
MULT[FRACTAL ANALYSIS FOR POINTWISE HÖLDER EXPONENTS

OF THE COMPLEX TAKAGI FUNCTIONS IN RANDOM COMPLEX DYNAMICS
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ABSTRACT. We consider hyperbolic random complex dynamical systems on the Riemann sphere with sep‐

arating condition and multiple rmnimal sets. We investigate the Hölder regularity of the function T of the

probability of tending to one minimal set, the partial derivatives of T with respect to the probability parameters,

which can be regarded as complex analogues of the Takagi function, and the higher partial derivatives C of T.

Our main result gives a dynamical description of the pointwise Hölder exponents of T and C, which allows us

todetermine the spectrum of pointwise Hölder exponents by employing the multifractal formalism in ergodic

theory. Also, we prove that the bottom of the spectrum $\alpha$_{-} is strictly less than 1, which allows us to show

that the averaged system acts chaotically on the Banach space C^{ $\alpha$} of  $\alpha$‐Hölder continuous functions for every

 $\alpha$\in($\alpha$_{-}, 1) , though the averaged system behaves very mildly (e.g. we have spectral gaps) on C^{ $\beta$} for small

 $\beta$>0.

1. MAIN RESULTS

This note is the summary of the results from paper [JS16]. We do not give any proofs of them in this

note. For the proofs of the results, see [JS16]. In this paper, we consider random dynamical systems

of rational maps on the Riemann sphere \hat{\mathbb{C}} :=\mathbb{C}\cup\{\infty\}\cong S^{2} . The study of random complex dynamics
was initiated by J.E. Fomaess and N. Sibony ([FS91]). There are many new interesting phenomena in

random dynamical systems, so called randomness‐induced phenomena or noise‐induced phenomena, which

cannot hold in the deterministic iteration dynamics. For the motivations and recent research of random

complex dynamical systems focused on the randomness‐induced phenomena, see the second author�s works

[Sumlla, Sum13, \mathrm{S}\mathrm{u}\mathrm{m}\mathrm{i}\mathrm{l}5\mathrm{a}, \mathrm{S}\mathrm{u}\mathrm{m}\mathrm{l}5\mathrm{b}]. In these papers it was shown that for a generic random dynamical

system of complex polynomials, the system acts very mildly on the space of continuous functions on \hat{\mathbb{C}} and

on the space C^{ $\alpha$}(\hat{\mathbb{C}}) for small  $\alpha$\in(0,1) , where C^{ $\alpha$}(\hat{\mathbb{C}}) denotes the Banach space of  $\alpha$‐Hölder continuous

functions on \hat{\mathbb{C}} endowed with  $\alpha$‐Hölder nonn, but under certain conditions the system still acts chaoticaly
on the space  C^{ $\beta$}(\hat{\mathbb{C}}) for some  $\beta$\in(0,1) close to 1. Thus, we investigate the gradation between chaos and

order in random (complex) dynamical systems.

In order to show the main ideas of the paper, let Rat denote the set of all non‐constant rational maps on

\hat{\mathbb{C}} . This is a semigroup whose semigroup operation is the composition of maps. Throughout the paper, let

s\geq 1 and let (fl, \cdots

,  f_{s+1} ) \in(\mathrm{R}\mathrm{a}\mathrm{t})^{s+1} with \deg(f_{i})\geq 2,i=1 , s+1 . Let \mathrm{p}=(p_{1}, \ldots,p_{s})\in(0,1)^{s} with

\displaystyle \sum_{i=1}^{s}p_{i}<1 and let p_{s+1} :=1-\displaystyle \sum_{i=1}^{s}p_{i} . We consider the (i.i. \mathrm{d}. ) random dynamical system on \hat{\mathbb{C}} such that

at every step we choose f_{ $\iota$}� with probability p_{i} . This defines a Markov chain with state space \hat{\mathbb{C}} such that

for each x\in\hat{\mathbb{C}} and for each Borel measurable subset A of \hat{\mathbb{C}} , the transition probability p(x,A) from x to A
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is equal to \displaystyle \sum_{i=1}^{s+1}p_{i}1_{A}(f_{i}(x)) , where 1_{A} denotes the characteristic function of A . Let G=(f_{1},\ldots,f_{s},f_{s+1})
be the rational semigroup (i.e., subsemigroup of Rat) generated Uy \{f_{1}, f_{s+1}\} . More precisely, G=

{f_{0\}_{l}}\circ\cdots\circ f_{$\varpi$_{1}} : n\in \mathbb{N}, t)_{1} ,
\cdots

, $\omega$_{n}\in\{1 ,
. s+1 We denote by F(G) the maximal open subset of \hat{\mathbb{C}} on

which G is equicontinuous with respect to the spherical distance on \hat{\mathbb{C}} . The set F(G) is called the Fatou

set of G, and the set J(G) :=\hat{\mathbb{C}}\backslash F(G) is called the Julia set of G . We remark that in order to investigate

randomcomplex dynamical systems, it is very important to investigate the dynamics of associated rational

semigroups. The first study of dynamics of rational semigroups was conducted by A. Hinkkanen and G.

J. Margin ([HM96]), who were interested in the role of polynomial semigroups (i.e., semigroups of non‐

constant polynomial maps) while studying various one‐complex‐dimensional moduli spaces for discrete

groups, and by F. Ren�s group ([GR96]), who studied such semigroups from the perspective of random

dynamical systems. For the interplay of random complex dynamics and dynamics of rational semigroups,
see [\mathrm{S}\mathrm{u}\mathrm{m}00]-[\mathrm{S}\mathrm{u}\mathrm{m}\mathrm{l}5\mathrm{b}] , [SSII , SU13, \mathrm{J}\mathrm{S}15\mathrm{a}, \mathrm{J}\mathrm{S}15\mathrm{b}].

