, open subset with smooth boundary. We also assume that \overline{U}
is geodesically convex. Also, let M\subset U be an open subset with

smooth boundary such that \overline{M}\subset U . We assume that the topology
of M and metric g|_{M} are unknown. Let F=\overline{U}\backslash M be the observa

tion domain. For x\in M we denote by D_{x} the distance difference

function D_{x} : F\times F\rightarrow \mathbb{R} , given by D_{x}(z_{1}, z_{2})=d(x, z_{1})-d(x, z_{2}) ,

z_{1}, z_{2}\in F . We show that the manifold M and the metric g|_{M} on it

can be determined uniquely, up to an isometry, when we are given
the set F

, the metric g|_{F} , and the collection D(M)=\{D_{x};x\in M\}
of distance difference functions. The embedded image \mathcal{D}(M) of the

manifold M , in the vector space C(F\times F) , is the distance difference

representation of manifold M.

The inverse problem of determining (M,g) from \prime D(M) arises

for example in the study of the wave equation on \mathbb{R}\times N when

we observe in F the waves produced by spontaneous point sources

at unknown points (t, x)\in \mathbb{R}\times M . The results presented in this

paper generalize the earlier results where N is assumed to be com‐

pact that the observation domain F is assumed to be the whole

complement of M in N.

Keywords: Inverse problems, distance functions, wave equation.

1. INTRODUCTION

1.1. Formulation of problem and motivation. Let us consider a

body in which there are point sources that create propagating waves.

Such point sources can either appear spontaneously, or they are caused

by reflections of some propagating wave from small scatterers. In many

applications one encounters a geometric inverse problem where we de‐

tect such waves emanating from point sources, either outside or at the

boundary of the body, and we need to determine the unknown wave

speed inside the body. As an example of such situation, one can con‐

sider the micro‐earthquakes that appear very frequently near active

faults. The related inverse problem is whether the surface observa‐

tions of elastic waves produced by the micro‐earthquakes can be used

in the geolhysical imaging of Earth�s subsurface [21, 43], that is, to

determine the speed of the elastic waves in the studied volume. In
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this paper we consider an idealized version of the above inverse prob‐
lem: We consider the problem on an n dimensional manifold N with

a Riemannian metric g that corresponds to the travel time of a wave

between two points. The Riemannian distance of points x, y\in N is

denoted by d(x, y) . For simplicity we assume that the manifold N is

complete and has no boundary. Here, completeness is considered in the
sense of metric spaces, so also compact, closed manifolds are considered

to be complete manifolds. We assume that the manifold contains an

unknown part M\subset N and the metric is known in a certain area F out‐

side of the set M . When a spontaneous point source produces a wave

at some unknown point x\in M at some unknown time t\in \mathbb{R} , the pro‐
duced wave is observed at the point z\in F at time T_{x,t}(z)=d(z, x)+t.
These observation times at two points z_{1}, z_{2}\in F determine the distance

difference function

(1) D_{x}(z_{1}, z_{2})=T_{x,t}(z_{1})-T_{x,t}(z_{2})=d(z_{1}, x)-d(z_{2}, x) .

Physically, this function corresponds to the difference of times when
the wave produced by a point source at (x, t) is observed to arrive at

points z_{1} and z_{2} , see Fig 2. and Section 4. An assumption there is a

large number point sources and that we do measurements over a long
time can be modeled by the assumption that we are given the set F
and the family of functions

\{D_{x};x\in X\}\subset C(F\times F) ,

where X\subset M is either the whole manifold M or its dense subset,

1.2. Definitions and the main result. Let us consider a smooth

complete Riemannian manifold (N, g) with dimension n\geq 2 (Here and

below, smooth means C^{\infty}‐smooth).
Definition 1.1. Let (N, g) be a smooth complete Riemannian mani‐

fold. Let A\subset N . We say that A is convex in N
, if for every x,  y\in $\Lambda$

any distance minimizing geodesic segment  $\gamma$ : [0, d(x, y)]\rightarrow N from x

to y is contained in A.

Suppose that M\subset N is a relatively compact open set such that
\partial M is a smooth submanifold of dimension (n-1) . We also assume

that there exists an open, relatively compact U that \partial U is smooth
submanifold of N of dimension (n-1) ,

U contains \overline{M} and \overline{U} is convex.

Notice, that M does not need to be convex and that both M and U

may have non‐trivial topology. We denote F :=\overline{U}\backslash M . Note that then
it holds that  F^{int}\neq\emptyset (see Figure 1).

We are interested about the following family of Distance difference
functions

\mathcal{D}(M):=\{D_{x}\in C(F\times F):x\in M\},
where for each x\in N the corresponding distance difference function is

D_{x}(z_{1}, z_{2}):=d_{g}(x, z_{1})-d_{g}(x, z_{2}) , z_{1}, z_{2}\in F.
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FIGURE 1. In the figure the boundary of the unknown

domain M is the blue circle and M is contained in a

larger domain U which boundary is the black rectangle.
We make no assumptions on topology of the set M . The

distance difference functions D_{x}(z_{1}, \mathrm{z}_{2}) of the points  x\in

 M are evaluated at the points z_{1}, z_{2}\in F=\overline{U}\backslash M.

FIGURE 2. Distance difference function D_{x}(z_{1}, z_{2}) =

d(x, z_{1})-d(x, z_{2}) of the point x\in M is evaluated at

the points z_{1}, z_{2}\in F=\overline{U}\backslash M . Note that below we will

assume for simplicity that the boundaries of M and U

are smooth.

The main result considered in this paper is the following.

Theorem 1.2. Let n\geq 2 and (N_{i}, g_{ $\iota$})_{f}i=1 ,
2 be complete Riemannian

manifolds. Also, let U_{i}\subset N_{ $\iota$} be a relatively compact open set with

smooth boundary. Let \overline{U}_{i} be convex and M_{i}\subset U_{i} be an open subset

which boundary is a smooth submanifold of dimension (n-1) and \overline{M}_{i}\subset
 U_{i} . Denote F_{i}=\overline{U_{i}}\backslash M_{i}.

Assume that there exists a diffeomorphism  $\phi$ :  F_{1}\rightarrow F_{2} such that

(2) g_{1}|_{F_{1}}=$\phi$^{*}g_{2}|_{F_{2}}.

