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MULTIFRACTAL ANALYSIS FOR POINTWISE HOLDER EXPONENTS
OF THE COMPLEX TAKAGI FUNCTIONS IN RANDOM COMPLEX DYNAMICS

JOHANNES JAERISCH AND HIROKI SUMI

ABSTRACT. We consider hyperbolic random complex dynamical systems on the Riemann sphere with sep-
arating condition énd multiple minimal sets. We investigate the Holder regularity of the function T of the
probability of tending to one minimal set, the partial derivatives of T' with respect to the probability parameters,
which can be regarded as complex analogues of the Takagi function, and the higher partial derivatives C of T
Our main result gives a dynamical description of the pointwise Holder exponents of T and C, which allows us
to determine the spectrum of pointwise Holder exponents by employing the multifractal formalism in ergodic
theory. Also, we prove that the bottom of the spectrum a_ is strictly less than 1, which allows us to show
that the averaged system acts chaotically on the Banach space C* of a-Hélder continuous functions for every
« € (0_,1), though the averaged system behaves very mildly (e.g. we have spectral gaps) on Ch for small
B>0.

1. MAIN RESULTS

This note is the summary of the results from paper [JS16]. We do not give.any proofs of them in this
note. For the proofs of the results, see [JS16]. In this paper, we consider random dynamical systems
of rational maps on the Riemann sphere C:=cu {0} = §2. The study of random complex dynamics
was initiated by J.E. Fornaess and N. Sibony ([FS91]). There are many new interesting phenomena in
random dynamical systems, so called randomness-induced phenomena or noise-induced phenomena, which
cannot hold in the deterministic iteration dynamics. For the motivations and recent research of random
complex dynamical systems focused on the randomness-induced phenomena, see the second author’s works

. [Sumlla, Sum13, Sumil5a, Sum15b]. In these papers it was shown that for a generic random dynamncal
system of complex polynomials, the system acts very mildly on the space of continuous functions on Cand
on the space C%(C) for small & € (0,1), where C* ((C) denotes the Banach space of a-Hglder continuous
functions on C endowed with a-Holder norm, but under certain conditions the system still acts chaotically
on the space CP (@) for some f € (0,1) close to 1. Thus, we investigate the gradation between chaos and
order in random (complex) dynamical systems.

In order to show the main ideas of the paper, let Rat denote the set of all non-constant rational maps on :
C. Thisisa semigroup whose semigroup operation is the composition of maps. Throughout the paper, let
s>1andlet (fi,...,fir1) € (Rat)+! w1thdeg(f) >2,i=1,...,s+1.Letp=(p1,...,ps) € (0 1)* with
Yipi<landletpsii:=1-Y7_;p;. We consider the Gi.i.d. ) random dynamical system on C such that
at every step we choose f; with probability p;. This defines a Markov chain with state space C such that
for each x € C and for each Borel measurable subset A of C, the transition probability p(x,A) from x to A
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is equal to 2‘,‘:11 pila(fi(x)), where 14 denotes the characteristic function of A. Let G = (fi,...,fs, fe+1)
be the rational semigroup (i.e., subsemigroup of Rat) genefated by {f1,.--, fs+1}- More precisely, G =
{fano--ofao, ‘ne N,@,...,@ € {1,...,s+ 1}}. We denote by F(G) the maximal open subset of C on
which G is equicontinuous with respect to the spherical distance on C. The set F (G) is called the Fatou
set of G, and the set J(G) := C \ F(G) is called the Julia set of G. We remark that in order to investigate
random complex dynamical systems, it is very important to investigate the dynamics of associated rational
semigroups. The first study of dynamics of rational semigroups was conducted by A. Hinkkanen and G.
J. Martin ([HM96]), who were interested in the role of polynomial semigroups (i.e., semigroups of non-

constant polynomial maps) while studying various one-complex-dimensional maduli spaces for discrete

groups, and by E. Ren’s group ([GR96]), who studied such semigroups from the perspective of random
dynamical systems. For the interplay of random complex dynamics and dynamics of rational semigroups,
see [Sum00]-{Sum15b], [SS11, SU13, IS15a, JS15b]. ‘

Throughout the paper, we assume the following.
(1) Gishyperbolic, i.e., we have P(G) C F(G), where

P(G):= |J g(uUt}{critical values of f; : C — C}). Here, the closure is taken in C.
geGU{id} -
@ (f1,---,fs41) satisfies the separating condition, i.e., £ 1(J(G))N fJT‘l(J (G)) = @ whenever i, j €
{1,...,s+1},i#j. ;
(3) There exist at least two minimal sets of G. Here, a non-empty compact subset K of Cis called a
minimal set of G if K = UM for eachz € K.
Note that by assumption (2), [Sum97, Lemma 1.1.4] and [Sum11a, Theorem 3;15], we have that there exist
at most finitely many minimal sets of G. Moreover, denoting by 'SG the union of minimal sets of G and
setting 7 := {1, .. ,5+ 1}, we have that for each z € C there exists a Borel subset A of IN with pp(A;) =1
such that d(fe, - - fo, (z),S6) — 0 as n — oo for all ® = (@) € A, where pp := ®;7_, pp denotes the
product measure on /N given by Ppi= Zf;rll pi0; with §; denoting the Dirac measure concentrated at i € .