Throughout the paper, we assume the following.
(1) G is hyperbolic, i.e., we have P(G)\subset F(G) , where

P(\mathrm{G}) :=\overline{\cup g(\bigcup_{i=1}^{s+1}\{\mathrm{c}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{a}1}values of f_{i}:\hat{\mathbb{C}}\rightarrow\hat{\mathbb{C}}}). Here, the closure is taken in \hat{\mathbb{C}}.
g\in G\cup\{\mathrm{i}\mathrm{d}\}

(2) (fl, \cdots

,  f_{s+1} ) satisfies the separaung condition, i.e.,  f_{i}^{-1}(J(G))\cap f_{j}^{-1}(J(G))=\emptyset whenever  i,j\in

\{1, s+1\},i\neq j.
(3) There exist at least two minimal sets of G . Here, a non‐empty compact subset K of \hat{\mathbb{C}} is called a

minimal set of G if K=\overline{\bigcup_{g\in G}\{g(z)\}} for each z\in K.

Note that by assumption (2), [Sum97, Lemma 1, 1.4] and [Sumlla, Theorem 3.15], we have that there exist

at most finitely many minimal sets of G . Moreover, denoting by S_{G} the union of minimal sets of G and

semng I :=\{1, s+1\} , we have that for each z\in\hat{\mathbb{C}} there exists a Borel subset A_{z} of I^{\mathrm{N}} with \tilde{p}_{\mathrm{p}}(A_{z})=1
such that d(f_{\mathfrak{B}_{l}}\cdots f_{0)_{1}}(z),S_{G})\rightarrow 0 as  n\rightarrow\infty for all  a=($\omega$_{\dot{7}})_{i=1}^{\infty}\in A_{z} , where \overline{p}_{\mathrm{p}} :=\otimes_{n=1}^{\infty}p_{\mathrm{p}} denotes the

product measure on I^{\mathrm{N}} given by p_{\mathrm{p}} :=\displaystyle \sum_{i=1}^{s+1}p_{i}$\delta$_{7}. with $\delta$_{i} denoting the Dirac measure concentrated at i\in I.

Throughout, we fix a minimal set L of G (e.g. L=\{\infty\} when G is a polynomial semigroup). Denote

by T_{\mathrm{p}}(z) the probability of tending to L of the process on \hat{\mathbb{C}} which starts in z\in\hat{\mathbb{C}} and which is given

by drawing independently with probability p_{i} the map f_{i} . More precisely, T_{\mathrm{p}}(\mathrm{z}) :=\tilde{p}_{\mathrm{p}}(\{ $\omega$=($\omega$_{i})_{i=1}^{\infty}\in
 I^{\mathrm{N}}:d(f_{$\omega$_{n}}\circ\cdots\circ f_{0J_{1}}(z),L)\rightarrow 0 as  n\rightarrow\infty It was shown by the second author in [Sum13] that, for each

\mathrm{p}=(p_{1}, \ldots,p_{s}) there exists  $\alpha$\in(0,1) such that \mathrm{x}=(x_{1}, \ldots,x_{s})\mapsto T_{(xx_{S},1-$\Sigma$_{i=1^{X_{i)}}}^{s}}1,\ldots,\in C^{ $\alpha$}(\hat{\mathbb{C}}) is real‐analytic
in a neighbourhood of \mathrm{p} , where C^{ $\alpha$}(\hat{\mathbb{C}}) denoted the \mathbb{C}‐Banach space of  $\alpha$‐Hölder continuous \mathbb{C}‐valued

functions on \hat{\mathbb{C}} endowed with  $\alpha$‐Hölder norm \Vert\cdot\Vert_{ $\alpha$} (Remark 1.17). Thus it is very natural and important to

consider the following. For \mathrm{N}_{0} :=\mathbb{N}\cup\{0\} and \mathrm{n}=(n_{1}, \ldots,n_{S})\in \mathbb{N}_{0}^{s} we denote by C_{\mathrm{n}}\in C^{ $\alpha$}(\hat{\mathbb{C}}) the higher
order partial derivative of T_{\mathrm{p}} of order |\displaystyle \mathrm{n}|:=\sum_{i=1}^{s}n_{i} with respect to the probability parameters given Uy

\displaystyle \mathcal{C}_{\mathrm{n}}(z):=\frac{\partial^{|\mathrm{n}|}T_{1}(x\ldots jx_{s},1-.$\Sigma$_{i--1}^{s}x_{i})(z)}{\partial x_{1^{1}'}^{n}\partial x_{2^{2}}^{n}\cdot\cdot\partial x_{s}^{n_{s}}}|_{\mathrm{x}=\mathrm{p}}, z\in\hat{\mathbb{C}}.
These functions are introduced in [Sum13] by the second author. We introduce the \mathbb{C}‐vector space

\mathscr{C}:= span \{\mathrm{C}_{\mathrm{n}}|\mathrm{n}\in \mathrm{N}_{0}^{s}\}\subset C^{a}(\hat{\mathbb{C}}) ,

which consists of all the finite complex linear combinations of elements from \{C_{\mathrm{n}}|\mathrm{n}\in \mathrm{N}_{0}^{s}\} . The first order

derivatives are called complex analogues of the Takagi function in [Sum13]. Note that C_{0}=T_{\mathrm{p}}.
For an element C\in \mathscr{C} and z\in\hat{\mathbb{C}} the Holder exponent Höl (C,z) is given by

Höl (C,z) :=\displaystyle \sup\{ $\alpha$\in[0,\infty) : \displaystyle \lim_{y\rightarrow z}\sup_{y\neq z}\frac{|C(y)-C(z)|}{d(y,z)^{ $\alpha$}}<\infty\}\in[0,\infty],
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where d denotes the spherical distance on \hat{\mathbb{C}} . It was shown in [\mathrm{J}\mathrm{S}15\mathrm{a}] that the level sets

H(C_{0}, $\alpha$) := { z\in\hat{\mathbb{C}} : Höl(Co,  z)= $\alpha$ },  $\alpha$\in \mathbb{R},

satisfy the multifractal formalism. In particular, there exists an interval of parameters ($\alpha$_{-}, $\alpha$_{+}) such that

the Hausdorff dimension of H(C_{0},  $\alpha$) is positive and varies real analytically (see Theorem 1.2 below).