Moreover, assume that the distance difference data for manifolds M_{1}
and M_{2} are the same in the sense that

(3)
\{D_{x}^{1}\in C(F_{1}\times F_{1}) : x\in M_{1}\}=\{D_{y}^{2}( $\phi$(\cdot),  $\phi$ \in C(F_{1}\times F_{1}) : y\in M_{2}\}.
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Here, D_{x}^{i}(z_{1}, z_{2})=d_{g_{l}}(x, z_{1})-d_{g_{l}}(x, z_{2}) for x\in N_{i} and z_{1}, z_{2}\in F_{i}.
Then the Riemannian manifolds with boundary (\overline{U}_{1},g_{1}|_{\overline{U}_{1}}) and (\overline{U}_{2}, g_{2}|_{\overline{U}_{2}})

are isometric.

This means that, if (N, g) , M, U and F are as above and if we are

given the following Distance difference data

(4) \{(F, g|_{F}),\mathcal{D}(M)\},
then the Riemannian structure of (\overline{U}, g|_{\overline{U}}) is uniquely determined. Note

that the sets in (3) are given in unindexed sets, that is, for a given

D\in\{D_{x}^{1}\in C(F_{1}\times F_{1}) : x\in M_{1}\} we do not know the point x for

which D=D_{x}^{1}.
We start with recalling some known and related results. The main

theorem is to be proved in parts after these.

1.3. The distance function of a complete Riemannian mani‐

fold. Here we recall some basic properties of a complete Riemannian

manifolds and Riemannian distance function.

Let (N, g) be a smooth Riemannian manifold without boundary and

let  d_{g}:N\times N\rightarrow (  0, oo) be the distance function related to the metric

tensor g . Notice that for an arbitrary q\in N , the distance function

d_{g}(q, \cdot) in N\backslash \{q\} is not necessarily smooth. We assume below that

(N, g) is complete.
Let p\in N and  $\xi$\in T_{p}N be such that \Vert $\xi$\Vert_{g}=1 . We denote by

$\gamma$_{p, $\xi$} : \mathbb{R}\rightarrow N the unique unit speed geodesic with initial conditions

$\gamma$_{p, $\xi$}(0)=p and \dot{ $\gamma$}_{p, $\xi$}(0)= $\xi$.
A general geodesic $\gamma$_{x, $\xi$} is not a distance minimizer from x to $\gamma$_{x, $\xi$}(t) for

all t\in \mathbb{R} . We define a cut distance function

(x,  $\xi$)\displaystyle \mapsto $\tau$(x,  $\xi$) :=\sup\{t>0:d_{9}(p, $\gamma$_{x, $\xi$}(t))=t\}\in(0, \infty].
Function  $\tau$ is continuous (see [24] Lemma 2.1.5.) and tells how long
each geodesic is a distance minimizer. Actually, for a point  p\in N
and a distance function d_{g}(p, \cdot) the following holds: Function d(p, \cdot) is

smooth at q\in N if and only if there exists  $\xi$\in T_{\mathrm{p}}N, \Vert $\xi$\Vert=1 such that

q=$\gamma$_{p, $\xi$}(d(p, q)) and d(p, q)< $\tau$(p,  $\xi$) .

Let S\subset N be a bounded, smooth n-1 dimensional submanifold of

N . Therefore there exist, locally, precisely two vector fields  $\nu$+ and $\nu$_{-}

on S that are orthogonal to S and of unit length. Let q\in N . Since S

is compact, there exists a point z_{q}\in S that is a closest point of S to q.
Since (N, g) is complete, it holds that there exists a unit speed distance

minimizing geodesic  $\gamma$ from  z_{q} to q . It can be proved that geodesic  $\gamma$

is orthogonal to  S (see [10], III.6). Then it must hold that  $\gamma$=$\gamma$_{z_{\mathrm{q}},\mathrm{v}_{+}}
or  $\gamma$=$\gamma$_{z_{q},v-} . Suppose that  $\gamma$=$\gamma$_{z_{q},$\nu$_{+}} . Then it also holds that (see
Lemma 7.7 of [2])

 $\tau$(z_{q}, $\nu$_{+})>d_{g}(q, z_{q}) .
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This means that the geodesic  $\gamma$ from  z_{q} to q can be continued over the

end point q to some point p= $\gamma$(s) , where d_{g}(q, z_{q})<s< $\tau$(z_{q}, $\nu$_{+}) ,

so that it remain to be a distance minimizing curve between z_{q} and p.

Note that the continued geodesic might not be a distance minimizing
curve from p to \partial S . These topics are covered for instance in [30], [23],
[10] and [24].

1.4. Embeddings of a Riemannian manifold. Often one is inter‐

ested in embedding a manifold M to some Euclidean space that has

as small dimension as possible. Two main examples of this nature are

the well known Whitney and Nash embedding theorems. In our case

we are interested in quite different kind of embeddings. We will embed

M into infinite dimensional Banach‐space using the distance difference

functions. Similar techniques are also well known in literature. A clas‐

sical distance function representation of a Riemannian manifold is the

Kuratowski‐Wojdyslawski embedding,

\mathcal{K}:x\mapsto \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{M}(x, \cdot) ,

from M to the space of continuous functions C(M) on it. The map‐

ping \mathcal{K} : M\rightarrow C(M) is an isometry so that \mathcal{K}(M) is an isometric

representation of M in a vector space.
An other important example is the Berard‐Besson‐Gallot represen‐

tation [9]

\mathcal{G}:M\rightarrow C(M\times \mathbb{R}_{+}) , \mathcal{G}(x)=$\Phi$_{M}(x, \cdot, \cdot)

where (x, y, t)\mapsto$\Phi$_{M}(x, y, t) is the heat kernel of the manifold (M, g) .

The asymptotics of the heat kernel $\Phi$_{M}(x, y, t) , as t\rightarrow 0 , determines

the distance d(x, y) ,
and by endowing C(M\times \mathbb{R}_{+}) with a suitable

topology, the image \mathcal{G}(M)\subset C(M\times \mathbb{R}_{+}) can be considered as an

embedded image of the manifold M.

