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Abstract

In this paper, we discuss some difficulties of the simplicial algorithm detected in im‐

plementing under the  $\omega$‐subdivision rule. To overcome those, we modify the bounding
process and extend  $\omega$‐subdivision. We also report numerical results for the simplicial
algorithm according to this new subdivision rule.
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1 Introduction

In 1976, Horst proposed a kind of branch‐and‐bound algorithm, named the simplicial algo‐
rithm, to solve convex maximization problems [3]. The algorithm now counted among the

most popular algorithms in global optimization [4, 5, 14], along with the conical algorithm
proposed by Tuy in 1964 [17]. In the branching process, whereas the latter uses cones, the

simplicial algorithm uses a set of simplices to partition the feasible set; and in the bounding
process, the algorithm estimates an upper bound of the objective function by maximizing its

convex envelope on each simplex, which is further subdivided to refine the partition if the

upper bound is large enough. As a rule for subdivision, Horst used a simple one which bisects

each simplex across its longest edge, and gave a convergence proof for the algorithm. Al‐

though his proof contains a flaw, Thoai‐Tuy [16] found and fixed it later, and also introduced

the concept of exhaustiveness as a sufficient condition for the convergence. On the other hand,
in the conical algorithm, Tuy utilized a byproduct of the bounding process to subdivide each

cone without a guarantee of convergence. Even for the simplicial algorithm, we can adopt a

similar rule, which subdivides each simplex radially around the maximum point of the con‐

cave envelope obtained as a byproduct in the bounding process. This so‐called  $\omega$ ‐subdivision

rule is not exhaustive, and the convergence of both algorithms incorporating the mle remained

open until Jaumard‐Meyer [6] and Locatelli [11] proved it for the conical algorithm indepen‐
dently in 1998, 1999, and Locatelli‐RaUer [12, 13] did for the simplicial algorithm in 2000.
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Preceding their proofs by nearly a decade, Tuy showed in [18] that the conical algorithm with

 $\omega$ ‐subdivision converges if a certain nondegeneracy condition holds (see also [5, 19 Kuno‐

Ishihama [9] showed that a more moderate condition always holds and guarantees the conver‐

gence for the conical algorithm. In a similar way, Kuno‐Uuckland [8] and Kuno‐Ishihama [10]

proved the convergence of the simplicial algorithm and generalized the  $\omega$‐subdivision rule.

In this paper, we discuss some difficulties of the simplicial algorithm detected in imple‐
menting under the  $\omega$ ‐subdivision rule. To overcome those, we modify the bounding process
and extend the  $\omega$‐subdivision rule. In Section 2, we define the target concave maximization

problem and outline the usual simplicial algorithm for solving it. In Sections 3, we point out

the difficulties of the algorithm and propose a technical solution. To cope with some emerging
issues, in Section 4, we develop a new simplicial subdivision rule. Lastly, in Section 5, we

report numerical results for the simplicial algorithm according to this rule.

2 Convex maximization and the simplicial algorithm

Let  f be a convex function defined on \mathbb{R}^{n} , and consider a problem of maximizing it on a

polyhedron:
maximize f(\mathrm{x})

(1)
subject to Ax \leq \mathrm{b},

where \mathrm{A}\in \mathbb{R}^{m\times n} and \mathrm{b}\in \mathbb{R}^{m} . Denote the feasible set by

D= { \mathrm{x}\in \mathbb{R}^{n}| Ax \leq \mathrm{b} }, (2)

and assume that D is nonempty and bounded. We also assume that an n‐simplex S^{1}\subseteq \mathbb{R}^{n} with

vertices \mathrm{v}_{1}^{1} , \cdots , \mathrm{v}_{n+1}^{1} is given and satisfies

D\subseteq S^{1}\subset \mathrm{i}\mathrm{n}\mathrm{t}(domf) , (3)

where \mathrm{d}\mathrm{o}\mathrm{m} . and int \cdot represent the effective domain and the interior, respectively. Under these

assumptions, (1) has at least one globally optimal solution \mathrm{x}^{*}\in D . In general, however, there

are multiple locally optimal solutions, many of which are not globally optimal. To solve (1)

rigorously, we need to enumerate them using techniques such as branch‐and‐bound. One of

standard branch‐and‐Uound approaches is the simplicial algorithm proposed by Horst in 1976

[3], outlined below.