The first main result of this paper gives a dynamical description of the pointwise Hölder exponents for an

arbitrary C\in \mathscr{C} . We say that C=\displaystyle \sum_{\mathrm{n}\in \mathrm{N}_{0}^{s}}$\beta$_{\mathrm{n}}C_{\mathrm{n}}\in \mathscr{C} is non‐trivial if there exists \mathrm{n}\in \mathrm{N}_{0}^{s} with $\beta$_{\mathrm{n}}\neq 0 . It tums

out in Theorem 1.1 below that every non‐trivial C\in \mathscr{C} has the same pointwise Hölder exponents. To state

the result, we define the skew product map (associated with (f_{i})_{i\in} ) (see [SumOO])

\tilde{f}:I^{\mathrm{N}}\times\hat{\mathbb{C}}\rightarrow I^{\mathrm{N}}\times\hat{\mathbb{C}}, \tilde{f}( $\omega$,z):=( $\sigma$( $\omega$),f_{0)\mathrm{l}}(z)) ,

where  $\sigma$:I^{\mathrm{N}}\rightarrow I^{\mathrm{N}} denotes the shift map given by  $\sigma$($\omega$_{1}, $\varpi$_{2}, :=($\omega$_{2}, $\omega$_{3} , for  $\omega$=(\mathrm{t}0_{1}, w, \in I^{\mathrm{N}}.

For every  $\omega$=($\omega$_{j})_{j\in \mathbb{N}}\in I^{\mathrm{N}} and n\in \mathrm{N}, let f_{w|_{n}} :=f_{$\omega$_{n}}\circ \circ f_{$\omega$_{1}} and we denote by F_{ $\varpi$} the maximal open

subset of \hat{\mathbb{C}} on which \{f_{c\mathrm{o}|_{n}}\}_{n\in \mathrm{N}} is equicontinuous with respect to d . Let J_{ $\omega$} :=\hat{\mathbb{C}}\backslash F_{a\mathrm{J}} . The Julia set of \overline{f} is
given by J(f $\gamma$=\displaystyle \bigcup_{ $\omega$\in I^{\mathrm{N}}}\{ $\omega$\}\times J_{0)} where the closure is taken in I^{\mathrm{N}}\times\hat{\mathbb{C}} . Note that denoting by  $\pi$:I^{\mathrm{N}}\times\hat{\mathbb{C}}\rightarrow\hat{\mathbb{C}}
the canonical projection,  $\pi$:J(\tilde{f})\rightarrow J(G) is a homeomorphism ([Sumlla, Lemma 4.5], [Sum97, Lemma

1.1.4] and assumption (2)) and  $\pi$\circ\overline{f}= $\sigma$\circ $\pi$ . We introduce the potentials \overline{ $\varphi$}, \overline{ $\psi$}:J(\tilde{f})\rightarrow \mathbb{R} given by

\tilde{ $\varphi$}( $\omega$,z):=-\log\Vert f_{0 $\eta$}'(z)\Vert ,  $\iota$ỹ(oJ,  z) :=\log p_{$\omega$_{1}},

where \Vert . | denotes the norm ofthe derivative with respect to the spherical metric on \hat{\mathbb{C}} . Note that \tilde{f}^{-1}(J(\tilde{f}))=
J(\tilde{f})=\tilde{f}(J(\overline{f})) ([Sum00]). We denote by S_{n} the ergodic sum of the dynamical system (J(\hat{f}),f $\gamma$.

Theorem 1.1. For every non‐trivial C=\displaystyle \sum_{\mathrm{n}\in \mathrm{N}_{0}^{s}}$\beta$_{\mathrm{n}}C_{\mathrm{n}}\in \mathscr{C} we have

(1.1) Höl(C,z) =\displaystyle \lim_{k\rightarrow}\inf_{\infty}\frac{S_{k}\tilde{ $\psi$}( $\omega$,z)}{S_{k}\overline{ $\varphi$}( $\omega$,z)} , forall ( $\omega$,z)\in J(\tilde{f}) .

Combining Theorem 1.1 with our results from [ \mathrm{J}\mathrm{S}15\mathrm{a}, Theorem 1.2] on the multifractal formalism, we

estabhsh the multifractal formalism for the pointwise Hölder exponents of an arbitrary non‐trivial C\in \mathscr{C}.

To state the results, for any non‐trivial C\in(\mathscr{E} and  $\alpha$\in \mathbb{R} we denote by

H(C,  $\alpha$):= {y\in\hat{\mathbb{C}} : Höl (C,y)= $\alpha$ }

the level set of prescribed Hölder exponent  $\alpha$ . The range of the multifractal spectrum is given by

 $\alpha$_{-}:=\displaystyle \inf\{ $\alpha$\in \mathbb{R}:H(C,  $\alpha$)\neq\emptyset\}\in \mathbb{R} and $\alpha$_{+}:=\displaystyle \sup\{ $\alpha$\in \mathbb{R}:H(C, $\alpha$)\neq\emptyset\}\in \mathbb{R}.