Theorem 1.2 implies that the set \mathcal{D}(M)=\{D_{x};x\in M\} can be

considered as an embedded image (or a representation) of the manifold

(M, g) in the space C(F\times F) in the embedding x\mapsto D_{x} . Moreover,
in the proof of Theorem 1.2 we show that (F, g|_{F^{ $\iota$ n\mathrm{t}}}) and the set D(M)
determine uniquely an atlas of differentiable coordinates and a metric

tensor on \mathcal{D}(M) . These structures make D(M) a Riemannian manifold

that is isometric to the original manifold M . Note that the metric is

different than the one inherited from the inclusion \mathcal{D}(M)\subset C(F\times F) .

Hence, \mathcal{D}(M) can be considered as a representation of the manifold M,
given in terms of the distance difference functions, and we call it the

distance difference representation of the manifold of M in C(F\times F) .

The embedding D is different to the above embeddings \mathcal{K} and \mathcal{G} in

the following way that makes it important for inverse problems: With

\mathcal{D} one does not need to know a prori the set M to consider the function

space C(F\times F) into which the manifold M is embedded. Similar type
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of embedding have been also considered in context of the boundary
distance functions, see Subsection 1.5.2.

1.5. Earlier results and the related inverse problems. The in‐

verse problem for the distance difference function is closely related to

many other inverse problems. We review some results below:

1.5.1. Determination of a compact Riemannian manifold from the dis‐

tance difference functions. This paper is closely related to the inverse

problem of reconstructing a compact Riemannian manifold (N, g) from

distance difference functions considered in [1]. There, the unknown set

M is assumed to be an open subset of N with smooth boundary \partial M.
The known measurement area is the compact set F :=N\backslash M . It is also
assumed that F^{int} is not empty. This is actually a crucial assumption
since in [1] a counterexample is provided.

With this setup the distance difference data

\{(F,g|_{F}), \mathcal{D}(M)\}
determines uniquely, up to an isometry, the topological, smooth and
Riemannian structure of (N, g) .

1.5.2. Boundary distance functions and the inverse problem for a wave

equation. The reconstruction of a compact Riemannian manifold (M, g)
with boundary from distance information has been considered e.g. in

[23, 25]. There, one defines for x\in M the boundary distance function

r_{x} : \partial M\rightarrow \mathbb{R} given by r_{x}(z)=d(x, z) . Assume that one is given
the boundary \partial M and the collection of boundary distance functions

corresponding to all x\in M that is,

(5) \partial M and \mathcal{R}(M):=\{r_{x}\in C(\partial M)\cdot;x\in M\}.
It is shown in [23, 25] that only knowing the boundary distance data (5)
one can reconstruct the topology of M

, the differentiable structure of
M (i.e., an atlas of C^{\infty}‐smooth coordinates), and the Riemannian met‐

ric tensor g . Thus \mathcal{R}(M)\subset C(\partial M) can be considered as an isometric

copy of M
, and the pair (\partial M, \mathcal{R}(M)) is called the boundary distance

representation of M
,

see [23, 25]. Similar results for non‐compact man‐

ifolds is considered in [14, 2]. Constructive solutions to determine the
metric from the boundary distance functions have been developed in

[12] using a Riccati equation [42] for metric tensor in boundary normal
coordinates and in [41] using the properties of the conformal killing
tensor.

The results of this paper are closely related to data (5): Knowing
the distance difference functions D_{x}^{\partial M} : \partial M\times\partial M\rightarrow \mathbb{R}

D_{x}^{\partial M}(z_{1}, z_{2})=d(x, z_{1})-d(x, z_{2}) , (z_{1}, z_{2})\in\partial M\times\partial M
is equivalent to knowing the boundary distance functions with error

 $\epsilon$(x) , depending on x\in M , that is, the functions z\mapsto r_{x}(z)+ $\epsilon$(x)
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where x\in M . Indeed, we can write r_{x}(z)+ $\epsilon$(x)=D_{x}^{\partial M}(z, z_{2}) where

 $\epsilon$(x)=-d(x, z_{2}) .

Physically speaking, functions r_{x} are determined by the wave fronts

of waves produced by the delta‐sources $\delta$_{x,0} that take place at the point
x at time s=0 . The distance difference functions D_{x}^{\partial M} are determined

by the wave fronts of waves produced by the delta‐sources $\delta$_{x,s} that

take place at the point x at an unknown time s\in \mathbb{R}.

Many hyperbolic inverse problems with time‐independent metric re‐

duce to the problem of reconstructing the isometry type of the manifold

from its boundary distance functions. Indeed, in [22, 23, 28, 38, 39] it

has been shown that the boundary measurements for the scalar wave

equation, Dirac equation, and for Maxwell�s system (with isotropic
scalar impedance) determine the boundary distance functions of the

Riemannian metric associated to the wave velocity.

1.5.3. Reconstruction from the Spherical surface data. Let (N, g) be
a complete or closed Riemannian manifold of dimension n\in \mathbb{Z}_{+} and

M\subset N be an open subset of N with smooth boundary. We denote by
U :=N\backslash \overline{M} . Suppose that we are given the data

(6) \{(\overline{U}, g|_{\overline{U}}), \mathcal{D}(M)\},
where

D(M)=\{D_{x}\in C(\overline{U}\times\overline{U}) : x\in M\}.
Let D=D_{x}\in \mathcal{D}(M) and w\in U . Suppose that a point z_{0}\in U is

not a cut point of x . Then it holds that there exists a neighborhood V
of z_{0} such that the function

f_{w}(z):=D(z, w)=d(x, z)-d(x, w) ,

for some x\in M , is smooth in V and sets

S_{D,V,w,r}=\{z\in V : f_{w}(z)=r\}=\{z\in V : d(x, z)=r+d(x, w)\}
are metric spheres. Therefore, using the data (6) one can find the

family of smooth hyper‐surfaces

S = \{S_{D,V,w,r}:D\in D(M) , w\in U, V\subset U is open,

D(\cdot, w)|_{V}\in C^{\infty}(V) , r\in \mathbb{R}\}.
In [12] one considers the Spherical surface data consisting of the set

U and the collection of all pairs ( $\Sigma$, r) where  $\Sigma$\subset U is a smooth (n-1)
dimensional submanifold that can we written in the form

 $\Sigma$=$\Sigma$_{x,r,W}=\{\exp_{x}(rv)\in N:v\in W\},
where x\in M, r>0 and W\subset S_{x}N is an open and connected set.