"I‘hroughout, we fix a minimal set L of G (e.g. L = {e} when G is a polynomial semigroup). Denote
by Tp(z) the probability of tending to L of the process on C which starts in z € C and which is given
by drawing independently with probability p; the map f;. More precisely, Tp(z) := pp({® = (@), €
N :d(fa, 00 fa (z),L) = 0 as n — oo}). It was shown by the second author in [Sum13] that, for each
p=(p1,...,ps) thereexists & € (0, 1) such that x = (x1,...,x;) = Tixy, oo ted T8y ;) € c“ (@) is real-analytic
in a neighbourhood of p, where C%(C) denotes the C-Banach space of a-Hélder continuous C-valued
functions on C endowed with o.-Holder norm || - ||o (Remark 1.17). Thus it is very natural and important to
consider the following. For No := NU {0} and n = (ny,...,n;) € N, we denote by Cy € C* (C) the higher
order partial derivative of Tp of order In| := Y'%_, »; with respect to the probability parameters given by

L SRR A
niZ) ‘= ax’;l axgz ~--3x§'f

These functions are introduced in [Sum13] by the second author. We introduce the C-vector space'

, z€C.

x=p

¢ :=span{Ca [m €Ny} C c*(C),

which consists of all the finite complex linear combinations of elements from {Cn |n € Nj}. The first order
derivatives are called complex analogues of the Takagi function in [Sum13). Note that Cp = Tj,.
For an element C € % and z € C the Holder exponent Hol (C, z) is given by

Ho1(C,z) := sup{ & € [0,c0) :limsupm_c;,@—| < oo €[0,00],
y=zy#z . d()’7 Z) N
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where d denotes the spherical distance on C. It was shown in [JS15a] that the level sets
H(Cy,a):={z€C:Hol(Cp,z) =}, a€R,

satisfy the multifractal formalism. In particular, there exists an interval of parameters (o, at}) such that
the Hausdorff dimension of H(Cp, &) is positive and varies real analytically (see Theorem 1.2 below).

The first main result of this paper gives a dynamical description of the pointwise Holder exponents for an
arbitrary C € €. We say that C = Fneng BaCn € € is non-trivial if there exists n € Ng with B, # 0. It turns
out in Theorem 1.1 below that every non-trivial C € % has the same pointwise Holder exponents. To state
the result, we define the skew product map (aésociated with (f;)ier) (see [Sum00])

Fi'xCI"xC, f(0,2)=(0(0),fu (2),

where o : IN — IN denotes the shift map givenby 6 (@1, a,...) == (@, 3,...), foro = (0, ay,...) € IN.
For every ® = (@) jen € MNandneN, let Jol = fw, 0+ 0 fo, and we denote by Fg, the maximal open
subset of C on which {f, }nen is equicontinuous with respect to d. Let Jo, := C\ Fy. The Julia set of f is
givenby J (f) = Uy (@] X Jo where the closure is taken in IN x C. Note that denoting by 7 : IN x C — C
the canonical projection, 7 : J(f) — J(G) is a homeomorphism ([Sum11a, Lemma 4.5], [Sum97, Lemma
1.1.4] and assumption (2)) and 7 o f = o om. We introduce the potentials @, 7 : J(f) — R given by

¢((D,Z) = _log”f(i)] (Z)||7 17/((0,2) =logpy,,
where |- || denotes the norm of the derivative with respect to the spherical metric on C. Note that 1 (J(f)) =

J(f) = FU(F)) (1Sum0O0]). We denote by S, the ergodic sum of the dynamical system (J (f), 7).

Theorem 1.1. For every non-trivial C = ZneN{) BoCn € € we have

(L.1) Ho1(C,z) = liminf&(w’Zz for all (o,z) € J(F).

koo SpQ (wvz) ’

Combining Theorem 1.1 with our results from [JS15a, Theorem 1.2] on the multifractal formalism, we
establish the multifractal formalism for the pointwise Holder exponents of an arbitrary non-trivial C € %.
To state the results, for any non-trivial C € % and & € R we denote by
H(C,):= {ye C:Hol(C,y) = a}
the level set of prescribed Holder exponent . The range of the multifractal spectrum is given by
a-:=inf{aeR:H(C,a)#2} €R and oy :=sup{acR:H(C,a)#a}€cR.

By Theorem 1.1, the sets H (C, &) coincide for all non-trivial C € %. Thus, &_ and ;. do not depend on
the choice of a non-trivial C € €. Also, o~ > 0 ([Sum98, Theorem 2.6], see also Corollary 1.11).

Theorem 1.2. All of the following hold.
(1) Let C € € be non-trivial. If 0i_ < 0., then the Hausdorff dimension function ot — dimy (H(C,a)),

o € (a_, o), defines a real analytic and strictly concave positive function on (@, 0., ) with max-
imum value dimy (J(G)). If . = o, then we have H (C,a_) = J(G).