By Theorem 1.1, the sets H(C,  $\alpha$) coincide for all non‐trivial C\in \mathscr{C} . Thus, $\alpha$_{-} and $\alpha$_{+} do not depend on

the choice of a non‐trivial C\in \mathscr{C} . Also, $\alpha$_{-}>0 ([Sum98, Theorem 2.6], see also Corollary 1.11).

Theorem 1.2. All of thefollowing hold.

(1) Let C\in \mathscr{C} be non‐trivial. If $\alpha$_{-}<$\alpha$_{+}then the Hausdolffdimensionfunction  $\alpha$\mapsto\dim_{H}(H(C,  $\alpha$)) ,

 $\alpha$\in($\alpha$_{-}, $\alpha$_{+}) , defines a real analytic and strictly concave positive function on ($\alpha$_{-}, $\alpha$_{+}) with max‐

imum value \dim_{H}(J(G)) . If $\alpha$_{-}=$\alpha$_{+} , then we have H(C, $\alpha$_{-})=J(G) .

(2) We have a_{-}= $\alpha$+ifand only if there exist an automorphism  $\theta$\in \mathrm{A}\mathrm{u}\mathrm{t}(\hat{\mathbb{C}}) , complex numbers (a_{i})_{i\in I}
and  $\lambda$\in \mathbb{R} such thatfor all i\in I and z\in\hat{\mathbb{C}}_{J}

 $\theta$\circ f\circ$\theta$^{-1}(z)=a_{i}z^{\pm\deg(f)} and logdeg (f_{i})= $\lambda$\log p_{i}.

In the next theorem we determine the actual Hölder class of every non‐trivial C\in \mathscr{C}.
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Theorem 1.3. For every non‐trivial C\in \mathscr{C} andfor every  $\alpha$<$\alpha$_{-} , thefunction C is  $\alpha$-Ho7der continuous

on \hat{\mathbb{C}} . Moreover, C_{0} is $\alpha$_{-} ‐Hölder continuous on \hat{\mathbb{C}}.

To prove Theorem 1.3 we develop some ideas from [KS08, JKPS09] for interval maps. The relation between

the Hölder continuity of singular measures and their multifractal spectra has been first observed in [KS08],

where it was shown that the Hölder continuity of the Minkowski�s question mark function coincides with

the bottom of the Lyapunov spectrum of the Farey map. In [JKPS09] a similar result has been obtained for

expanding interval maps.

JJ] the following Theorem 1.4 we prove that $\alpha$_{-}<1 . This result allows us to give a complete answer to

two important problems raised in [Sum13], which greatly improves the previous partial results in [Sumlla,

Sum13, \mathrm{J}\mathrm{S}15\mathrm{a}] . The first implication is that, under the assumptions of our paper, every non‐trivial C\in \mathscr{C} is

not differentiable at every point of a Borel dense subset A of J(G) with \dim_{H}(A)>0 . Secondly, we obtain

in Theorem 1.5 that the averaged system still acts chaotically on the space C^{ $\alpha$}(\hat{\mathbb{C}}) for any  $\alpha$\in($\alpha$_{-}, 1) ,
although the averaged system acts very mildly on the Banach space C(\hat{\mathbb{C}}) of \mathbb{C}‐valued continuous functions

on \hat{\mathbb{C}} endowed with the supremum norm and on the Banach space C^{ $\alpha$}(\hat{\mathbb{C}}) for small  $\alpha$>0 (see [Sum97,

Lemma 1.1.4], [Sumlla, Theorem 3.15] and [Sum13, Theorem 1.10]). We recall that if Höl(C, z) <1 then

C is not differentiable at z . If Höl(C, z) >1 then C is differentiable at z and the derivative of C at \mathrm{z} is zero.

Theorem 1.4. We have a_{-}<1 . Moreover, for every  $\alpha$\in($\alpha$_{-}, 1) there exists a Borel dense subsetA ofJ(G)
with \dim_{H}(A)>0 such thatfor every non‐trivial C\in \mathscr{C} andfor every z\in A , we have Höl(C, z) = $\alpha$<1

and C is not differentiable at \mathrm{z}.

In the proof, we combine the result that C_{0} is $\alpha$_{-} ‐Hölder continuous on \hat{\mathbb{C}} (Theorem 1.3), the multifractal

analysis on the pointwise Hölder exponents of C_{0} (Theorems I.2), an argument on Lipschitz functions on

\mathbb{C} and the fact that \dim_{H}(J(G))<2 , which follows from our assumptions (1) and (2) ([Sum98]).

To state Theorem 1.5, let M : C(\hat{\mathbb{C}})\rightarrow C(\hat{\mathbb{C}}) be the transition operator of the system which is defined Uy

M( $\phi$)(z)=\displaystyle \sum_{j=1}^{s+1}p_{j} $\phi$(f_{j}(z)) , where  $\psi$\in C(\hat{\mathbb{C}}),z\in\hat{\mathbb{C}} . Note that M(C^{ $\alpha$}(\hat{\mathbb{C}}))\subset C^{ $\alpha$}(\hat{\mathbb{C}}) for any  $\alpha$\in(0,1 ].

Theorem 1.5. Let  $\alpha$\in($\alpha$_{-}, 1) and let  $\phi$\in C^{ $\alpha$}(\hat{\mathbb{C}}) such that  $\phi$|_{L}=1 and  $\phi$|_{L'}=0 for every minimal set

L' of G with L'\neq L. Then \Vert M^{n}( $\phi$)\Vert_{ $\alpha$}\rightarrow\infty as  n\rightarrow\infty . In particular, for every  $\xi$\in C^{ $\alpha$}(\hat{\mathbb{C}}) and for every

a\in \mathbb{C}\backslash \{0\} , we have \Vert M^{n}( $\xi$+a $\phi$)-M^{n}( $\xi$)\Vert_{ $\alpha$}\rightarrow\infty as  n\rightarrow\infty.