OUTLINE OF THE SIMPLICIAL ALGORITHM

As in other branch‐and‐Uound approaches, the following two processes play major roles in the

simplicial algorithm.

Branching: Starting from i=1 , the n‐simplex S^{i}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\{\mathrm{v}_{1}^{i}, \cdots, \mathrm{v}_{n+1}^{i}\} is subdivided radi‐

ally around a point \mathrm{u}\in S^{i}\backslash \{\mathrm{v}_{1}^{i}, \cdots,\mathrm{v}_{n+1}^{i}\} into at most n+1 children:

S_{j}^{i}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\{\mathrm{v}_{1}^{i}, \cdots, \mathrm{v}_{j-1}^{i},\mathrm{u},\mathrm{v}_{j+1}^{i}, \mathrm{v}_{n+1}^{i}\}, j\in J^{i} , (4)
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where J^{i} is an index set such that j\in J^{i} if \mathrm{v}_{1} , \cdots

, \mathrm{v}_{j-1}^{i},\mathrm{u},\mathrm{v}_{j+1}^{i} , \cdots , \mathrm{v}_{n+1}^{i} are affinely indepen‐
dent. Out of active descendants of S^{1} , a simplex is chosen as the successor S^{i+1} to S^{i} , and the

same process is repeated after incrementing i by one, until all active descendants turn out to

contain no optimal solution of(1). We refer to \mathrm{u} as the central pointfor subdivision of S^{i}.

Bounding: Except in the trivial case where  D\cap S^{i}=\emptyset , whether or not  S^{i} needs to be subdi‐

vided is determined by comparing an upper bound  $\beta$ of  f on D\cap S^{i} with the value  $\alpha$ of  f at

the best known feasible solution. The value of  $\beta$ is given by maximizing the concave envelope
 g^{i} of f, the pointwise infimum over all concave overestimators of f on S^{i} . In our case where

f is a convex function, g^{i} is an affine function which agrees with f at the vertices of S^{i} , and

hence its maximum point \mathrm{t}\mathrm{u}^{i} over D\cap S^{i} can be obtained by linear programming. If  $\alpha$\geq $\beta$
for  $\beta$=g^{i}(\mathrm{O}^{j}) , then S^{i} contains no feasible solution of value better than  $\alpha$ and can be pruned
from the set of active descendants of  S^{1} which need to be further examined.

If the algorithm does not terminate in a finite amount of time, it generates a sequence of

nested simplices:
S^{1}=S^{i_{1}}\supset\cdots\supset S^{i_{k}}\supset S^{i_{k+1}}\supset\cdots,

where S^{i_{k+1}} is a child of S^{i_{k}} created by subdividing S^{i_{k}} around some \mathrm{u}\in S^{i_{k}} . The convergence

of the algorithm depends largely on how to subdivide S^{i} in the branching process. If \mathrm{u} is

placed at the midpoint on a longest edge of S^{i} for each i, then S^{i_{k}} shrinks to a single point as

 k\rightarrow\infty . Since  t1^{i_{k}} belongs to S^{i_{k}} , we simultaneously have

\displaystyle \lim_{k\rightarrow}\inf_{\infty}(g^{i_{k}}(\mathrm{m}^{i_{k}})-f(\mathrm{m}^{i_{k}}))=0.
This guarantees the convergence of the algorithm to an optimal solution x

