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Abstract

In this note we consider magnetic self‐adjoint operators on \mathbb{Z}^{d} whose symbols
and magnetic fields depend on a parameter  $\epsilon$ . Sufficient conditions are imposed
such that the spectrum of these operators varies continuously with respect to  $\epsilon$.

The emphasize is put on a construction which is independent of any particular
choice of the magnetic potentials.
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1 Introduction

This paper is an extended version of a presentation made at the conference Spectral
and Scattering Theory and Related Topics at Rims in Kyoto in January 2016. The

presentation was based on the paper [11] to which we refer for more details and for the

proofs.
In the Hilbert space \mathcal{H} :=l^{2}(\mathbb{Z}^{d}) and for some fixed parameter  $\epsilon$ let us consider

operators of the form

[H^{ $\epsilon$}u](x):=\displaystyle \sum_{y\in \mathbb{Z}^{d}}h^{ $\epsilon$}(x;y-x)\mathrm{e}^{i$\phi$^{ $\epsilon$}(x,y)}u(y) (1.1)

with u\in \mathcal{H} of finite support, x\in \mathbb{Z}^{d} and where h^{ $\epsilon$} : \mathbb{Z}^{d}\times \mathbb{Z}^{d}\rightarrow \mathbb{C} and $\phi$^{ $\epsilon$} : \mathbb{Z}^{d}\times \mathbb{Z}^{d}\rightarrow \mathbb{R}

satisfy
*
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(i) \displaystyle \sum_{x\in \mathbb{Z}^{d}}\sup_{q\in \mathrm{Z}^{d}}|h^{ $\epsilon$}(q;x)|<\infty,

(ii) h^{ $\epsilon$}(q+x;-x)=h^{ $\epsilon$}(q;x) for any q, x\in \mathbb{Z}^{d},

(iii) $\phi$^{ $\epsilon$}(x, y)=-$\phi$^{ $\epsilon$}(y, x) for all x, y\in \mathbb{Z}^{d}.

Such operators are usually called discrete magnetic Schrödinger operators. Note that

condition (i) ensures that H^{ $\epsilon$} extends continuously to a bounded operator in \mathcal{H} , and

can be simply rewritten as h^{ $\epsilon$}\in l^{1}(\mathbb{Z}^{d};l^{\infty}(\mathbb{Z}^{d})) . Conditions (ii) and (iii) imply that

the operator H^{ $\epsilon$} is self‐adjoint. Note also that a map  $\phi$ : \mathbb{Z}^{d}\times \mathbb{Z}^{d}\rightarrow \mathbb{R} satisfying
 $\phi$(x, y)=- $\phi$(y, x) for any x, y\in \mathbb{Z}^{d} will be called a magnetic potential.

Our aim is exhibit some continuity properties of the spectrum of these operators
under suitable and natural assumptions. Natural conditions on the family of symbols h^{ $\epsilon$}

are imposed below. However, it is well‐known (at least in the continuous setting) that

continuity conditions should not be imposed on the magnetic potentials but rather on

the magnetic fields. This requirement comes from the non‐unicity for the choice of a

magnetic potential. Indeed, if  $\phi$ : \mathbb{Z}^{d}\times \mathbb{Z}^{d}\rightarrow \mathbb{R} is defined for any x, y\in \mathbb{Z}^{d} by

$\phi$'(x, y)\equiv[ $\phi$+\nabla $\varphi$](x, y) := $\phi$(x, y)+ $\varphi$(y)- $\varphi$(x) (1.2)

for some  $\varphi$ : \mathbb{Z}^{d}\rightarrow \mathbb{R}
, then the magnetic operators constructed with  $\phi$ and  $\phi$' are known

to be unitarily equivalent. This property is called the gauge invariance of the magnetic
operators and imposes a slightly more elaborated notion of continuity for the magnetic
contribution, as emphasized below.

Before explaining more in details the necessary construction, let us state a simplified
version of our main theorem in which the  $\epsilon$‐dependence on  $\phi$^{ $\epsilon$} is very simple. A more

general setting will be introduced in the subsequent sections. The continuity we shall

consider for the spectrum corresponds to the stability of the spectral gaps as well as the

stability of the spectral compounds. In a more precise terminology we shall prove inner

and outer continuity for the family of spectra. The following definition is borrowed from

[1] but originally inspired by [3].

Definition 1.1. Let  $\Omega$ be a compact Hausdorff space, and let \{$\sigma$_{ $\epsilon$}\}_{ $\epsilon$\in $\Omega$} be a family of
closed subsets of \mathbb{R}.