(2) We have a_ = oy if and only if there exist an automorphism 6 € Aut(@), complex numbers (a;);c;
and A € R such that foralli € I and z € @,

0ofio07(7) = aiz %) and logdeg(f;) = Alogp;.

In the next theorem we determine the actual Holder class of every non-trivial C € %
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Theorem 1.3. For every non-trivial C € € and for every & < a._, the function C is a-Holder continuous
on C. Moreover, Cy is o._-Holder continuous on @

To prove Theorem 1.3 we develop some ideas from [KS08, JKPS09] for interval maps. The relation between
the Holder continuity of singular measures and their multifractal spectra has been first observed in [KS08],
where it was shown that the Holder continuity of the Minkowski’s question mark function coincides with
the bottom of the Lyapunov spectrum of the Farey map. In [JKPS09] a similar result has been obtained for
expanding interval maps.

In the following Theorem 1.4 we prove that &_ < 1. This result allows us to give a complete answer to
two important problems raised in [Sum13], which greatly improves the previous partial results in [Sum l.la’,
Sum13, JS15a]. The first implication is that, under the assumptions of our paper, every non-trivial C € ¥ is
not differentiable at every point of a Borel dense subset A of J(G) with dimg(A) > 0. Secondly, we obtain
'in Theorem 1.5 that the averaged system still acts chaotically on the space C%(C) for any & € (0., 1),
although the averaged system acts very mildly on the Banach space C ((ﬁ) of C-valued continuous functions
on C endowed with the supremum norm and on the Banach space C* ((ﬁ) for small o > 0 (see [Sum97,
Lemma 1.1.4], [Suml1a, Theorem 3.15] and [Sum13, Theorem 1.10]). We recall that if Ho1(C,z) < 1 then
C is not differentiable at z. If H61(C,z) > 1 then C is differentiable at z and the derivative of C at z is zero.

Theorem 1.4. We have a._ < 1. Moreover, for every 0. € (a_,1) there exists a Borel dense subset A of J(G)
with dimg(A) > O such that for every non-trivial C € € and for every z € A, we have H61(C,z) = o < 1
and C is not differentiable at 7.

In the proof, we combine the result that Cy is o_-Holder continuous on ¢ (Theorem 1.3), the multifractal
analysis on the pointwise Holder exponents of Co (Theorems 1.2), an argument on Lipschitz functions on
C and the fact that dimg (J(G)) < 2, which follows from our assumptions (1) and (2) ([Sum98]).

To state Theorem 1.5, let M : C(€) — €(C) be the transition operator of the system which is defined by
M($)(z) = Zj:ll pj9(fi(z)), where ¢ € C(C),z € C. Note that M(C"(@)) C C“(@) for any o € (0,1].

~

Theorem 1.5. Let o € (0._,1) and let ¢ € C*(C) such that ¢|r = 1 and §|; = O for every minimal set
L' of G with L' # L. Then |M™(¢)||a. — o as n — co. In particular, for every & € C*(C) and for every
a € C\ {0}, we have |M" (& +ap) —M"(E)||q = 0 asn— oo. .

We now present the corollaries of our main results. The first one establishes that every non-trivial C € €
varies precisely on the Julia set J(G). This follows immediately from Theorem 1.1 because the right-hand
side of (1.1) is always finite ([Sum98, Theorem 2.6], see also Corollary 1.11). This generalises a previous
result from [Suml11a] for Cp = T}, and a partial result for the higher order partial derivatives from [Sum13].

Corollary 1.6. Every non-trivial C € € varies precisely on J(G), i.e., J(G) is equal to the set of points
20 € C such that C is not constant in any neighborhood of zg in C.ln particular, the functions Cp,n € Ng,
are linearly independent over C and € has a representation as a direct sum of vector spaces given by

¢ = P CCa.

§
neNy

We remark again that 0 < dimg (J(G)) < 2 ([Sum98]).

By combining Theorem 1.1 with Birkhoff’s ergodic theorem we obtain the following extension of [Sum13,
Theorem 3.40 (2)]. Recall that a Borel probability measure v on J(f) is called f-invariant if v(f~1(4)) =
v(A) for every Borel set A € J(f).
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Corollary 1.7. Let v be an f-invariant ergodic Borel probability measure on J ( f) Letm: NxC-C
denote the canonical projection onto C. Then there exists a Borel subset A of J (G) with (m.(v))(4) =1
such that for every non-trivial C € € and for every z € A, we have

— Jlog pedv(m,x)

HoL(C.2) = Tiog 7, ) [dv(@,5)

, where @ = (o, a,...) € IN.