Such surface  $\Sigma$ is called spherical surfaces, or more precisely, subsets
of generalised spheres of radius  r . Also, in [12] one assumes that U is

given with its C^{\infty}‐smooth coordinate atlas. The data (6) is close \mathrm{t}

Spherical surface data in the sense that data (6) contain only some of
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the spherical surfaces  $\Sigma$ and there is no information on the radii  r of

the spherical surfaces  $\Sigma$ . Notice that in general, the spherical surface  $\Sigma$

may be related to many centre points and radii. For instance consider

the case where  N is a two dimensional sphere.
In [12] it is shown that the Spherical surface data determine uniquely

the Riemannian structure of U . However these data are not sufficient

to determine (N, g) uniquely. In [12] a counterexample is provided. In

[12] it is shown that the Spherical surface data determine uniquely the

universal covering space of (N, g) up to an isometry.

1.5.4. Inverse problems of micro‐earthquakes. The earthquakes are pro‐

duced by the accumulated elastic strain that at some time suddenly
produce an earthquake. As mentioned above, the small magnitude
earthquakes (e.g. the micro‐earthquakes of magnitude 1<M<3) ap‐

pear so frequently that the surface observations of the produced elastic

waves have been proposed to be used in the imaging of the Earth

near active faults [21, 43 The so‐called time‐reversal techniques to

study the inverse source and medium problems arising from the micru

seismology have been developed in [5, 13, 20].
In geophysical studies, one often approximates the elastic waves with

scalar waves satisfying a wave equation. Let us also assume that the

sources of such earthquakes are point‐like and that one does measure

ments over so long time that the source‐points are sufficiently dense

in the studied volume. Then the inverse problem of determining the

the speed of the waves in the studied volume from the surface obser‐

vations of the microearthquakes is close to the problem studied in this

paper. We note that the above assumptions are highly idealized: For

example, considering the system of elastic equations would lead to a

problem where travel times are determined by a Finsler metric instead

of a Riemannian one.

1.5.5. Broken scattering relation. If the sign in the definition of the
distance difference functions is changed in (1), we come to distance

sum functions

(7) D_{x}^{+}(z_{1}, z_{2})=d(z_{1}, x)+d(z_{2}, x) , x\in M, z_{1}, z_{2}\in F.
This function gives the length of the broken geodesic that is the union

of the shortest geodesics connecting z_{1} to x and the shortest geodesics
connecting x to z_{2} . Also, the gradients of D_{x}^{+}(z_{1}, z_{2}) with respect to

z_{1} and z_{2} give the velocity vectors of these geodesics. The functions

(7) appear in the study of the radiative transfer equation on manifold

(N,g) , see [11, 34, 35, 36, 40]. Also, the inverse problem of determining
the manifold (M, g) from the broken geodesic data, consisting of the
initial and the final points and directions, and the total length, of the
broken geodesics, has been considered in [26].
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FIGURE 3. Broken geodesic data consists of initial direc‐

tion (z_{1},  $\xi$+) , final direction (z_{2}, $\xi$_{-}) and total length of

of broken geodesic $\alpha$_{z $\xi$,z $\xi$-}1,+2,\cdot

2. EXTENSION OF THE DATA AND TOPOLOGICAL EQUIVALENCE

We will prove Theorem 1.2 in several steps. In order to do this we

start with a series of auxiliary results. Our first task is to extend the

family \mathcal{D}(M) to family

D(\overline{U}) :=\{D_{x}\in C(F\times F) : x\in\overline{U}\}.

Proposition 2.1. The data \{(F, g|_{F}), D(M)\} determine

d_{g}|_{F\mathrm{x}F}:F\times F\rightarrow \mathbb{R}.

Proof. Let z_{1}, z_{2}\in\partial M . We start with finding d_{g}(z_{1}, z_{2}) . This can

be obtained by using the triangular inequality and that d_{g}(z_{1}, z_{2})=
D_{z}2(z_{1}, z_{2}) . Thus we see easily that

(8) d_{g}(z_{1}, z_{2})=\displaystyle \sup_{x\in M}D_{x}(z_{1}, z_{2}) .

Let z, w\in F . As we are given the pair (F, g|_{F}) , we can determine the

length of any smooth path  $\alpha$ : [0, L]\rightarrow F . Since manifold N is com‐

plete, it holds that there exists a distance minimizing geodesic segment
 $\gamma$ from  z to w . Moreover, as \overline{U} is convex, the segment  $\gamma$([0, d_{g}(x, w

is contained in U.

When  $\gamma$([0, d_{g}(x, w does not intersect M , we can compute the

length \mathcal{L}( $\gamma$) of  $\gamma$ . Consider next the case when  $\gamma$ intersects  M . Then
it holds that

d_{g}(z, w)= \displaystyle \inf\{\mathcal{L}( $\alpha$)+d(q_{1}, q_{2})+\mathcal{L}( $\beta$):q_{1}, q_{2}\in\partial M,
a is a smooth curve in F connecting z to q_{1},

 $\beta$ is a smooth curve in  F connecting q_{2} to w}.

This shows that we can determine the function d_{g}|_{F\mathrm{x}F}. \square 

Corollary 2.2. The data \{(F, g|_{F}), \mathcal{D}(M)\} determine \mathcal{D}(\overline{U}) .
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Proof. Let x\in\overline{U} and z_{1}, z_{2}\in F . If x\in M ,
then D_{x}\in \mathcal{D}(M) . If

x\not\in M , then by Proposition 2.1, we can compute d_{g}(x, z_{1}) and d_{g}(x, z_{2})
from \{(F, g|_{F}), D(M)\} . Thus we can determine D_{x}(z_{1}, z_{2}) . \square 

Proposition 2.3. Suppose that mapping  $\phi$ :  F_{1}\rightarrow F_{2} is as in The‐

orem 1.2 and (2) -(3) are valid. Then  $\phi$ is a metric isometry, this is,
 d_{1}(x, y)=d_{2}( $\phi$(x),  $\phi$(y)) for all x, y\in F_{1}.

Proof. Let x, y\in F_{1} and let  $\gamma$ : [0, d(x,y)]\rightarrow N be a distance min‐

imizing unit speed geodesic segment of g_{1} from x to y contained in

\overline{U_{1}} . If the geodesic segment  $\gamma$ : [0, d_{1}(x, y)]\rightarrow N_{1} is contained in F_{1},
then we have that  $\phi$ 0 $\gamma$ is a curve connecting  $\phi$(x) to  $\phi$(y) . Thus

d_{1}(x, y)\geq d_{2}( $\phi$(x),  $\phi$(y)) .