*

of(1) if the suc‐

cessor S^{i+1} to S^{i} is chosen in best‐first order, i.e., S^{i+1} is a simplex with the largest  $\beta$ among
all active descendants of  S^{1} . In addition to this simple bisection, there are several rules for

subdividing S^{i} which guarantee the convergence of the algorithm [8, 9, 12, 13]. Among oth‐

ers, the most poplar is the  $\omega$ ‐subdivision rule, where \mathrm{u} is placed at $\varpi$^{j} for each i . Empirically,
it is known that the  $\omega$‐subdivision rule runs the algorithm more efficiently than bisection [8].
Whichever rule is adopted, in order to make the algorithm converge to \mathrm{x}^{*} , the successor S^{i+1}
to S^{i} needs to be chosen in best‐first order.

3 Reduction of effort in the bounding process

As seen in the previous section, for agiven n‐simplex S=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\{\mathrm{v}_{1}, \cdots, \mathrm{v}_{n+1}\}\subset S^{1} , the bound‐

ing process requires an upper bound  $\beta$ for the subproblem of(1):

\mathrm{P}(S)
maximize f(\mathrm{x})
subject to \mathrm{x}\in D\cap S.
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Assume that  D\cap S\neq\emptyset . If not,  $\beta$ may be simply set to -\infty
. Replacing  f with its concave

envelope g on S, the subproblem \mathrm{P}(S) is relaxed into a linearized problem:

\mathrm{Q}(S)
maximize g(\mathrm{x})
subject to \mathrm{x}\in D\cap S.

Although \mathrm{Q}(S) is certainly linear programming in \mathbb{R}^{n} , to obtain the standard form, we need to

explicitly determine the function g and the constraint \mathrm{x}\in S . Instead, to avoid those complica‐
tions, the following equivalent problem in \mathbb{R}^{n+1} is commonly solved:

 $\Pi$(S)
maximize \mathrm{d} $\lambda$

subject to AVA \leq \mathrm{b}, \mathrm{e} $\lambda$=1,  $\lambda$\geq 0,

where \mathrm{e}\in \mathbb{R}^{n+1} is the all‐ones row vector, and

\mathrm{d}=[f(\mathrm{v}_{1}), \cdots,f(\mathrm{v}_{n+1})], \mathrm{V}=[\mathrm{v}_{1}, \mathrm{v}_{n+1}].

Let $\lambda$_{S} be an optimal solution to  $\Pi$(S) . Then $\varpi$_{S}=\mathrm{V}$\lambda$_{S} solves \mathrm{Q}(S) , and  $\beta$ is given as the

optimal value  g($\varpi$_{s})=\mathrm{d}$\lambda$_{S} of \mathrm{Q}(S) and  $\Pi$(S) .

In the usual implementation of the simplicial algorithm, when S^{i+1} is chosen as the suc‐

cessor to S^{i} , problem  $\Pi$(S^{i+1}) is solved by performing a sequence of dual and primal simplex
pivots from an optimal solution of  $\Pi$(S^{i}) . If S^{i+1} is a child of S^{i} , then  $\Pi$(S^{i}) and  $\Pi$(S^{i+1}) differ

only in a column of their respective coefficient vector and matrix, and so this reoptimization
needs little simplex pivots. If not, however,  $\Pi$(S^{i}) and  $\Pi$(S^{i+1}) are substantially different, and

it requires a large number of simplex pivots. An easy way to reduce it is to choose the succes‐

sor S^{i+1} in depth‐first order. Then S^{i+1} is always a child of S^{i} except when S^{i} is pruned from

the set of active descendants of S^{1} . While this approach does not guarantee the convergence

to a globally optimal solution x
*

of(1), the algorithm still generates a globally  $\epsilon$‐optimal solu‐

tion in finite time for any tolerance  $\epsilon$>0 . In the rest of this paper, we develop a more drastic

revision for the simplicial algorithm.
As an alternative to  $\Pi$(S) , we propose to solve the following in the bounding process:

\overline{\mathrm{Q}}(S)
maxlmlze \overline{\mathrm{c}}\mathrm{x}+\overline{c}_{0}

subject to Ax \leq \mathrm{b}.