By combining Corollary 1.7 with [Sum11a, Theorem 3.82] in which the potential theory was used, we
obtain the following result (Corollary 1.8) on the pointwise Holder exponents and the non-differentiability
of elements of ¥. To state the result, when G is a polynomial semigroup, we denote by fip the maximal
relative entropy measure on J(f) for f with respect to (¢, Pp) (see [Sum00], [Sum11a, Remark 3.79]).
Note that fiy is f-invariant and ergodic ([Sum00]). Let g, = 7, (fip). For any (,2) € IN x C, let % (z) :=
limy(1/ deg(fo),)) log™ | fo),(z)|, Where log* (a) := max{loga,0} for every a > 0. By the argument in -
[Ses01], we have that %, (y) exists for every (®,z) € IN x C, (@,z) € IN x C > %(z) is continuous on IN x
C, % is subharmonic on C and &, restricted to the intersection of C and the basin A, ¢ of oo for { Solp bzt
is the Green’s function on A, o With pole at co. Let A(@) = Y. %,(c), where ¢ runs over all critical points
of fp, in Aw e, counting multiplicities. Note that y, = [;n dd°Ypdpp(®) where d° = (vV=1/27)(d - 9)
([Sum11a, Lemma 5.51]), supp #p = J(G) and p, is non-atomic ([Sumo00)). Also, we have dimg(Up) =
(Xier pilogdeg f; — Yier pilog pi)/ (Lics pilogdeg fi + fn A(@)dpp(®)) > 0 ([Sum11a, Proof of Theorem

3.82]). Here, dimy (p4p) := inf{dimy (A)} where the infimum is taken over all Borel subsets A of J(G) with
Hp(4) =1.
Corollary 1.8. (1) Suppose that fi,...,fs+1 are polynomials. Then there exists a Borel dense subset A of
J(G) with pp(A) = 1 and dimy; (A) > (Lies pilogdeg fi— Licr pilog pi) / (Lics pilogdeg fi+ [ A(0)dpp (o))
> 0 such that for every non-trivial C € € and for every z € A, we have

" —Yici pilogpi
MO0 = § e plogdeg f+ v A(@)dpp(@):

(2) Suppose that f1,. .., fs+1 are polynomials satisfying at least one of the following conditions:

(a) Licspilog(pilogfi) > 0.
(b) G=(f1,...,fs+1) is postcritically bounded, i.e. P(G) \ {oo} is bounded in C.
(c) s=1.

Then there exists a Borel dense subset A of J(G) with pp(A) = 1 such that for every non-trivial C € €
and for every z € A, we have H6l(C,z) < 1. In particular, every non-trivial C € € is non-differentiable
Up-almost everywhere on J(G).

Note that if we assume that every f; is a polynomial and P(G) \ {} is bounded in C, then A(®) = O for
every @ € IN, thus Corollary 1.8 implies that there exists a Borel dense subset A of J(G) with
—Yicrpilogpi
Yicr pilogdeg(fi)
such that for every non-trivial C € € and for every point z € A, we have
—Yicrpilogpi
Lic pilogdeg(f;)
The following is one of the other important applications of Corollary 1.7. In order to state the res-
ult, let & := dimy (J(G)) and let H® denote the S-dimensional Hausdorff measure on C. Note that by
" [Sum05], we have 0 < H®(J(G)) < . Let C(J(G)) be the space of all continuous C-valued functions
on C endowed with supremum norm. Let L : C(J(G)) — C(J(G)) be the operator defined by L(9)(z) =

Bp(A) =1, dimy(4) > 1+

Ho1(C,2) = <L



Lict Li= O ) |=¢ where ¢ € C(J(G)),z € J(G). By [Sum05] again, we have that y= lim,_,.. L"(1)
€ C(J(G)) exists, where 1 denotes the constant function on J(G) taking its value 1, the function ¥ is pos-
itive on J(G); and there exists an f-invariant ergodic probability measure ¥ on J(f) such that 7, (V) =
yH® /H® (J(G)) and supp 7, (v) = J(G). By Corollary 1.7 and [Sum11a, Theorem 3.84 (5)], we obtain the
following.

Corollary 1.9. Under the above notations, there exists a Borel dense subset A of J(G) with H®(A) =
H5(J(G)) > 0 such that for every non-trivial C € € and for every z € A, we have

—Yicrlog pi ffi—l (G)) Y()’)dHE O ‘
Liet [ () YO) Log |l 0) ldH 30y

Remark 1.10. We remark that a non-trivial C € € may possess points of differentiability. In fact, by
choosing one of the probability parameters sufficiently small, we can deduce from Corollary 1.9 that for
every non-trivial C € € and for H%-almost every z € J(G), we have Hol (C,z) > 1, C is differentiable at
z and the derivative of C at z is zero. Note that even under the above condition, Theorem 1.4 implies that
there exist an & < 1 and a dense subset A of J(G) with dimy(A) > 0 such that for every non-trivial C € C
and for every z € A, we have Hol(C, z) = o < 1 and C is not differentiable at z. In particular, in this case,

Ho1(C,z) =

we have & < 1 < o, and we have a different kind of phenomenon regarding the (complex) analogues of
the Takagi function, whereas the original Takagi function does not have this property.

We also have the following corollary of Theorem 1.1. To state the result, by [Sum98, Theorem 2.6] there
exists ko € N such that for every k > ko and for every & = (@;)%_, € I*, we have min, 1)) 1o (@[> 1,
where fp = fig, 0+ 0 fo,. Let p := poy, -+ Poy, for @ = (a),) 1 er.