1. The family \{$\sigma$_{ $\epsilon$}\}_{ $\epsilon$\in $\Omega$} is outer continuous at  $\epsilon$_{0}\in $\Omega$ if for any compact subset \mathcal{K} of
\mathbb{R} such that \mathcal{K}\cap$\sigma$_{ $\epsilon$ 0}=\emptyset there exists a neighbourhood \mathcal{N}=\mathcal{N}(\mathcal{K}, $\epsilon$_{0}) of $\epsilon$_{0} in  $\Omega$
such that \mathcal{K}\cap$\sigma$_{ $\epsilon$}=\emptyset for any  $\epsilon$\in \mathcal{N},

2. The family \{$\sigma$_{ $\epsilon$}\}_{ $\epsilon$\in $\Omega$} is inner continuous at  $\epsilon$_{0}\in $\Omega$ if for any open subset \mathcal{O} of \mathbb{R}

such that \mathcal{O}\cap$\sigma$_{ $\epsilon$ 0}\neq\emptyset there exists a neighbourhood \mathcal{N}=\mathcal{N}(\mathcal{O}, $\epsilon$_{0}) of $\epsilon$_{0} in  $\Omega$ such

that \mathcal{O}\cap$\sigma$_{ $\epsilon$}\neq\emptyset for any  $\epsilon$\in \mathcal{N}.

With this definition at hand we can now choose  $\Omega$ :=[0 ,
1 ] and state a special

instance of our main result which is presented in Theorem 3.1. Note that the following
statement is inspired from [8] and a comparison with the existing literature will be
established just afterwards.
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Theorem 1.2. For each  $\epsilon$\in $\Omega$ :=[0 ,
1 ] let h^{ $\epsilon$} : \mathbb{Z}^{d}\times \mathbb{Z}^{d}\rightarrow \mathbb{C} satisfy the above conditions

(i) and (ii), and

1) \displaystyle \sum_{x\in \mathrm{Z}^{d}}\sup_{q\in \mathbb{Z}^{d}}\sup_{ $\epsilon$\in[0,1]}|h^{ $\epsilon$}(q;x)|<\infty,

2) For any fixed x\in \mathbb{Z}^{d},

\displaystyle \lim_{ $\epsilon$\rightarrow $\epsilon$}\sup_{q\in \mathbb{Z}^{d}}|h^{$\epsilon$'}(q;x)-h^{ $\epsilon$}(q;x)|=0.
Let also  $\phi$ be a magnetic potential which satisfies

| $\phi$(x, y)+ $\phi$(y, z)+ $\phi$(z, x)|\leq area \triangle(x, y, z) ,

where \triangle(x, y, z) means the triangle in \mathbb{R}^{d} determined by the three points x, y, z\in \mathbb{Z}^{d}.
Then for H^{ $\epsilon$} defined on u\in \mathcal{H} by

[H^{ $\epsilon$}u](x):=\displaystyle \sum_{y\in \mathrm{Z}^{d}}h^{ $\epsilon$}(x;y-x)\mathrm{e}^{i $\epsilon \phi$(x,y)}u(y)
the family of spectra  $\sigma$(H^{ $\epsilon$}) forms an outer and an inner continuous family at every

points  $\epsilon$\in $\Omega$.

It is certainly impossible to mention all papers dealing with continuity properties
of families of such operators, but let us cite a few of them which are relevant for our

investigations. First of all, let us mention the seminal paper [3] in which the author

proves the Lipschitz continuity of gap boundaries with respect to the variation of a

constant magnetic field for a family of pseudodifferential operators acting on \mathbb{Z}^{2} . In [6]
and based on the framework introduced in [13], similar Lipschitz continuity is proved for

self‐adjoint operators acting on a crystal lattice, a natural generalization of \mathbb{Z}^{d} . Papers
[8] and [5] also deal with families of magnetic pseudodifferential operators on \mathbb{Z}^{2} , and the

results contained in [8] partially motivated our work. Let us still mention two additional

papers which are at the root of our work: [7] in which a general framework for magnetic
systems, involving twisted crossed product C^{*}‐algebras, is introduced, and the reference

[1] which contains results similar to ours but in a continuous setting.
Let us now emphasize that the framework presented in Section 3 does not allow

us to get any quantitative estimate, as emphasized in the recent paper [2]. Indeed, the

very weak continuity requirement we impose on the  $\epsilon$‐dependence on our objets can not

lead to any Lipschitz or Hölder continuity. More stringent assumptions are necessary
for that purpose, and such estimates certainly deserve further investigations.