The coefficient vector [\overline{\mathrm{c}},\overline{c}_{0}] of the objective function is given as a solution to the system of

linear equations:

[\mathrm{c},c_{0}]\left\{\begin{array}{l}
\mathrm{V}\\
\mathrm{e}
\end{array}\right\}=\mathrm{d} . (5)

Since D= {\mathrm{x}\in \mathbb{R}^{n}| Ax \leq \mathrm{b}} is assumed to be nonempty and bounded, \overline{\mathrm{Q}}(S) always has an

optimal solution \overline{ $\varpi$}_{S}\in D, for which we have

g(\overline{ $\varpi$}_{ss0})=\overline{\mathrm{c} $\varpi$}+\overline{c}\geq g($\varpi$_{S})\geq f(\mathrm{x}) , \forall \mathrm{x}\in D\cap S . (6)

Therefore, g(\overline{\mathrm{O}}_{S}) can serve as the upper bound  $\beta$ for \mathrm{P}(S) . Fumhermore, whichever S^{i+1}
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is chosen as the successor to S^{i} , problem \overline{\mathrm{Q}}(S^{i+1}) differs from \overline{\mathrm{Q}}(S^{i}) in only the objective
function, and can be reoptimized with a very few primal simplex pivots. The substitution of

\overline{\mathrm{Q}}(S) for  $\Pi$(S) , however, has three obvious disadvantages:

(i) the upper bound  $\beta$ deteriorates in quality, as is indicated by (6);

(ii) an additional effort is needed to solve the system (5); and

(iii) the solution \overline{ $\varpi$}_{S} cannot be used as the central point for subdivision of S.

Among these disadvantages, (ii) might be negligible if the successor S^{i+1} to S^{i} is chosen

in depth‐first order. Unless S^{i} is pruned, the successor S^{i+1} is a child of S^{i} , and hence the

associated matrix \mathrm{V}^{i+1} differs from \mathrm{V}^{i} in only a column, say \mathrm{v}_{j}^{i+1} . We can update the inverse

of the coefficient matrix of(5) in time O(n^{2}) , using the Shetman Momson‐Woodbury formula

(see for detail, e.g., [15]), into

\displaystyle \mathrm{W}^{i+1}=(\mathrm{I}-\frac{1}{\mathrm{e}_{j}\mathrm{y}}(\mathrm{y}-\mathrm{e}_{j}^{\mathrm{T}})\mathrm{e}_{j})\mathrm{W}^{i} , (7)

where \mathrm{I}\in \mathbb{R}^{(n+1)\times(n+1)} is the identity mamx, \mathrm{e}_{j}\in \mathbb{R}^{n+1} is its jth row, and

\mathrm{w}^{i}=\left\{\begin{array}{l}
\mathrm{V}^{i}\\
\mathrm{e}
\end{array}\right\} \mathrm{y}=\mathrm{W}^{i}[\mathrm{v}_{j1}^{i+1}].
Since the usual reoptimization procedure performs a single simplex pivot in time O(m^{2}) using
a formula similar to (7), the computational burden for solving (5) would be offset by solving

\overline{\mathrm{Q}}(S) instead of  $\Pi$(S) , as long as n is not extremely larger than m.

4 Extension of the  $\omega$‐subdivision rule

The easiest way to overcome disadvantage (iii) is to adopt the bisection rule for subdividing
 S^{i} . In this section, we develop a new subdivision rule which utilizes the optimal solution \overline{ $\varpi$}_{S}
of \overline{\mathrm{Q}}(S) more effectively.