Corollary 1.11. For every k > ky, we have v

—logpe —logpe

0 < mi <o <o <m
wE"‘ logmaxzef_ (G )”fa)(z)” = (DEII‘ IOgmmzef— (G)) ”f(o(z)”

In particular, if p;min, £0(6) | A1 (2)|| > 1for every i € I, then for every non-trivial C € € and for every
z € J(G), we have that H61(C,z) < o < 1 and C.is not differentiable at z.

Remark 1.12. Under assumptions (1)(2)(3), suppose that the maps f;,i € I, are polynomials. Then J (G) C
C. Since the spherical metric and the Euclidian metric are equivalent on J(G), it follows that we can replace
|l || in the definition of ¢, Corollaries 1.7, 1.9, 1.11 by the modulus |- |.

Remark 1.13. The function Cy = Ty, is continuous (in fact, it is Holder cbntinuous) on € and varies precisely
on the Julia set J(G). Note that by assumptions (1)(2) and [Sum98], we have that J(G) is a fractal set with
0 < dimy(J(G)) < 2. The function'Cy can be interpreted as a complex analogue of the devil’s staircase -
and Lebesgue’s singular functions ([Sum11a]). In fact, the devil’s staircase is equal to the restriction to
[0,1] of the function of probability of tending to +eo when we consider random dynamical system on R
such that at every step we choose f1(x) = 3x with probability 1/2 and we choose f5(x) = 3x — 2 with
probability 1/2. Similarly, Lebesgue’s singular function L, with respect to the parameter p € (0,1),p #
1/2 is equal to the restriction to [0, 1] of the function of probability of tending to +oco when we consider
random dynamical system on R such that at every step we choose g;(x) = 2x with probability p and we
choose g2 (x) = 2x— 1 with probability 1— p. Note that these are new interpretations of the devil’s staircase
and Lebesgue’s singular functions obtained in [Sum1lla] by the second author of this paper. Similarly,
it was pointed out by him that the distributional functions of self-similar measures of IFSs of orientation- -
preserving contracting diffeomorphisms #; on R can be interpreted as the functions of probability of tending



to +oo regarding the random dynamical systems generated by (h; 1Y ({Sum11a]). From the above point of
view, when G is a polynomial semigroup and L = {e}, we call Cop =T, a devil’s coliseumn ([Sum11a]). It
is well-known ([YHK97]) that the function %3—1“5% |p=1,2 on [0,1] is equal to the Takagi function ®(x) =
0 2l,.minm€z |2"x — m| (also referred to as the Blancmange function), which is a famous example of
a continuous but nowhere differentiable function on [0,1]. From this point of view, the first den'vat_ivés
C € ¥ can be interpreted as complex analdgués of the Takagi function. The devil’s staircase, Lebesgue’s
singular functions, the Takagi function and the similar functions have been investigated so long in fractal
geometry and the related fields. In fact, the graphs of these functions have certain kind of selﬂsimi_larities
and these functions have many interesting and deep properties. There are many interesting studies about
the original Takagi function and its related topics ([AK11]). In [AKO06], many interesting results (e.g.
continuity and non-differentiability, Holder order, the Hausdorff dimension of the graph, the set of poihts
where the functions take on their absolute maximum and minimum values) of the higher order partial
derivatives E";Lf”,,—(x) |p=1/2 of L,,(x) with respect to p are obtained. The first study of the complex analogues
of the Takagi function was given by the second author in [Sum13]. In particular, some partial results on
the pointwise Holder exponents of them were obtained ([Sum13, Theorem 3.40]). However, it had been an
~ open problem whether the complex analogues of the Takagi function vary precisely on the Julia set or not,
until this paper was written. The results of this paper greatly improve the above results from [Sum13]. In
the prbofs of the results of this paper, we use completely new ideas and systematic approaches which are
explained below. For the figures of the Julia set J(G) and the graphs of Cy and C; which we deal with in
this paper when s'= 1, G is a polynomial semigroup and L = {e}, see [Sum11a, Sum13].
Remark 1.14. The results on the classical Takagi function on [0, 1] give some evidence that the results stated
in Theorem 1.3 are sharp. Indeed, let us consider the function Ly, and @n(x) = ﬂ;‘};@ |p=1/2 for n-> 1.
Note that ¢y is equal to the original Takagi function. Since we have L, 22l0,(0) =% Lij2|(—w0)(x) =0
and Ly/5|(1,.)(x) = 1, the function L;, is 1-Holder (Lipschitz). However, in [AKO06] it is shown that the
functions ¢, on [0, 1] are a-Hélder for every a < 1, but not 1-Hélder continuous. It would be interesting to
further investigate this phenomenon for the complex analogues of the Takagi function.

Remark 1.15. We endow Rat with the topology induced from the distance distgae Which is defined by
distra(f,8) = sup,.ad(f(z),8(z)). Then by [Sum97, Theorem 2.4.1], the fact J(G) = Ujer ()]
([Sum97, Lemma 1.1.4]), [Sum11a, Remark 3.64], and [Sum13, Theorem 3.24]), we have that the set

{(fier € (Rat)l: deg(f;) > 2 (i € I) and the conditions (1)(2)(3) hold for (fi)ier}

is open in (Rat)!. Also, we have plenty of examples to which we can apply the main results of this paper.
See Section 2.