Our approach relies on the concepts of twisted crossed product  C^{*}‐algebras and

on a field of such algebras, mainly borrowed from [12, 14]. In the discrete setting,
such algebras have already been used, for example in [3, 6, 13]. However, instead of

considering a 2‐cocycle with scalar values, which is sufficient for the case of a constant

magnetic field, our 2‐cocycles take values in the group of unitary elements of l^{\infty}(\mathbb{Z}^{d}) .
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This allows us to consider arbitrary magnetic potential on \mathbb{Z}^{d} and to encompass all the

corresponding operators in a single algebra.
Let us finally describe the content of this paper. In Section 2 we introduce the frame‐

work for a single magnetic system, i.e . for a fixed  $\epsilon$ . For that reason, no  $\epsilon$‐dependence is

indicated in this section. In Section 3 the - $\epsilon$‐dependence is introduced and the continuous

dependence on this parameter is studied. Our main result is presented in Theorem 3.1.

2 Discrete magnetic systems

In this section we introduce a quantity which does not depend on the choice of a par‐

ticular magnetic potential. In that respect, this function depends only on the magnetic
field, as emphasized below. Note that no  $\epsilon$‐dependence is written in this section.

We start by recalling that a magnetic potential consists in a map  $\phi$ : \mathbb{Z}^{d}\times \mathbb{Z}^{d}\rightarrow \mathbb{R}

satisfying for any x, y\in \mathbb{Z}^{d} the relation

 $\phi$(x, y)=- $\phi$(y, x) .

Then, given such a magnetic potential  $\phi$ let us introduce and study a new map

 $\omega$:\mathbb{Z}^{d}\times \mathbb{Z}^{d}\rightarrow l^{\infty}(\mathbb{Z}^{d})

defined for q, x, y\in \mathbb{Z}^{d} by

[ $\omega$(x, y)](q)\equiv $\omega$(q;x, y) :=\exp\{i[ $\phi$(q, q+x)+ $\phi$(q+x, q+x+y)+ $\phi$(q+x+y, q)]\}. (2.1)

Note that  $\omega$(x, y) is unitary‐valued since | $\omega$(q, ; x, y)|=1 for any q\in \mathbb{Z}^{d}. \ln fact,  $\omega$(x, y)
takes values in the unitary group of the algebra l^{\infty}(\mathbb{Z}^{d}) , which shall simply denote by
\mathscr{U}(\mathbb{Z}^{d}) , i.e. %(Zd) =\{f:\mathbb{Z}^{d}\rightarrow \mathrm{T}\}.

Let us also introduce the action  $\theta$ of \mathbb{Z}^{d} by translations, namely on any f\in l^{\infty}(\mathbb{Z}^{d})
one sets

$\theta$_{x}f(y)=f(x+y) .

In particular, since  $\omega$(x, y)\in l^{\infty}(\mathbb{Z}^{d}) we have

[$\theta$_{z} $\omega$(x, y)](q):=[ $\omega$(x, y)](q+z)= $\omega$(q+z;x, y) .

Based on these definitions, the following properties for  $\omega$ can be obtained by straight‐
forward computations. Recall that the notation  $\phi$+\nabla $\varphi$ has been introduced in (1.2).

Lemma 2.1. Let  $\phi$ be a magnetic potential and let  $\omega$ be defined by (2.1). Then for any

 x, y, z\in \mathbb{Z}^{d} the following properties hold:

(i)  $\omega$(x+y, z) $\omega$(x, y)=$\theta$_{x} $\omega$(y, z) $\omega$(x, y+z) (2‐cocycle property)

(ii)  $\omega$(x, 0)= $\omega$(0, x)=1 (normalization)
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(iii)  $\omega$(x, -x)=1 (additional property)

(iv) For any  $\varphi$ : \mathbb{Z}^{d}\rightarrow \mathbb{R} , the magnetic potentials  $\phi$ and  $\phi$+\nabla $\varphi$ define the same

function  $\omega$ (independence property).
With the above lemma, one directly infers that  $\omega$ is a normalized 2‐cocycle on \mathbb{Z}^{d}

with values in \mathscr{U}(\mathbb{Z}^{d}) and which satisfies the additional property (iii). In addition, this

map depends only on equivalent classes of magnetic potentials, as emphasized in (iv).
One could argue that the 2‐cocycle  $\omega$ depends only on the magnetic field as introduced
in [4], and not on the choice of a magnetic potential. However, this would lead us too

far from our purpose since we would have to consider \mathbb{Z}^{d} as a graph endowed with edges
between every pair of vertices.