EXTENDED  $\omega$ ‐SUBDIVISION

Once the system (5) has been solved, the following can be solved in  $\mu$ with a little additional

effort:

\left\{\begin{array}{l}
\mathrm{V}\\
\mathrm{e}
\end{array}\right\} $\mu$=\left\{\begin{array}{l}
\overline{\text{の}}_{S}\\
1
\end{array}\right\} . (8)

Let \overline{ $\mu$} denote the solution to (8), and let J+=\{j|\overline{ $\mu$}_{j}>0\} . Then, by letting

\overline{ $\lambda$}_{j}=\left\{\begin{array}{ll}
\overline{ $\mu$}_{j}/\sum_{j\in J+}\overline{ $\mu$} & \mathrm{i}\mathrm{f} j\in J+\\
0 & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},
\end{array}\right. (9)
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we have \overline{ $\lambda$}\geq 0 and \mathrm{e}\overline{ $\lambda$}=1 . Therefore, if we define \mathrm{u} as follows, then \mathrm{u} belongs to S without

fail, and can serve as the central point for subdivision of S :

\mathrm{u}=\mathrm{V}\overline{ $\lambda$} . (10)

The rule for subdividing S radially around this point \mathrm{u} is referred to as extended  $\omega$ ‐subdivision.

Since \mathrm{e}\overline{ $\mu$}=1 holds, J+ never vanishes, and hence \mathrm{u} is well‐defined through (8) -(10) . How‐

ever, if \mathrm{u} falls in \{\mathrm{v}_{1}, \cdots, \mathrm{v}_{n+1}\} , then S cannot be subdivided around \mathrm{u} . In that case, we can

prune S from the set of active descendants of S^{1}.

Proposihon 4.1 Let \mathrm{u} be defined through (8) -(10) . If \mathrm{u}\in\{\mathrm{v}_{1}, \cdots, \mathrm{v}_{n+1}\} , then f(\overline{ $\omega$}_{S})\geq f(\mathrm{x})
for any \mathrm{x}\in D\cap S.

CONVERGENCE PROPERTIES

If there is a large difference in edge lengths of the simplex S , we cannot obtain stable solutions

to the systems (5) and (8). To avoid such a case, we occasionally apply the usual bisection

rule in the simplicial algorithm and shorten a longest edge of S by half. Let us suppose
that this combination of extended  $\omega$ ‐subdivision and bisection generates a sequence of nested

simplices:
 S^{1}\supset S^{2}\supset\cdots\supset S^{i}\supset S^{i+1}\supset\cdots , (11)

where  S^{i+1} is a child of S^{i} and shares n vertices with S^{i} . Let us denote S^{0}=\displaystyle \bigcap_{i=1}^{\infty}S^{i}, which is

an m‐simplex with m\leq n[1] . We have the following lemma, known as the basic simplicial
subdivision theorem (see the textbook [19] for a proof):

Lemma 4.2 For each i, let \mathrm{x}^{i} be a point of S^{i} . For the sequence (11), assume that

(i) for infinitely many i, simplex S^{i+1} is obtainedfrom S^{i} through bisection, and

(ii) for all other i, simplex S^{i+1} is obtained through radial subdivision around \mathrm{x}^{i}.

Then at least one accumulation point of the sequence \{\mathrm{x}^{i}\} is a vertex of S^{0}.

Let \mathrm{u}^{i} be the central point for subdivision of S^{i} defined by (8) -(10) . Lemma 4.2 implies
that the sequence \{\mathrm{u}^{i}\} has an accumulation point in the vertex set of S^{0} if we perform bisection

infinitely many times to generate (11). In addition to this, we can prove the following, which

guarantees the convergence of the algorithm under the extended の‐subdivision rule:

Theorem 4.3 For the sequence (11), assume that

(i) for infinitely many i, simplex S^{i+1} is obtainedfrom S^{i} through bisection, and

(ii) for all other i, simplex S^{i+1} is obtained through radial subdivision around \mathrm{u}^{i}.