Suppose that set S := $\gamma$([0, d_{1}(x, y)]\cap\partial M\neq\emptyset . Then there exist

closest points  e_{1}, e_{2}\in S to x and y respectively. We denote by a the

part of geodesic segment  $\gamma$ from  x to e_{1} and  $\beta$ the part of geodesic
segment  $\gamma$ from  e_{2} to y . Then a and  $\beta$ are contained in  F_{1} . Using
formulas (3) and (8) we can conclude that

d_{1}(x, y)=\mathcal{L}( $\alpha$)+d_{1}(e_{1}, e_{2})+\mathcal{L}( $\beta$)

=\mathcal{L}( $\phi$\circ $\alpha$)+d_{2}( $\phi$(e_{1}),  $\phi$(e_{2}))+\mathcal{L}( $\phi$( $\beta$))\geq d_{2}( $\phi$(x),  $\phi$(y)) .

Thus we have proved that d_{1}(x, y)\geq d_{2}( $\phi$(x),  $\phi$(y)) in all cases.

Switch the roles of x and  $\phi$(x) and y and  $\phi$(y) and notice that $\phi$^{-1} also

preserves the metric tensor. Therefore we can conclude that d_{1}(x, y)=
d_{2}( $\phi$(x),  $\phi$(y)) . \square 

Since F is compact, it holds that C(F\times F)\subset L^{\infty}(F\times F) .

Corollary 2.4. Suppose (N_{i}, g_{i})i=1, 2U_{i\mathrm{z}}M_{i} and F_{i} are as in the
Theorem 1.2 and (2) -(3) are valid. Then

(9)
\{D_{x}^{1}\in C(F_{1}\times F_{1}):x\in\overline{U}_{1}\}=\{D_{y}^{2}( $\phi$(\cdot),  $\phi$ \in C(F_{1}\times F_{1}):y\in\overline{U}_{2}\},
Proof. The claim follows from Corollary 2.2 and Proposition 2.3. \square 

We consider the mapping

\mathcal{D}:\overline{U}\rightarrow L^{\infty}(F\times F) , \mathcal{D}(x):=D_{x}.
Theorem 2.5. Mapping \mathcal{D} : \overline{U}\rightarrow D(\overline{U})\subset L^{\infty}(F\times F) is a homeo‐

morphism.

Proof. Let x, y\in\overline{U} and z, w\in F . By triangle inequality we have

|D_{x}(z, w)-D_{y}(z, w)|\leq|d(x, z)-d(y, z)|+|d(x, w)-d(y, w)|\leq 2d(x, y) .

Thus \Vert D_{x}-D_{y}\Vert_{\infty}\leq 2d(x, y) and therefore \mathcal{D} is 2‐Lipschitz. Hence, \mathcal{D}
is continuous.

Next we prove that D is one‐to‐one. To show this, assume x, y\in\overline{U}
are such that D_{x}=D_{y} . We split the proof into three different cases.
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(1) If x, y\in F , then

d(x, y)=D_{x}(y, x)=D_{y}(y, x)=-d(x, y) .

Thus d(x, y)=0 and x=y.

(2) If x\in F\backslash \partial M and y\in M , let L=d(x, y) and  $\gamma$ : [0, L]\rightarrow N be a

distance minimizing geodesic from x to y . Since dist (\partial U, \partial M)>
0 there exists s\in(0, L) such that we have z= $\gamma$(s)\in F . Then

d(x, z)=s and d(y, z)=L-s . As D_{x}=D_{y},

d(x, z)=D_{x}(z,x)=D_{y}(z, x)=d(y, z)-d(y, x)=d(y, z)-L.
These yield L=d(y, z)-d(x, z)=L-2s<L . Hence, it is

not possible that there are x\in F\backslash \partial M and y\in M satisfying
D_{x}=D_{y}.

(3) Consider the case x, y\in\overline{M} . To show that x and y have to be

equal, assume on the contrary that x\neq y . Let z_{x}, z_{y}\in\partial M
be some closest points of F to x and y , respectively. Since

D_{x}=D_{y}, d(x, z_{x})-d(x, z_{y})\leq 0 and d(y, z_{x})-d(y, z_{y})\geq 0 , it

holds that

d(x, z_{x})=d(x, z_{y}) and d(y, z_{y})=d(y, z_{x}) .

Therefore z_{x} is also a closest point of F to y and z_{y} is a closest

point of F to x.

Let s_{x}=d(x, z_{x})=d(x, z_{y}) and s_{y}=d(y, z_{x})=d(y, z_{y}) .

Without lost of generality we can assume that s_{x}\leq s_{y} . Since

boundary \partial M is a smooth (n-1) dimensional submanifold of N,
there exists a unique inward pointing unit normal vector field

 $\nu$ of \partial M . Then it holds that $\gamma$_{z_{x}, $\nu$} is the distance minimizing
geodesic from \partial M to x and y.

x=$\gamma$_{z_{x}, $\nu$}(s_{x}) and y=$\gamma$_{z_{x}, $\nu$}(s_{y}) .

As geodesic segment $\gamma$_{z_{x}, $\nu$} : [0, s_{y}]\rightarrow\overline{M} is a distance minimizing
curve between all of its points,

(10) d(x, y)=d(y, z_{x})-d(x, z_{x})=s_{y}-s_{x}.
Since $\gamma$_{z_{x}, $\nu$} is orthogonal to boundary \partial M , there exists s>0

such that $\gamma$_{z_{x}, $\nu$}(-s, 0)\cap\partial M=\emptyset . Thus there exists a point
\mathrm{z}\in\partial M\backslash \{z_{x}\} that is close to z_{x} , but the distance minimizing
geodesic $\gamma$_{x} from z to x is not the same geodesic as $\gamma$_{z_{x}, $\nu$} , that is,
the angle  $\beta$ of the curves  $\gamma$_{x} and $\gamma$_{z_{x}, $\nu$} at the point x is strictly
between 0 and  $\pi$ . Let  $\gamma$_{y} be a distance minimizing geodesic from

y to z . Since D_{x}(z, z_{x})=D_{y}(z, z_{x}) , we have d(x, z)-d(x, z_{x})=
d(y, z)-d(y, z_{x}) , that further yields

d(y, z)-d(x, z)=d(y, z_{x})-d(x, z_{x})=s_{y}-s_{x}=d(x, y) .