We now present the corollaries of our main results. The first one establishes that every non‐trivial C\in \mathscr{C}

varies precisely on the Julia set J(G) . This follows immediately from Theorem 1.1 because the right‐hand
side of (1.1) is always finite ([Sum98, Theorem 2.6], see also Corollary 1.11). This generalises a previous
result from [Sumlla] for C_{0}=T_{\mathrm{p}} and a partial result for the higher order pamal denvatives fiiom [Sum13].

Corollary 1.6. Every non‐trivial C\in \mathscr{C} varies precisely on J(G) , i.e., J(G) is equal to the set ofpoints

Z0\in\hat{\mathbb{C}} such that C is not constant in any neighborhood of z\mathrm{o} in \hat{\mathbb{C}} . In particular, thefunctions C_{\mathrm{n}},\mathrm{n}\in \mathrm{N}_{0}^{s},
are linearly independent over \mathbb{C} and (g has a representation as a direct sum ofvector spaces given by

\displaystyle \mathscr{C}=\bigoplus_{\mathrm{n}\in \mathrm{N}_{0}^{s}}\mathbb{C}C_{\mathrm{n}}.
We remark again that 0<\dim_{H}(J(G))<2 ([Sum98]).

By combining Theorem 1.1 with Birkhoff�s ergodic theorem we obtain the following extension of[Sum13,

Theorem 3.40 (2)]. Recall that a Borel probability measure v on J(f) is called \overline{f}‐invmant if v(\overline{f}^{-1}(A))=
v(A) for every Borel set A\in J(\tilde{f}) .
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Corollary 1.7. Let v be an \overline{f}‐invanant ergodic Borel probability measure on J(\hat{f}) . Let  $\pi$:I^{\mathrm{N}}\times\hat{\mathbb{C}}\rightarrow\hat{\mathbb{C}}
denote the canonical projection onto \hat{\mathbb{C}} Then there exists a Borel subset A of J(G) with ($\pi$_{*}(v))(A)=1
such thatfor every non‐trivial C\in \mathscr{C} andfor every z\in A, we have

Höl (C,z)=\displaystyle \frac{-\int\log p_{$\omega$_{1}}dv(0),x)}{\int\log\Vert f_{$\omega$_{1}}(x)||dv( $\omega$,x)} , where  $\omega$=(0)_{1},  $\Phi$ , ) \in I^{\mathrm{N}}.

By combining Corollary 1,7 with [Sumlla, Theorem 3.82] in which the potential theory was used, we

obtain the following result (Corollary 1.8) on the pointwise Hölder exponents and the non‐differentiauility
of elements of \mathscr{C} . To state the result, when G is a polynomial semigroup, we denote by \tilde{ $\mu$}_{\mathrm{p}} the maximal

relative entropy measure on J(f) for \tilde{f} with respect to ( $\sigma$,\tilde{ $\rho$}_{\mathrm{p}}) (see [Sum00], [Sumlla, Remark 3.79]).
Note that \tilde{ $\mu$}_{\mathrm{p}} is \tilde{f}‐invanant and ergodic ([Sum00]). Let $\mu$_{\mathrm{p}}=$\pi$_{*}(\overline{ $\mu$}_{\mathrm{p}}) . For any ( $\omega$,z)\in I^{\mathrm{N}}\times\hat{\mathbb{C}}, let \mathscr{G}_{ $\varpi$}(z) :=

\mathrm{h}\mathrm{m}_{n\rightarrow\infty}(1/\deg(f_{ $\omega$|_{n}}))\log^{+}|f_{o\mathrm{J}|_{n}}(z)| , where \log^{+}(a) :=\displaystyle \max\{\log a,0\} for every a>0 . By the argument in

[SesOl], we have that \mathscr{G}_{ $\omega$}(y) exists for every ( $\omega$,z)\in I^{\mathrm{N}}\times \mathbb{C}, ( $\omega$,z)\in I^{\mathrm{N}}\times \mathbb{C}\mapsto \mathscr{G}_{ $\varpi$}(z) is continuous on  I^{\mathrm{N}}\times

\mathbb{C}, g_{ $\omega$} is subharmonic on \mathbb{C} and y_{0\mathrm{J}} restricted to the intersection of \mathbb{C} and the basin A_{\infty, $\omega$} of \infty for \{f_{w|_{n}}\}_{n=1}^{\infty}
is the Green�s function on A_{\infty, $\omega$} with pole at \infty

. Let  $\Lambda$( $\omega$)=\displaystyle \sum_{c}\mathscr{G}_{ $\omega$}(c) , where c runs over all critical points
of f_{o\mathrm{J}_{1}} in A_{\infty, $\omega$} , counting multiplicities. Note that $\mu$_{\mathrm{p}}=\displaystyle \int_{I^{\mathrm{N}}}dd^{c}\mathscr{G}_{0)}d\tilde{p}_{\mathrm{p}}(\mathrm{t}0) where d^{C}=(\sqrt{-1}/2 $\pi$)(\overline{\partial}-\partial)
([Sumlla, Lemma 5.51]), supppp =J(G) and $\mu$_{\mathrm{p}} is non‐atomic ([Sum00]). Also, we have \dim_{H}($\mu$_{\mathrm{p}})=
(\displaystyle \sum_{i\in I}p_{i}\log\deg f-\sum_{i\in J} pilog p_{j} ) / (\displaystyle \sum_{i\in l}p_{i} logdeg f_{i}+\displaystyle \int_{I^{\mathrm{N}}} $\Lambda$( $\omega$)d\tilde{ $\rho$}_{\mathrm{p}}(0))) >0 ([Sumlla, Proof of Theorem

3.82]). Here, \dim_{H}($\mu$_{\mathrm{p}}) :=\displaystyle \inf\{\dim_{H}(A)\} where the infimum is taken over all Borel subsets A of J(G) with

$\mu$_{\mathrm{p}}(A)=1.