Remark 1.16. We remark that by using the method in this paper, we can show similar results to those of
this paper for random dynamical systems of diffeomorphisms on R (or RU {+}). Note that the case of
the classical Takagi function & corresponds to the degenerated case a_ = a in Theorem 1.2, though in
the case of @ we have the open set condition but do not have the separating condition. We emphasize that
in this paper we also deal with the non-degenerated case, which seems generic.

Remark 1.17. We remark that under assumptions (1)(2)(3), the iteration of the transition operator M on

some C%(C) is well-behaved (e.g., there exists an M-invariant finite-dimensional subspace U of C(C) _

such that for every h € C%(C), M"(h) tends to U as n — oo exponentially fast) and M has a spectral gap
on C"(@) ([Sum97, Lemma 1.1.4(2)], [Sum1 1a, Propositions 3.63, 3.65], [Sum13, Theorems 3.30, 3.31]).
Note that this is. a randomness-induced phenomenon (new phenomenon) in random dyhamical systems
which cannot hold in the deterministic iteration dynamics of rational maps of degree two or more, since
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for every f € Rat with deg(f) > 2, the dynamics of f on J(f) is chaotic. Combining the above spectral
gap property of M on C“(@) and the perturbation theory for linear operators ([Kato80]) implies that the
map X = (x1,...,%) = Ty, xol-E5 x) € C"(@) is real-analytic in a neighbourhood of p in the space
W= {(g:)_; € (0,1)° : ¥, ¢; < 1} ({Sum13, Theorem 3.32]). Thus it is very natural and important for
the study of the random dynamical system to consider the higher order partial derivatives of T, with respect
to the probability vectors. Moreover, it is very interesting that C, is a solution of the functional equation
(Id — M)(Cy) = F, where F is a function associated with lower order partial derivatives of T,. In fact,
by using the spectral gap properties of M on C? (@) and the arguments in the proof of [Sum13, Theorem
3.32), for any n € Nj)\ {0}, we can show that (I) C, is the unique continuous solution of the above functional
equation under the boundary condition Cy|s; = 0 and (II) Gy = 7o M/ (F) in C(C) and in C%(C) for small
0 > 0. Thus, we have a system of functional equations for elements C,. Note that this is the first paper to
investigate the pointwise Holder exponents and other properties of the higher order partial derivatives Cp
of the functions T}, of probability of tending to minimal sets with respect to the probability parameters
regarding random dynamical systems which have several variables of probability parameters. This is a
completely new concept. In fact, even in the real line, there has been no study regarding the objects similar
to the above. Even more, in this paper we deal with the complex linear combinations of partial derivatives
Cy, which are of course completely new objects in mathematics coming naturally from the study of random
dynamical systems and fractal geometry. We also remark that the original Takagi function is associated
with Lebesgue’s singular functions, but there has been no study about the higher order partial derivatives of
the distribution functions of singular measures with respect to the parameters.

The key in the proof of the main fesult_s of this paper is to consider the system of functional equations satis-
. fied by the elements of €. The composition of these equations along orbits is best described in terms of an
associated matrix cocycle A(®, k). By using combinatorial arguments, we show a formula for the compon-
ents of the matrix A(®, k), and we carefully estimate the polynomial growth order of these components, as
k tends to infinity. Combining this with some calculations of the determinants of matrices which are similar
to the Vandermonde determinant, we deduce the linear independence of the vectors (Cr(a) — Cr(b))r<n for
certain points a,b € J(G) which are close to a given point xy € J(G). Here, r < n means that r; < n; for
each i. From the-linear independence of these vectors we deduce that a certain liniear combination of vec-
tors (Cr(a) = Cr(b))r<n is bounded away from zero. This gives us the upper bound of the pointwise Holder
exponents of C € €. Note that this argument is the key to prove Theorem 1.1 and it is the crucial point to
derive that the elements C € ¥ are not locally constant in any point of the Julia set (Corollary 1.6). We
emphasize that those ideas are very new and they give us strong and systematic tools to analyze random
dynamical systems, singular functions, fractal functions and other related topics.

2. EXAMPLES

In this section, we give some examples which illustrate the main results of this paper.

For f €Rat, we set F(f) := F((f)),J(f) :==J((f)), and P(f) = P((f)). We denote by & the set of poly-
nomials of degree two or more. For g € &2, we denote by K(g) the filled-in Julia set. If G is a rational
semigroup and if X is a non-empty compact subset of C such that g(K) C K for each g € G, then Zom’s
lemma implies that there exists a minimal set L of G with L C K ([Sum11a, Remark 3.9]).