Let us now adopt a very pragmatic point of view and recall only the strictly nec‐

essary information on twisted crossed product C^{*}‐algebras. More can be found in the

fundamental papers [9, 10] or in the review paper [7]. Since the group we are dealing
with is simply \mathbb{Z}^{d} , most of the necessary information can also Ue found in [14].

Consider l^{1}(\mathbb{Z}^{d};l^{\infty}(\mathbb{Z}^{d})) , with the norm

\displaystyle \Vert f\Vert_{1,\infty}:=\sum_{x\in \mathrm{Z}^{d}}\sup_{q\in \mathrm{Z}^{d}}|f(q;x)| \forall f\in l^{1}(\mathbb{Z}^{d};l^{\infty}(\mathbb{Z}^{d})) ,

and with the twisted product and the involution defined for any f, g\in l^{1}(\mathbb{Z}^{d};l^{\infty}(\mathbb{Z}^{d}))
by

[f\displaystyle \mathrm{o}g](q;x):=\sum_{y\in \mathrm{Z}^{d}}f(q;y)g(q+y;x-y) $\omega$(q;y, x-y)
and

f^{ $\theta$}(q;x)=\overline{f(q+x;-x)}.
Endowed with this multiplication and with this involution, l^{1}(\mathbb{Z}^{d};l^{\infty}(\mathbb{Z}^{d})) is a Banach
*‐algebra. The corresponding enveloping C^{*}‐algebra will be denoted by \mathbb{C}( $\omega$) . Recall
that this algebra corresponds to the completion of l^{1}(\mathbb{Z}^{d};l^{\infty}(\mathbb{Z}^{d})) with respect to the
C�‐norm defined as the supremum over all the faithful representations of l^{1}(\mathbb{Z}^{d};l^{\infty}(\mathbb{Z}^{d})) .

As a consequence, l^{1}(\mathbb{Z}^{d};l^{\infty}(\mathbb{Z}^{d})) is dense in \not\subset( $\omega$) and the new C^{*}‐norm \Vert\cdot\Vert satisfies

\Vert f\Vert\leq\Vert f\Vert_{1,\infty}.
Note that the above construction holds for any normalized 2‐cocycle satisfying

the additional property (iii). In fact, it is proved in [11] that any such 2‐cocycle can

be obtained by a magnetic potential, i.e. there always exists a magnetic potential  $\phi$
satisfying (2.1).

Let us now look at a faithful representation of the algebra \mathbb{C}( $\omega$) in the Hilbert space

\mathcal{H}=l^{2}(\mathbb{Z}^{d}) . For that purpose, consider any magnetic potential  $\phi$ satisfying

\exp\{i[ $\phi$(q, q+x)+$\phi$'(q+x, q+x+y)+$\phi$'(q+x+y, q)]\}= $\omega$(q;x, y) . (2.2)
Then for any h\in l^{1}(\mathbb{Z}^{d};l^{\infty}(\mathbb{Z}^{d})) , any u\in \mathcal{H} and any x\in \mathbb{Z}^{d} one sets

[\displaystyle \Re \mathrm{e}\mathfrak{p}^{$\phi$'}(h)u](x):=\sum_{y\in \mathbb{Z}^{d}}h(x;y-x)\mathrm{e}^{i$\phi$'(X_{1y)}}.u(y) .
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Clearly, this expression is similar to the one contained in (1.1) and this fact partially
justifies the entire construction. The main properties of this representation are gathered
in the following statement, which corresponds to [7, Prop. 2. 16 & 2.17] adapted to our

setting.

Proposition 2.2. Let  $\phi$ be any magnetic potential satisfying (2.2) for a given normal‐

ized 2‐cocycle  $\omega$ with the additional condition (iii) of Lemma 2.1. Then,

(i) The representation \Re \mathrm{e}\mathfrak{p}^{$\phi$'} of \mathbb{C}( $\omega$) is irreducible and faithful

(ii) Any other choice for $\phi$' leads to a unitarily equivalent representation,

(iii) If h\in l^{1}(\mathbb{Z}^{d};l^{\infty}(\mathbb{Z}^{d})) , then \Re e\mathrm{p}^{$\phi$'}(h)\dot{u} self‐adjoint if h^{ $\theta$}=h.