Hence,

\mathcal{L}($\gamma$_{y})=d(y, z)=d(y, x)+d(x, z)=\mathcal{L}($\gamma$_{z_{x}, $\nu$}|_{[s_{x},s_{y}]})+\mathcal{L}($\gamma$_{x}) .
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Thus the union  $\mu$ of the curves  $\gamma$_{z_{x}, $\nu$}([s_{x}, s_{y}]) and $\gamma$_{x} is a dis‐

tance minimising curve from z to y , and hence it is a geodesic.
However, as the angle  $\beta$ defined above is strictly between  0 and

 $\pi$ , the union  $\mu$ of the curves  $\gamma$_{z_{x}, $\nu$}([s_{x}, s_{y}]) and $\gamma$_{x} is not smooth

at x , and hence it is not possible that  $\mu$ is a geodesic. Thus

the assumption  x\neq y led to a contradiction and hence x and y

have to be equal.

FIGURE 4. A schematic picture about the final setting
of case (3).

We conclude that in all cases the assumption D_{x}=D_{y} implies that

x=y . Therefore \mathcal{D} is one‐to‐one.

Since \overline{U} is compact it follows from continuity that D is a closed

mapping. This shows that D : \overline{U}\rightarrow \mathcal{D}(\overline{U}) is a continuous and closed

bijection that proves the claim. \square 

We are now ready to define a mapping  $\Psi$ : \overline{U}_{2}\rightarrow\overline{U}_{1} that we will

use to show that (\overline{U}_{1}, g_{1}|_{\overline{U}_{1}}) and (\overline{U}_{2}, g_{2}|_{\overline{U}_{2}}) are isometric Riemannian

manifolds with boundary. Let D_{i} : \overline{U}_{i}\rightarrow C(F_{i}\times F_{i}) , i=1 , 2 be defined

as \mathcal{D}_{i}(x) :=D_{x}^{l} . We also define a mapping

 $\Phi$ :  C(F_{2}\times F_{2})\rightarrow C(F_{1}\times F_{1}) ,  $\Phi$(f) :=f( $\phi$(\cdot),  $\phi$

Lemma 2.6. Mapping  $\Phi$ is a homeomorphism.

Proof. Since  $\phi$ :  F_{1}\rightarrow F_{2} is one‐to‐one and onto, it holds that mapping
f\mapsto f($\phi$^{-1}(\cdot), $\phi$^{-1} f\in C(F_{1}\times F_{1}) exists and is the inverse of  $\Phi$.

Let f, h\in C(F_{2}\times F_{2}) . Then it holds that

\Vert f( $\phi$(\cdot),  $\phi$ -h( $\phi$(\cdot),  $\phi$(\cdot))\Vert_{\infty}\leq\Vert f-h\Vert_{\infty}.
Thus  $\Phi$ is continuous. The same arguments, with the mapping  $\Phi$ being
replaced by  $\Phi$^{-1} , show that $\Phi$^{-1} is continuous. \square 

By formula (9), Theorem 2.5 and Lemma 2.6 it holds that mapping

 $\Psi$:\overline{U}_{2}\rightarrow\overline{U}_{1},  $\Psi$:=D_{1}^{-1}\mathrm{o} $\Phi$, 0\mathcal{D}_{2},
is well defined.
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Theorem 2.7. Mapping  $\Psi$ : \overline{U}_{2}\rightarrow\overline{U}_{1} is a homeomorphism and

(11)  $\Psi$|_{F_{2}}=$\phi$^{-1}

Proof. By formula (9), Theorem 2.5 and Lemma 2.6 it holds that map‐

ping  $\Psi$ is a homeomorphism. The second claim follows from formula

(9) and the definition of  $\Psi$. \square 

3. SMOOTH AND RIEMANNIAN STRUCTURES

Our next goal is to show that the mapping  $\Psi$ : \overline{U}_{2}\rightarrow\overline{U}_{1} is a dif‐

feomorphism. The task at hand is to construct smooth atlases on \overline{U}_{2}
and \overline{U}_{1} and show that with respect to these differential structures the

mapping  $\Psi$ is a diffeomorphism.
Let  p\in U_{2} . By [1] there exist points \{y_{i}\}_{i=0}^{n}. \in F_{2}^{int} such that

mappings

x\mapsto(D_{x}^{2}(y_{i}, y_{0}))_{i=1}^{n} and \tilde{x}\mapsto(D_{\tilde{x}}^{1}( $\phi$(y_{i}),  $\phi$(y_{0})))_{i=1}^{n}
are smooth local coordinate mappings defined in a sufficiently small

neighborhood of p and  $\Psi$(p) , respectively. It also holds that the local

representation of  $\Psi$ in this coordinate system is an identity mapping of

\mathbb{R}^{n} . Thus the following theorem holds.

Suppose that p\in\partial U_{2} . Since we assumed that \overline{M}\subset U it holds that

dist (\partial U, \partial M)> O. Therefore there exists some r>0 such that sets

B_{g_{2}}(p, r)\subset N_{2} and \overline{M}_{2} are disjoint. By Theorem 2.7 it holds that

 $\Psi$|_{B_{92}(p,r)\cap\overline{U}}=$\phi$^{-1}|_{B_{g_{2}}(\mathrm{p},r)\cap\overline{U}}.
Therefore  $\Psi$ is also smooth at  p . Thus we have proved the following
theorem.

Theorem 3.1. Mapping  $\Psi$ : \overline{U}_{2}\rightarrow\overline{U}_{1} is a diffeomorphism.

The last step is to show that mapping  $\Psi$ : \overline{U}_{2}\rightarrow\overline{U}_{1} is a Riemannian

isometry. This means that $\Psi$^{*}(g_{1}|_{\overline{U}_{1}})=g_{2}|_{\overline{U}_{2}} . We denote g:=g_{2}
and \tilde{g} :=$\Psi$^{*}(g_{1}|_{\overline{U}_{1}}) . From now on we will use short hand notations

N_{2}=N, F_{2}=F, M_{2}=M and U_{2}=U . Next we consider the

properties of the metric tensors g and \tilde{g} on U. We recall that two

metric tensors g and \overline{g} defined on the same manifold \overline{U} are said to

be geodesically equivalent, if the geodesic curves corresponding these

metric tensors are the same as unparametrized curves. In other words,
any geodesic of (\overline{U},g) can be re‐parametrized so that it becomes a

geodesic of (\overline{U},\tilde{g}) and vice versa.