The following propositions show us several methods to produce many examples of (f1,..., fr+1) €. (Rat)s*!
~ which satisfy assumptions (1)(2)(3) of this paper. For such elements (fi,...,fs+1) and for every p =
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(pi); € (0,1)° with ¥3_; p; < 1, we can apply the results Theorems 1.1, 1.2, 1.3, 1.4, 1.5 and Corol-
laries 1.6, 1.7, 1.9 and 1. llmSecuonl

Proposition 2.1. Let (gl,...,g_H_l) € (Rat)**! with deg(g;) > 2,i=1...,5+ 1. Suppose that (g1,...,8s+1)
is hyperbolic, J(g;) N J(g ;) = @& for every (i, j) with i # j, and that there exist at least two distinct minimal

sets of (g1,---,8s+1)- Then there exists m € N such that Jor every n € N with n > m, setting f; = g},i =

1,...,5+1, the element iy for1) satisfies assumptions (1)(2)(3) of this paper.

Proposition 2.2. Let (g1,...,g5+1) € (Rat)*+! with deg(g;) > 2,i=1,...,5+1. Suppose that Ut P(g:) C
ﬂ”lF (8i), that J(g:)NJ(g;) = @ for every (i, j) withi # j, and that there exist two compact subsets K1,K»
of(C with Ky NK; = @ such that g;(K;) C K; foreveryi=1,...,5+1 andfor j=1,2. Then there exists
m € N such that for every n € N with n > m, setting f; = g,i=1,...,5+ 1, the element (f1,..., fs+1)
satisfies assumptions (1)(2)(3) of this paper.

Combining [Sum11a, Remark 3.9] with [Sum11a, Proposition 6.1], we also obtain the following.

Proposition 2.3. Let fi € & be hyperbolic, i.e., P(f1) C F(f1). Suppose that Int(K(f1)) # &, where Int
denotes the set of interior points. Let b € Int(K(f1)) be a point. Let d € N with d > 2. Suppose that
(deg(f1),d) # (2,2). Then there exists a number ¢ > 0 such that for each A € {A € C:0 < [A| < c}, setting
foa(2):=A(z— b)? + b, we have the following.

(1) (f1,f2.1) satisfies assumptions (1)(2)(3) of this paper with s = 1.
(2) IfJ(f1) is connected, then P({f1, f,1)) \ {==} is bounded in C.

Thus combining the above with Remark 1.15, we obtain that for any (f1,f, 1) in the above, there exists a
neighborhood V of (fi, 1) in (Rat) such that for every (g1,82) € V, assumptions (1)(2)(3) of this paper
are satisfied and Theorems 1.1, 1.2, 1.3, 1.4, 1.5 and Corollaries 1.6, 1.7,1.9 and 1.11 in Section 1 hold.
Also, endowing & with the relative topology from Rat, we hayve that there exists an open neighborhood W
of (f1,f2,2) in 92 such that for every (g1,8) € W and for every p = p; € (0,1), Corollary 1.8 holds.

Example 2.4. Let (fi, f2) € 92 be an element such that (f1, f>) is hyperbolic, P({f1, f2)) \ {e} is bounded
in C and J({f1, f2)) is disconnected. Note that there are plenty of examples of such elements (f1,f>)
(Proposition 2.3, [Sum11b, Sum15b}). Then by [Sum09, Theorems 1.5, 1.7], we have that f;1(J(G)) N
51 (J(G)) = @ where G = (f1, f2). Thus (fi, f2) satisfies assumptions (1)(2)(3) of this paper with s = 1
and all results in Section 1 hold for (f1, f2) and for every p = p; € (0,1)." '

Example 2.5. Let g1(z) =22 — 1,83(z) = 22/4, and let f; = gjog;, i=1,2. Letp=p, = 1/2. Let G =
(f1,/2)- Then (f1, f>) satisfies the assumptions (1)(2)(3) of this paper with s = 1 and P(G) \ {eo} is bounded
in C ([Sum11a, Example 6.2],[Sum13, Example 6.2]). Thus for this (fi, f2), all results of Section 1 hold.
In particular, every non-trivial C € % is Hélder continuous on C and varies precisely on the Julia set J (&)
(Corollary 1.6). Moreover, by Corollary 1.8, there exists a Borel dense subset A of J(G) with up(A) =

1, dimy (A) > dimg(pp) = 3 such that for every non-trivial C € € and for every z € A, we have a_ <
Ho61(C,z) = ; < oy and C is not differentiable at z. For the figures of J(G) and the graphs of Cp,C; with
L = {0}, see [Sum13, Figures 2,3,4]. Note that Theorem 1.2 implies that & < . for every probability
vector (parameter) p’ € (0,1).

Example 2.6. Let A € C with 0 < |A| < 0.01 and let fi(z) = 22— 1, f2(z) = Az°. Then by [Sumi15a, Exam-
ple 5.4], the element (fy, f>) satisfies assumptions (1)(2)(3) of this paper with s = 1 and P((f1,f2)) \ {0}
is bounded in C. Thus all results in Section 1 hold for (fi, f>) and for every probability vector (parameter)
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P =p1 € (0,1). Thus, setting p; = %, G = (f1,f2) and L = {co}, every non-trivial C € € is Héldel; contin-
uous on C and varies precisely on J(G), and Corollary 1.8 implies that there exists a Borel dense subset A

of J(G) with pp(A) = 1 and dimy (4) > 1+ a3 = 1.7737 such that for every non-trivial C € € and

for every z € A, we have a_ < Hol(C,z) = mgizkﬁg? (=0.7737) < o} and C is niot differentiable at z. Also,

by Theorem 1.2, we have a_ < @ for every p’ € (0,1).