Corollary 1.8. (1) Suppose that f_{1} , \cdots ,  f_{s+1} are polynomials. Then there exists a Borel dense subsetA of

J(G) with $\mu$_{\mathrm{p}}(A)=l and \dim_{H}(A)\geq ( $\Sigma$_{i\in I}p_{i} logdeg f_{i}-\displaystyle \sum_{i\in I} pilog p_{i} ) / ( \displaystyle \sum_{i\in I}p_{i} logdeg f_{i}+\displaystyle \int_{I^{\mathrm{N}}} $\Lambda$( $\omega$)d\tilde{ $\rho$}_{\mathrm{p}}( $\omega$) )
>0 such thatfor every non‐trivial C\in \mathscr{C} andfor every z\in A, we have

Höl (C,z)=\displaystyle \frac{-$\Sigma$_{i\in I}p_{i}\log p_{i}}{$\Sigma$_{i\in I}p_{i}\log\deg f_{i}+\int_{I^{\mathrm{N}}} $\Lambda$( $\omega$)d\overline{p}_{\mathrm{p}}( $\omega$)}\prime.
(2) Suppose that f_{1} ,

\cdots

,  f_{s+1} are polynomials satisfying at least one of thefollowing conditions:

(a) \displaystyle \sum_{i\in IPi}\log(Pi\log f_{i})>0.
(b) G=(f_{1}, \ldots,f_{s+1}\} is postcntically bounded, i.e. P(G)\backslash \{\infty\} is bounded in \mathbb{C}.

\prime(c)s=1.

Then there exists a Borel dense subset A of J(G) with $\mu$_{\mathrm{p}}(A)=1 such that for every non‐trivial C\in \mathscr{C}

andfor every z\in A , we have Höl (C,z)<1 . In particular, every non‐trivial C\in \mathscr{C} is non‐differentiable

$\mu$_{\mathrm{p}} ‐almost ey erywhere on J(G) .

Note that if we assume that every f_{i} is a polynomial and P(G)\backslash \{\infty\} is bounded in \mathbb{C} , then  $\Lambda$( $\omega$)=0 for

every 0) \in I^{\mathrm{N}} , thus Corollary 1,8 implies that there exists a Borel dense subset A of J(G) with

$\mu$_{\mathrm{p}}(A)=1, \displaystyle \dim_{H}(A)\geq 1+\frac{-\sum_{i\in I}p_{i}\log p_{i}}{\sum_{i\in I}p_{i}\log\deg(f_{i})}>1
such that for every non‐trivial C\in \mathscr{C} and for every point z\in A , we have

Höl(C, z) =\displaystyle \frac{-\sum_{i\in I}p_{i}\log p_{i}}{\sum_{i\in I}p_{i}\log\deg(f_{i})}<1.
The following is one of the other important applications of Corollary 1.7. In order to state the res‐

ult, let  $\delta$ :=\dim_{H}(J(G)) and let H^{ $\delta$} denote the  $\delta$ ‐dimensional Hausdorff measure on \hat{\mathbb{C}} . Note that by
[Sum05], we have  0<H^{ $\delta$}(J(G))<\infty . Let  C(J(G)) be the space of all continuous \mathbb{C}‐valued functions

on \hat{\mathbb{C}} endowed with supremum norm. Let L:C(J(G))\rightarrow C(J(G)) be the operator defined by L( $\varphi$)(z)=
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\displaystyle \sum_{i\in I}\sum_{f $\iota$(y)=z} $\phi$(y)\Vert f_{i}'(y)\Vert^{- $\delta$} where  $\phi$\in C(J(G)),z\in J(G) . By [Sum05] again, we have that  $\gamma$=\displaystyle \lim_{n\rightarrow\infty}L^{n}(1)
\in C(J(G)) exists, where 1 denotes the constant function on J(G) taking its value 1, the function  $\gamma$ \mathrm{i}\mathrm{s} pos‐

itive on J(G) , and there exists an \tilde{f}‐invanant ergodic probability measure \tilde{v} on J(f) such that $\pi$_{*}(\overline{v})=
 $\gamma$ H^{ $\delta$}/H^{ $\delta$}(J(G)) and \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}$\pi$_{*}(v)=J(G) . By Corollary 1.7 and [Sumlla, Theorem 3.84 (5)], we obtain the

following,

Corollary 1.9. Under the above notations, there exists a Borel dense subset A of J(G) with H^{ $\delta$}(A)=
H^{ $\delta$}(J(G))>0 such thatfor every non‐trivial C\in\subset \mathscr{E} andfor every z\in A , we have

Höl(C, z) =\displaystyle \frac{-\sum_{i\in I}\log p_{i}\int_{f_{i}^{-1}(J(G))} $\gamma$(y)dH^{ $\delta$}(y)}{\sum_{i\in I}\int_{f_{i}^{-1}(J(G))} $\gamma$(y)\log||f_{i}(\mathrm{y})\Vert dH^{ $\delta$}(y)}.
Remark 1.10. We remark that a non‐trivial C\in \mathscr{C} may possess points of differentiability. In fact, by

choosing one of the probability parameters sufficiently small, we can deduce from Corollary 1.9 that for

every non‐trivial C\in \mathscr{C} and for H^{ $\delta$} ‐almost every z\in J(G) , we have Höl (C,z)>1, C is differentiable at

z and the derivative of C at z is zero. Note that even under the above condition, Theorem 1.4 implies that

there exist an  $\alpha$<1 and a dense subset A of J(G) with \dim_{H}(A)>0 such that for every non‐trivial C\in \mathbb{C}

and for every z\in A , we have Höl(C, z) = $\alpha$<1 and C is not differentiable at z . Jn particular, in this case,

we have $\alpha$_{-}<1<$\alpha$_{+} and we have a different kind of phenomenon regarding the (complex) analogues of

the Takagi function, whereas the original Takagi function does not have this property.