Definition 3.2. Let p\in F and  $\xi$\in T_{p}N be such that \Vert $\xi$\Vert_{g}=1 . Define
a set.

 $\sigma$(p,  $\xi$) :=\{x\in U ; there is w\in F such that D_{x} w) is C^{1} ‐smooth

in some neighbourhood of p and \nabla D_{x} w) |_{p}= $\xi$ }.
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Let  p\in F and  $\xi$\in T_{p}N be such that \Vert $\xi$\Vert_{g}=1 . By [1] it holds that

(12)  $\sigma$(p,  $\xi$)=$\gamma$_{p,- $\xi$}(\{s;0<s< $\tau$(p, - $\xi$)\})\cap U,
where T :  SN\rightarrow(0, \infty ] is the cut distance function of metric  g and

$\gamma$_{p,- $\xi$} is the unique unit speed geodesic of g with initial point p and

initial direction - $\xi$ , (see Figure 5). This means that we can find the

geodesic  $\gamma$_{p,- $\xi$}(\{s ; 0<s< $\tau$(p, - $\xi$)\})\cap U as a point set. Note that the

segments of geodesics of (\overline{U}, g) we know as non‐parametrized curves are

not self‐intersecting, since cut points occur before a geodesic stops to

be one‐to‐one.

FIGURE 5.  $\sigma$(p, $\xi$) is the part image of geodesic  $\gamma$(p, - $\xi$)
contained in U.

By formulas (9) and (12), it holds that set  $\sigma$(p, $\xi$) is also an image
of some geodesic of (\overline{U},\tilde{g}) . Furthermore, it is easy to see that there is

a re‐parametrization

s:[0, \displaystyle \overline{ $\tau$}(p, \frac{- $\xi$}{\Vert $\xi$||_{\tilde{g}}}))\rightarrow[0,  $\tau$(p, - $\xi$))
such that $\gamma$_{p,- $\xi$}(s(t)) , t\in[0, t_{1} ), is an unit speed geodesic of (\overline{U}, \tilde{g}) and

\tilde{ $\tau$} is the is the cut distance function of metric \overline{g}.
Since  F^{ $\iota$ nt}\neq\emptyset , it holds that for each  q\in M , there exists an open

cone $\Sigma$_{q} contained in T_{\mathrm{q}}N such that for each v\in$\Sigma$_{q} the corresponding
geodesic segment $\gamma$_{q,\frac{v}{||v||_{g}}} intersects F and this geodesic segment is also

a pre‐geodesic of metric \overline{g}, i.e., there exists a re‐parametrization of the

curve $\gamma$_{q,\frac{v}{||v||g}} that is a geodesic curve with respect to the metric \overline{g}. By

using results of [33] for general affine connections, see [1, Lem. 2.13] for

details, this is a sufficient condition for the metric tensors g and \tilde{g} on

\overline{U} to be geodesically equivalent.
We provide here a rough idea for the proof. Let (V, X) be a smooth

local coordinate chart in M . We denote the Christoffel symbols of

metrics g and \overline{g} by  $\Gamma$ and \tilde{ $\Gamma$}
, respectively. The first step is to show

that there exists a smooth local 1‐form  $\varphi$ on  V such that the following
equation holds.

(13) \tilde{ $\Gamma$}_{i,j}^{k}=$\Gamma$_{ $\iota$,j}^{k}+$\delta$_{i}^{k}$\varphi$_{j}+$\delta$_{j}^{k}$\varphi$_{i} , for k, i,j\in\{1, 2, . . . , n\}.
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To do this we define, for each p\in V , a collection C(p) of geodesics  $\gamma$ of

(\overline{U},g) and real numbers t_{0}\in \mathbb{R} , given by

C(p) = \{( $\gamma$, t_{0}); $\gamma$ : (a, b)\rightarrow U is a geodesic of (\overline{U}, g) ,  $\gamma$(t_{0})=p , and

there are z\in F^{int} and  $\xi$\in T_{z}U such that  $\gamma$((a, b))= $\sigma$(z,  $\xi$

Here  $\gamma$ is given as a pair of the set \mathrm{d}\mathrm{o}\mathrm{m}( $\gamma$)=(a, b)\subset \mathbb{R}, -\infty\leq a<b\leq
\infty ,

where the mapping  $\gamma$ is defined and the function  $\gamma$ : \mathrm{d}\mathrm{o}\mathrm{m}( $\gamma$)\rightarrow U.
Also, t_{0}\in(a, b) . Moreover, above  $\gamma$((a, b))= $\sigma$(z,  $\xi$) means that the

sets  $\gamma$((a, b))\subset U and  $\sigma$(z,  $\xi$)\subseteq U are the same, or equivalently, that

 $\gamma$((a, b)) and  $\sigma$(z, $\xi$) are the same as unparameterized curves.

Then it holds that for each ( $\gamma$, t_{0})\in C(p) we have \dot{ $\gamma$}(t_{0})\in$\Sigma$_{p} . In [1]
it is shown how one can use these observations and the fact that $\Sigma$_{p} is

an open conic set to prove that equation (13) is valid for some 1‐form

 $\varphi$.
The second step is to prove that equation (13) implies the geodesic

equivalence of g and \tilde{g} on M . See [1] for details.

Finally we will introduce a function I_{0} : TU\rightarrow \mathbb{R} that is defined as

(14) I_{0}((x, v)):=(\displaystyle \frac{\det(g_{x})}{\det(\tilde{g}_{x})})^{\frac{2}{n+1}}\tilde{g}_{x}(v, v) .

By the above, the metric tensors g and \overline{g} are geodesically equivalent
on open smooth manifold U . By [32] the geodesic equivalence of g and

\overline{g} implies that function I_{0} is constant on every curve t\mapsto( $\gamma$(t),\dot{ $\gamma$}(t)) ,

where  $\gamma$ is a geodesic of metric  g\cdot|_{U} . By (2) it holds \tilde{g}|_{F^{lnt}}=g|_{F^{int}} . Thus

we see that and I_{0}(x,  $\xi$)=1 for all (x,  $\xi$)\in TU such that x\in F^{int}.
Denote by W_{x} the set of those (x,  $\xi$)\in TU having the property that the

geodesic $\gamma$_{x, $\xi$} intersects F^{in\mathrm{t}} . The invariance of I_{0}(x,  $\xi$) along geodesics
implies that I_{0}(x, $\xi$)=1 for all (x, $\xi$)\in W_{x} . As W_{x}\subset T_{0}U\backslash \{0\} is

an open set for all x\in U , can use the definition (14) of I_{0} to see first

that \tilde{g} and g are conformal on M and further that \tilde{g}=g on M (see
[1, Lemma 2.16] for proof of this analysis). Since (2) and (11), hold we

have proved Theorem 1.2.