Then there exists an accumulationpoint \overline{ $\varpi$}^{0} ofthe sequence \{\overline{ $\varpi$}_{s^{i}}\} in D such that f(\overline{ $\omega$}^{4})\geq f(\mathrm{x})
for any \mathrm{x}\in D\cap S^{0}.
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ALGORITHM DESCRIPTION

Let us summarize the algorithm incorporating the extended  $\omega$‐subdivision rule. For a given
tolerance  $\epsilon$>0 and a number N>0 , it is described as follows:

algorithm extended‐omega (D,f, $\epsilon$,N)
determine the iniual simplex S^{1}=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\{\mathrm{v}_{j}^{1}|j=1, \cdots, n+1\}\supset D ;

\mathscr{P}\leftarrow\emptyset;\mathscr{F}\leftarrow\{S^{1}\};\mathrm{x}^{1}\leftarrow 0;$\alpha$^{1}\leftarrow-\infty;i\leftarrow 1;k\leftarrow 1;stop\leftarrow false ;

while stop =false do

for each simplex S\in \mathscr{T} do

solve the system (5) and obtain its solution [\overline{\mathrm{c}},\overline{c}0] ;

solve the linear program \overline{\mathrm{Q}}(S) associated with [\overline{\mathrm{c}},\overline{c}0] ;

for an optimal solution \overline{41}_{S} of \overline{\mathrm{Q}}(S) , let \sqrt{}s\leftarrow\overline{\mathrm{c}}\overline{ $\varpi$}_{S}+\overline{c}0 ;

if f(\overline{ $\varpi$}_{S})>$\alpha$^{i} then

\mathrm{x}^{i}\leftarrow\overline{ $\varpi$}_{S};$\alpha$^{i}\leftarrow f(\mathrm{x}^{i}) ;

end if

end for

sort simplices in ,9 in increasing order of \sqrt{}s and renumber them from k ;

\mathscr{P}\leftarrow\{S\in \mathscr{P}\cup F|$\beta$_{S}-$\alpha$^{i}\geq $\epsilon$\};\mathscr{T}\leftarrow\emptyset ;
if \mathscr{P}=\emptyset then

 stop\leftarrow true ;

else

select S=\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\{\mathrm{v}_{j}|j=1, \cdots, n+1\} with the largest index k in \mathscr{P} ;

\mathscr{P}\leftarrow \mathscr{P}\backslash \{S\};k\leftarrow k-1 ;

if i\mathrm{m}\mathrm{o}\mathrm{d} N\neq 0 then

solve the system (8) to obtain its solution \overline{ $\mu$}, and let J+\leftarrow\{j|\overline{ $\mu$}_{j}>0\} ;

determine the central point \mathrm{u} for subdivision of S according to (9) and (10);
else

choosing an longest edge \mathrm{v}_{\ulcorner}\mathrm{v}_{j} of S, let \mathrm{u}\leftarrow(\mathrm{v}_{i}+\mathrm{v}_{j})/2 and J+\leftarrow\{i,j\} ;

end if

for each j\in J+\mathrm{d}\mathrm{o}
S\leftarrow \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{v}\{\mathrm{v}_{1}, \cdots, \mathrm{v}_{j-1},\mathrm{u},\mathrm{v}_{j+1}, \cdots, \mathrm{v}_{n+1}\};\mathscr{T}\leftarrow \mathscr{T}\cup\{S\} ;

end for

end if

\mathrm{x}^{i+1}\leftarrow;$\alpha$^{i+1}\leftarrow$\alpha$^{i};i\leftarrow i+1 ;

end while

\mathrm{x}^{*}\leftarrow \mathrm{x}^{i} ;

end.