We also have the following corollary of Theorem 1.1. To state the result, by [Sum98, Theorem 2.6] there

exists k0\in \mathbb{N} such that for every k\geq k0 and for every  $\omega$=($\omega$_{\mathrm{i}})_{i=1}^{k}\in l^{k} , we have \displaystyle \min_{z\in f_{\text{の}}^{-1}(J(G))}\Vert f_{ $\omega$}'(z)\Vert>1,
where f\text{の}=f_{$\omega$_{k}}\circ\cdots\circ f_{o\mathrm{J}_{1}} . Let p_{ $\omega$}:=p_{$\omega$_{k}}\cdots p_{$\omega$_{1}} for  $\omega$=(0 $\lambda$)_{i=1}^{k}\in I^{k}.

Corollary 1.11. For every k\geq k_{0} , we have

0<\displaystyle \min_{ $\omega$\in J^{k}}\frac{-\log p_{ $\omega$}}{\log\max_{z\in f_{i\mathrm{J}}^{-1}(J(G))}\Vert f_{ $\omega$}'(z)\Vert}\leq$\alpha$_{-}\leq$\alpha$_{+}\leq\max_{0)\in J^{k}}\frac{-\log p_{(i\mathrm{J}}}{\log\min_{z\in f_{\overline{ $\varpi$}}^{1}(J(G))}\Vert f_{ $\omega$}'(z)\Vert}<\infty.
In particular, if  p_{i}\displaystyle \min_{z\in f_{\mathrm{i}}^{-1}(J(G))}\Vert fí�(z) || >1 for every i\in I, then for every non‐trivial C\in \mathscr{C} andfor every

z\in J(G) , we have that Höl(C, z) \leq$\alpha$_{+}<1 and C.is not differentiable at z.

Remark 1.12. Under assumptions (1)(2)(3), suppose that the maps f_{i},i\in I , are polynomials. Then  J(G)\subset
\mathbb{C} . Since the spherical metric and the Euclidian metric are equivalent on J(G) , it follows that we can replace

\Vert\cdot\Vert in the definition of  $\varphi$ , Corollaries 1.7, 1.9, 1.11 by the modulus |\cdot|.

Remark 1.13. The function C_{0}=T_{\mathrm{p}} is continuous (in fact, it is Hölder continuous) on \hat{\mathbb{C}} and varies precisely
on the Julia set J(G) . Note that by assumptions (1)(2) and [Sum98], we have that J(G) is a fractal set with

0<\dim_{H}\{J(G))<2 . The function C_{0} can be interpreted as a complex analogue of the devil�s staircase

and Lebesgue�s singular functions ([Sumlla]). In fact, the devil�s staircase is equal to the restriction to

[0 ,
1 ] of the function of probability of tending to +\infty when we consider random dynamical system on \mathbb{R}

such that at every step we choose f_{1}(x)=3x with probability 1/2 and we choose f_{2}(x)=3x-2 with

probability 1/2. Similarly, Lebesgue�s singular function L_{p} with respect to the parameter  p\in(0,1),p\neq
 1/2 is equal to the restriction to [0 , 1 ] of the function of probability of tending to +\infty when we consider

random dynamical system on \mathbb{R} such that at every step we choose g_{1}(x)=2x with probability p and we

choose g_{2}(x)=2x-1 with probability 1-p . Note that these are new interpretations of the devil�s staircase

and LeUesgue�s singular functions obtained in [Sumlla] by the second author of this paper. Similarly,
it was pointed out by him that the distributional functions of self‐similar measures of FSs of orientation‐

preserving contracting diffeomorphisms h_{i} on \mathbb{R} can be interpreted as the functions of probability of tending
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to +\infty regarding the random dynamical systems generated by (h_{i}^{-1}) ([Sumlla]). From the above point of

view, when G is a polynomial semigroup and L=\{\infty\} , we call C_{0}=T_{\mathrm{p}} a devil�s coliseum ([Sumlla]). It

is well‐known ([YHK97]) that the function \displaystyle \frac{1}{2}\frac{\partial L_{p}(x)}{\partial p}|_{p=1/2} on [0 , 1 ] is equal to the Takagi function  $\Phi$(x)=

\displaystyle \sum_{n=0}^{\infty}\frac{1}{2^{n}}\min_{m\in \mathbb{Z}}|2^{n}x-m| (also referred to as the Blancmange function), which is a famous example of

a continuous but nowhere differentiable function on [0 , 1 ] . From this point of view, the first derivatives

C\in \mathscr{C} can be interpreted as complex analogues of the Takagi function. The devil�s staircase, Lebesgue�s
singular functions, the Takagi fmction and the similar functions have been investigated so long in fractal

geometry and the related fields. In fact, the graphs of these functions have certain kind of self‐similarities

and these functions have many interesting and deep properties. There are many interesting studies about

the original Takagi function and its related topics ([AKII]). In [AK06], many interesting results (e.g.

continuity and non‐differentiauility, Hölder order, the Hausdorff dimension of the graph, the set of points
where the functions take on their absolute maximum and minimum values) of the higher order partial
derivatives \displaystyle \frac{\partial^{n}L_{p}(x)}{\partial p^{n}}|_{p=1/2} of L_{p}(x) with respect to p are obtained. The first study of the complex analogues
of the Takagi function was given by the second author in [Sum13]. In particular, some partial results on

the pointwise Hölder exponents of them were obtained ([Sum13, Theorem 3.40]). However, it had been an

open problem whether the complex analogues of the Takagi function vary precisely on the Julia set or not,

until this paper was written. The results of this paper greatly improve the above results from [Sum13]. In

the prbofs of the results of this paper, we use completely new ideas and systematic approaches which are

explained below. For the figures of the Julia set J(G) and the graphs of C_{0} and C_{1} which we deal with in

this paper when s=1, G is a polynomial semigroup and L=\{\infty\} , see [Sumlla, Sum13].