4. APPLICATION FOR AN INVERSE PROBLEM FOR A WAVE

EQUATION

Here we consider the application of Theorem 1.2 for an inverse prob‐
lem for a wave equation with spontaneous point sources.

4.0.6. Support sets of waves produced by point sources. Let (N, g) be a

complete Riemannian manifold. Denote the Laplace‐Beltrami operator
of metric g by $\Delta$_{g} . (For definitions see [30, 10 We consider a wave

equation

(15) \left\{\begin{array}{ll}
(\partial_{t}^{2}-$\Delta$_{g})G(\cdot, \cdot, y, s)= $\kappa$(y, s)$\delta$_{y,s}(\cdot, & \mathrm{i}\mathrm{n}\mathcal{N}\\
G(x, t, y, s)=0, \mathrm{f}\mathrm{o}\mathrm{r} t<s, x\in N. & 
\end{array}\right.
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where \mathcal{N}=N\times \mathbb{R} is the space‐time. The solution G(x, t, y, s) is the

wave produced by a point source located at the point y\in M and

time s\in \mathbb{R} having the magnitude  $\kappa$(y, s)\in \mathbb{R}\backslash \{0\} . Above, we have

$\delta$_{y,s}(x, t)=$\delta$_{y}(x)$\delta$_{s}(t) Qorresponds to a point source at (y, s)\in \mathcal{N}.

4.0.7. Inverse coeficient problem with spontaneous point source data.

Assume that there are two manifolds (N_{1}, g_{1}) and (N_{2}, g_{2}) satisfying
the assumptions given in Section 1.2 for sets U_{i}, M_{i} and F_{i}, i=1 , 2.

In addition we assume that there exists a diffeomorphism  $\phi$ :  F_{1}\rightarrow F_{2}
such that (2) is valid and

(16) W_{1}=W_{2}

where W_{1} and W_{2} are collections of supports of waves produced by
point sources taking place at unknown points at unknown time, that

is,

W_{1}=\{supp (G^{1}., y_{1}, s_{1}))\cap(F_{1}\times \mathbb{R});y_{1}\in M_{1}, s_{1}\in \mathbb{R}\}\subset 2^{F_{1}\mathrm{x}\mathbb{R}}
and

W_{2}=\{supp ( G^{2}( $\phi$(\cdot), \cdot, y_{2}, s_{2}))\cap(F_{1}\times \mathbb{R});y_{2}\in M_{2}, s_{2}\in \mathbb{R}\}\subset 2^{F_{1}\mathrm{x}\mathbb{R}}
where functions G^{j}, j=\{1 , 2 \} solve equation (15) on manifold N_{j}.
Here 2^{F_{J}\mathrm{x}\mathbb{R}}=\{F;F\subset F_{j}\times \mathbb{R}\} is the power set of F_{j}\times \mathbb{R} . Roughly
speaking, W_{j} corresponds to the data that one makes by observing, in

the set F_{j} , the waves that are produced by spontaneous point sources

that that go off, at an unknown time and at an unknown location, in

the set M_{j}.

FIGURE 6. Illustration of \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}G_{1} ., y, s ) \subset \mathcal{N}_{1}.

Earlier, the inverse problem for the sources that are delta‐distributions

in time and localized also in the space has been studied in [13] in the

case when the metric g is known. Theorem 1.2 yields the following
result telling that the metric g can be determined when a large number

of waves produced by the point sources is observed:

Proposition 4.1. Let (N_{j},g_{j}) , j=1 , 2 be a complete compact  Rie\leftarrow

mannian  n‐manifold, n\geq 2 . Let M_{j}\subset N_{j} be an open set whose closure

is contained in open set U_{j} Suppose also that \partial M_{j} is smooth, U_{j} is
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relatively compact, \partial U_{j} is smooth and \overline{U} is convex. If the spontanuous

point source data of \overline{U}_{1} and \overline{U}_{2} coincide, that ís, we have (2) and (16),
then (\overline{U}_{1},g_{1}|_{\overline{U}_{1}}) and (\overline{U}_{2}, g_{2}|_{\overline{U}_{2}}) are isometric Riemannian manifolcls
with boundary.

Proof. We provide here a sketch of the proof (see [1] for the detailed

proof). The main idea is to relate the numbers

T_{y,s}(z) := \displaystyle \sup\{t\in \mathbb{R} ; the point (z,t) has a neighborhood
A\subset \mathcal{N} such that G ., y, s ) |_{A}=0}

y\in M, s\in \mathbb{R} , and z\in F ,
to the distance difference functions. The

number T_{y,s}(z) tells us, what is the first time when the wave G , y , s)
is oUserved near the point z . Using the finite velocity of the wave

propagation for the wave equation, see [17], we see that the support of

G ., y , s ) is contained in the future light cone of the point  q=(y, s)\in
\mathcal{N} given by

J^{+}(q)=\{(y, s)\in \mathcal{N};s\geq d(y\neg y)+s\}.

Next, step is to show that a wave emanating from a point source (y, s)
propagates along the geodesics of manifold (N,g) and the boundary

\partial J^{+}(q)=\{(\exp_{y}(t $\eta$), s+t)\in \mathcal{N}; $\eta$\in S_{y}N, t\geq 0\}.
See [15] and [16]. Therefore it can be shown that the function G ., y , s)
vanishes outside J^{+}(q) and is non‐smooth, and thus non‐zero, in a

neighbourhood of arbitrary point of \partial J^{+}(q) . Thus, for z\in F we have

T_{y,s}(z)=d(z, y)-s . Hence the distance difference functions satisfy
equation

(17) D_{y}(z_{1}, z_{2})=T_{y,s}(z_{1})-T_{y,s} (z2).

Therefore we see using equation (17) that we have (2)-(3) . Hence,
the claim follows from Theorem 1.2. \square 
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