From the observations so far, we can prove the following:

Theorem 4.4 If  $\epsilon$>0, the algorithm extended‐omega terminates with an  $\epsilon$ ‐optimal solution

\mathrm{x}^{*} of(1) afterfinitely many iterations.
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5 Numerical results

In this section, we report the numerical results comparing the extended  $\omega$ ‐subdivision rule

with other subdivision rules. The test problem solved using the simplicial algorithm incorpo‐
rating those rules is a convex quadratic maximization problem of the form:

maximize  f(\mathrm{x})+ $\theta$ \mathrm{d}\mathrm{y}
(12)

subject to \mathrm{A}\mathrm{x}+\mathrm{B}\mathrm{y}\leq \mathrm{b} , [x,y] \geq 0,

where

f(\displaystyle \mathrm{x})=\frac{1}{2}\mathrm{x}^{\mathrm{T}}\mathrm{Q}\mathrm{x}+\mathrm{c}\mathrm{x}.
To make the feasible set bounded, the vector \mathrm{b}\in \mathbb{R}^{m} was fixed to [ 1.0, \cdots , 1.0,  n]^{\mathrm{T}} and all

components of the last rows of \mathrm{A}\in \mathbb{R}^{m\times q} and \mathrm{B}\in \mathbb{R}^{m\times(n-q)} were set to 1.0. Other entries

of A and \mathrm{B} , together with components of \mathrm{c}\in \mathbb{R}^{q} and \mathrm{d}\in \mathbb{R}^{n-q} , were generated randomly in

the interval [-0.5, 1.0] , so that the percentages of zeros and negative numbers were about 20

and 10%, respectively. The matrix \mathrm{Q}\in \mathbb{R}^{q\times q} was symmetric, tridiagonal, and the tridiagonal
entries were random numbers in [0.0, 1.0].

Note that the objective function of (12) can be linearized by replacing only the nonlinear

part f with its concave envelope. Therefore, we may implement the branching process in the

\mathrm{x}‐space of dimension q\leq n, instead of in the whole space of dimension n . Based on this

decomposition principle [5], we coded the algorithm extended‐omega in GNU Octave 4.0.0

[2], a numerical computing environment similar to MATLAB, tested it on one core of Intel

Core i7 (4.00\mathrm{G}\mathrm{H}\mathrm{z}) . In order to compare the performance, we also coded the usual simplicial
algorithm in two ways, one of which chooses the successor S^{i+1} of the current simplex S^{i} in

best‐first order, and the other does in depth‐first order, as in the algorithm extended‐omega.
We refer to the former Octave code as usual‐best, the latter as usual‐depth, and the code

of extended‐omega as extended tu. As the procedure for solving \overline{\mathrm{Q}}(S) , we used the revised

simplex algorithm, which was not an optimization toolbox procedure but coded from scratch

in Octave. Furthermore, we did not adopt the pruning criterion  $\beta$_{S}-$\alpha$^{i}\geq $\epsilon$ in each octave

code, Uut instead used

 $\beta$_{S}-(1+ $\epsilon$)$\alpha$^{i}\geq 0,
where  $\epsilon$ was set to  10^{-5} , so as to avoid the influence of the magnitude of the optimal value

on the convergence. The number N prescribing the frequency of bisection in extended‐omega
was fixed at 50. As varying m,n,q and  $\theta$ , we solved ten instances of (12) and measured the

average performance of each code for each set of the parameters.

Figures 1 and 2 plot the changes in the average number of iterations and the average

CPU time in seconds, respectively, taken by each Octave code when the dimensionality  q

of \mathrm{x} increased from 30 to 70, with (m,n,  $\theta$) fixed at (60, 100,5.0). Figures 3 and 4 show

the results when the weight  $\theta$ in the objective function changed between 2.0 and 10.0, with

(m,n,q)=(60,100,30) . We see from Figures 1 and 3 that extended‐omega and usual‐depth
behave rather similarly and require less iterations than usual‐best. However, Figures 2 and

4 indicate that extended‐omega is rather faster than usual‐depth in terms of CPU time. The

computational results for extended‐omega and usual‐depth on larger‐scale instances are sum‐
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\hat{\underline{\ddot{B\{\mathrm{s}}\underline{\frac{\infty}{\mathrm{o}}}}}
\underline{*\check{\circ \mathrm{b}}}0

30 35 40 45 50 55 60 65 70

\# nonlinear variables (q)

Figure 1: Number of iterations when (m,n,  $\theta$)=(60,100,5.0) .