18

Example 2.7. Let g1,g2 € & be hyperbolic. Suppose that (J(g1) UJ(g2)) N (P(g1) UP(g2)) = 2, K(g1) C

Int(K(g2)), and the union of attracting cycles of gy in C is included in Int(K(g;)). Then by [Suml1a,
Proposition 6.3], there exists an m € N such that for each n € N with n > m, setting f1 g1, 2 = g5, we
have that (f1, f2) satisfies assumptions (1)(2)(3) of this paper with s = 1. Thus all statements of the results
in Section 1 hold for (f1, f2) and for every p = p; € (0,1).

The following proposition provides us a method to construct examples of (fi,..., fr+1) € ! for which '

(1{(2)(3) hold and P({f1, ..., fs+1)) \ {eo} is bounded in C. For such elements (fi,..., f;+1) and for every
P €(0,1)* with ¥'¢_; p; < 1, we can apply all the results in Section 1.

Proposition 2.8. Let gj,...,g541 € & be hyperbolic and suppose that J(f;) is connected for every i=
1,...,s+ 1. Suppose that J(f;) C Int(K(fi+1)) for every i = 1,...,s. Suppose also that UT} P(g;) \ {e} C
Int(K(f1)). Then there exists ain m € N such that for every n € Nwithn>m, setting fi=gri=1,...,s+1,
' the element (f1, .-, fs41) satisfies assumptions (1)(2)(3) and P({fi,- .., fs+1)) \ {=°} is bounded in C.

Example 2.9. Let g1(z) = 22— 1 and let g;(z) = 10:2 i=2,...,s+ 1. Then (g1,...,8s+1) satisfies the
assumptions of Proposition 2.8. Note that z2 — 1 can be replaced by any hyperbolic element f € & with
connected Julia set such that J(f) C {z € C: |z| < 10} and 0 € Int(K(f)).

From one element (g1,-..,gm) € (Rat)™ which satisfies assumptions (1)(2)(3) (with s + 1 = m), we obtain
mény elements which satisfy assumptions (1)(2)(3) of our paper as follows. -

Proposition 2.10. Let (g1,...,8m) € (Rat)" with deg(g;) > 2,i = 1,...,m, and suppose that (g1,...,8m)
satisfies assumptions (1)(2)(3) of this paper. Let n € N with n > 2 and let fi,..., fs+1 be mutually distinct
elements of {ga, 0~ 08w, | (01,...,@,) € {1,...,m}"} where s > 1. Then we have the following.

@ (f1,---,fs+1) satisfies assumptions (1)(2)(3) of this paper. Thus all statements in Theorems 1.1,
1.2, 1.3, 1.4, 1.5 and Corollaries 1.6, 1.7, 1.9 and 1.11 in Section 1 hold for (fi,-. ,fs+1) for
every minimal set L of (f1,..., fs+1) and for every p = (p1,...,ps) € (0,1)* with ¥3_, pi <

() If in addition to the assumption, (f1,...,fi+1) € P°tL, then statement (1) in Corollary 1.8 holds
Jor (fi,...,fs+1) and for every p, and statement (2) in Corollary 1.8 holds for (fi,...,fs+1) and
foreveryp pmvided that one of (a)(b)(c) in the assumption of Corollary 1.8 (2) holds.

(IIl) I, in addition to the assumption of our proposition, (g1,... ,g‘,,,)~ € P™ and P((g1,---,8m)) \ {=}
is bounded in C, then P((f1,..., fs+1)) \ {eo} is bounded in C. Thus, statement (2) in Corollary 1.8
holds for (f1,..., fs+1) and for every p.

Regarding Remark 1.15, we also have the following.
Lemma 2.11. Let s> 1andletI ={1,...,s+ 1}. Then the set
{(Fier € P! = (f)ier satisfies assumptions (1)(2)(3) and P((f1,---,fs+1)) \ {e°} is bounded in C}

is open in P'.



We remark that the above examples, propositions and lemma in this section and Remark 1.15 imply that we
have plenty of examples to which we can apply the results in Section 1.

We give examples to which we can apply Corollary 1.11.

Lemma 2.12. Let (g1,...,85+1) be an element which satisfies assumptions (1)(2)(3). Letp = (p,
(0,1)° with Y54 pi < 1. Let pyy1 = 1 — Y5, pi. Then there exists an m € N such that for every n € N w1th
n>m, setting f;=gf,i=1...,5+1, and setting G := (f1,..., fo11), we have that (f1,..., fs+1) satisfies
assumptions (1)(2)(3) and p;min £710(6) /(@) > 1foreveryi=1,...,s+1. Thus, for every minimal set
Lof(f1,--+,fs+1), andforeveryz €J (G) we have that every non-trivial C € € satisfies Hol(C,z) < ay < 1
and C is not differentiable at z.
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