3 A continuous field of C^{*}‐algebras
In this section we consider a family of discrete magnetic systems which are parame‐

terized by the elements  $\epsilon$ of a compact Hausdorff space  $\Omega$ . The necessary continuity
relations between the various objects is encoded in the structure of a field of twisted

crossed product  C^{*}‐algebras, as introduced in [12] and already used in a similar con‐

text in [1]. Again, let us be very pragmatic and introduce only the strictly necessary

information, and refer to [11, Sec. 3] for more details.

For fixed x, y\in \mathbb{Z}^{d} , let us consider a continuous map

 $\Omega$\ni $\epsilon$\mapsto$\omega$^{ $\epsilon$}(x, y)\in \mathscr{U}(\mathbb{Z}^{d}) (3.1)

such that each element $\omega$^{ $\epsilon$} ) is a 2‐cocycle on \mathbb{Z}^{d} with values % (\mathbb{Z}^{d}) and which satisfies

the.additional property (iii) of Lemma 2.1. Note that equivalently one can consider a

normalized 2‐cocycle  $\omega$ on \mathbb{Z}^{d} and with values in the C^{*}‐algebra C( $\Omega$;l^{\infty}(\mathbb{Z}^{d})) . In this

setting the additional condition reads  $\omega$(x, -x)=1 for any x\in \mathbb{Z}^{d} , and the following
relation clearly holds:

$\omega$^{ $\epsilon$}(q;x, y)\equiv[$\omega$^{ $\epsilon$}(x, y)](q)=[ $\omega$(x, y)]( $\epsilon$, q)\equiv $\omega$( $\epsilon$, q;x, y) .

Let us stress that the continuity assumption mentioned in the previous paragraph
is precisely the sufficient one for the continuity of the spectrum. More precisely, this

continuity condition corresponds to a gauge‐independent condition, and does not cor‐

respond to any direct requirement on any magnetic potential $\phi$^{ $\epsilon$} . So, let us now state

the main result of this note:

Theorem 3.1. Let \{$\omega$^{ $\epsilon$}\}_{ $\epsilon$\in $\Omega$} be a family of normalized 2‐cocycle satisfying the additional

property (iii) of Lemma 2.1 and such that the map defined by (3.1) is continuous. Con‐

sider a family \{h^{ $\epsilon$}\}_{ $\epsilon$\in $\Omega$}\subset l^{1}(\mathbb{Z}^{d};l^{\infty}(\mathbb{Z}^{d})) such that the following conditions are satisfied:

(i) \displaystyle \sum_{x\in \mathbb{Z}^{d}}\sup_{q\in \mathbb{Z}^{d}}\sup_{ $\epsilon$\in $\Omega$}|h^{ $\epsilon$}(q;x)|<\infty,

74



(ii) For any fixed x\in \mathbb{Z}^{d},

\displaystyle \lim_{ $\epsilon$\rightarrow $\epsilon$}\sup_{q\in \mathbb{Z}^{d}}|h^{$\epsilon$'}(q;x)-h^{ $\epsilon$}(q;x)|=0,
(iii) (h^{ $\epsilon$})^{ $\theta$}=h^{ $\epsilon$}.

Then, for any family of magnetic potential $\phi$^{ $\epsilon$} satisfying

[$\omega$^{ $\epsilon$}(x, y)](q)=\exp\{i[$\phi$^{ $\epsilon$}(q, q+x)+$\phi$^{ $\epsilon$}(q+x, q+x+y)+$\phi$^{ $\epsilon$}(q+x+y, q)]\},

the family of spectra \{ $\sigma$(\Re \mathrm{t}\mathfrak{p}^{$\phi$^{ $\epsilon$}}(h^{ $\epsilon$}))\}_{ $\epsilon$\in $\Omega$} forms an outer and an inner continuous family
at every point  $\epsilon$ of  $\Omega$.

The proof of this statement as well as the proof of Theorem 1.2 are given in [11].
Let us simply mention that it is based on the construction of the enveloping C^{*}‐algebra
\mathbb{C}( $\omega$) of the Banach *‐algebra l^{1}(\mathbb{Z}^{d};C( $\Omega$;l^{\infty}(\mathbb{Z}^{d}))) endowed with a product and an

involution defined in terms of  $\omega$ . Properties of the evaluation maps  e_{ $\epsilon$} : \mathrm{C}( $\omega$)\rightarrow \mathrm{C}($\omega$^{ $\epsilon$})
at any  $\epsilon$\in $\Omega$ lead rather straightforwardly to our main theorem, once the abstract

results obtained in [12] are taken into account.
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