30 35 40 45 50 55 60 65 70

\# nonlinear variables (q)

Figure 2: CPU time in seconds when (m,n,  $\theta$)=(60,100,5.0) .
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\hat{\mathring{\mathrm{d}}\mathrm{s}\infty a}
\underline{\dot{*\underline{ $\theta$}}\dot{\circ 0}}\mathrm{n}

2.0 3.0 4.0 5.0 6.0 8.0 10.0

Weight (e)

Figure 3: Number of iterations when (m,n,q)=(60,100,30) .

\hat{\tilde{\mathrm{C}\mathrm{J}}\mathrm{D}\mathrm{a}\mathrm{e}0\Leftrightarrow u $\omega$ 0}
\check{\underline{\mathrm{Q}\mathrm{o}}^{\mathrm{n}}}

2.0 3.0 4.0 5.0 6.0 8.0 10.0

Weight (e)

Figure 4: CPU time in seconds when (m,n,q)=(60,100,30) .
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Table 1: Computational results of extended‐omega when  $\theta$=5.0.

m\times n

\displaystyle \frac{q=0.3n}{\# time}\frac{q=0.4n}{\# time}\frac{q=0.5n}{\# time}\frac{q=0.6n}{\# time}
60\times 150 \mathrm{e}x\mathfrak{t}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{d}_{-} $\omega$ 4.2 0.0332 36.5 0.1768 73.1 0.2736 542.5 5.355

\displaystyle \frac{\mathrm{u}\mathrm{s}\mathrm{u}\mathrm{a}1_{-}\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{h}3.60.106417.70.436439.30.9712968.722.79}{90\times 150\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{d}_{-} $\omega$ 2.80.062829.50.222460.30.3048350.74.179}
\displaystyle \frac{\mathrm{u}\mathrm{s}\mathrm{u}\mathrm{a}1_{-}\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{h}2.80.162821.00.781240.41.5792577.721.49}{90\times 200\mathrm{e}x\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{d}_{-} $\omega$ 6.30.080815.20.151259.60.6672289.74.604}
\displaystyle \frac{\mathrm{u}\mathrm{s}\mathrm{u}\mathrm{a}1_{-}\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{h}6.20.338413.20.778846.52.779259.915.28}{120\times 200\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{d}_{-} $\omega$ 2.50.13448.70.161617.40.2208174.21.880}
\displaystyle \frac{\mathrm{u}\mathrm{s}\mathrm{u}\mathrm{a}1_{-}\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{h}2.50.37008.80.863614.51.\cdot 558134.611.47}{120\times 250\mathrm{e}\times \mathrm{t}\mathrm{e}\cap \mathrm{d}\mathrm{e}\mathrm{d}_{-}\mathrm{r}o1.90.16443.50.187678.31322341.411.94}
\displaystyle \frac{\mathrm{u}\mathrm{s}\mathrm{u}\mathrm{a}1_{-}\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{h}1.90.40003.50.674025.33.188523.561.88}{150\times 250\mathrm{e}\mathrm{x}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{d}_{-} $\alpha$ J1.20.264033.00.621669.91442362.313.86}

usual‐depth 1.2 0.4940 31.6 4.877 49.1 8.103 342.8 58.06

marized in Table 1, where the column labeled \#
�

lists the average number of iterations

and the column labeled �time� the average CPU time in seconds when (m,n,q) ranged up

to (150,250,150), with  $\theta$ fixed at 5.0. For each particular (m,n,q) , again, we see that ex‐

tended‐omega performs better than usual‐depth, especially when the proportion of nonlinear

variables q/n is relatively large.
These results suggest us not worry unnecessarily about the disadvantage (i) of \overline{\mathrm{Q}}(S) par‐

ticularized in Section 3.
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