Remark 1.14. The results on the classical Takagi function on [0, 1| give some evidence that the results stated

in Theorem 1.3 are sharp. Indeed, let us consider the function L_{1/2} and $\psi$_{n}(x)=\displaystyle \frac{\partial^{n}L_{p}(x)}{\partial p^{n}}|_{p=1/2} for n\geq 1.

Note that \displaystyle \frac{1}{2}$\psi$_{1} is equal to the original Takagi function. Since we have L_{1/2}|_{[0,1]}(x)=x, L_{1/2}|_{(-\infty,0)}(x)=0
and L_{1/2}|_{(1,\infty)}(x)=1 , the function L_{1/2} is 1‐Hölder (Lipschitz). However, in [AK06] it is shown that the

functions $\phi$_{n} on [0 , 1 ] are a‐Hölder for every a<1 , but not 1‐Hölder continuous. It would be interesting to

further investigate this phenomenon for the complex analogues of the Takagi function.

Remark 1.15. We endow Rat with the topology induced from the distance \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{\mathrm{R}\mathrm{a}\mathrm{t}} which is defined by

\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{\mathrm{R}\mathrm{a}\mathrm{t}}(f,g) :=\displaystyle \sup_{z\in\hat{\mathbb{C}}}d(f(z),g(z)) . Then by [Sum97, Theorem 2.4.1], the fact J(G)=\displaystyle \bigcup_{i\in I}f_{i}^{-1}(J(G))
([Sum97, Lemma 1.1.4]), [Sumlla, Remark 3.64], and [Sum13, Theorem 3.24]), we have that the set

{ (f_{i})_{i\in I}\in(\mathrm{R}\mathrm{a}\mathrm{t})^{I} : \deg(f_{\mathrm{i}})\geq 2(i\in I) and the conditions (1)(2)(3) hold for (f_{i})_{i\in J} }

is open in (\mathrm{R}\mathrm{a}\mathrm{t})^{I} . Also, we have plenty of examples to which we can apply the main results of this paper.

Sëe Section 2.

Remark 1.16. We remark that Uy using the method in this paper, we can show similar results to those of

this paper for random dynamical systems of diffeomorphisms on \mathbb{R} (or \mathbb{R}\cup\{\pm\infty\} ). Note that the case of

the classical Takagi function  $\Phi$ corresponds to the degenerated case  $\alpha$_{-}=$\alpha$_{+} in Theorem 1.2, though in

the case of  $\Phi$ we have the open set condition but do not have the separating condition. We emphasize that

in this paper we also deal with the non‐degenerated case, which seems generic.

Remark 1.17. We remark that under assumptions (1)(2)(3), the iteration of the transition operator  M on

some C^{a}(\hat{\mathbb{C}}) is well‐Uehaved (e.g., there exists an M‐invanant finite‐dimensional subspace U of C^{a}(\hat{\mathbb{C}})
such that for every h\in C^{a}(\hat{\mathbb{C}}) , M^{n}(h) tends to U as  n\rightarrow\infty exponentially fast) and  M has a spectral gap

on C^{a}(\hat{\mathbb{C}}) ([Sum97, Lemma 1.1.4(2)], [Sumlla, Propositions 3.63, 3.65], [Sum13, Theorems 3.30, 3.31]).
Note that this is. a randomness‐induced phenomenon (new phenomenon) in random dynamical systems

which cannot hold in the deterministic iteration dynamics of rational maps of degree two or more, since
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for every  f\in Rat with \deg(f)\geq 2, the dynamics, of f on J(f) is chaotic. Combining the above spectral

gap property of M on C^{a}(\hat{\mathbb{C}}) and the permrbation theory for linear operators ([Kato80]) implies that the

map \mathrm{x}=(x\mathrm{l}, \cdots,x_{s})\mapsto T_{(x_{1)}\ldots,\mathrm{x}_{s},1-$\Sigma$_{i=1}^{s}x_{j})}\in C^{a}(\hat{\mathbb{C}}) is real‐analytic in a neighbourhood of \mathrm{p} in the space

W :=\displaystyle \{(q_{i})_{i=1}^{s}\in(0,1)^{s}:\sum_{i=1}^{s}q_{i}<1\} ([Sum13, Theorem 3.32]). Thus it is very natural and important for

the study of the random dynamical system to consider the higher order partial derivatives of T_{\mathrm{p}} with respect

to the probability vectors. Moreover, it is very interesting that C_{\mathrm{n}} is a solution of the functional equation

(Id‐M) (C_{\mathrm{n}})=F , where F is a function associated with lower order partial derivatives of T_{\mathrm{p}} . In fact,

by using the spectral gap properties of M on C^{a}(\hat{\mathbb{C}}) and the arguments in the proof of [Sum13, Theorem

3.32], for any \mathrm{n}\in \mathrm{N}_{0}^{s}\backslash \{0\} , we can show that (I) C_{\mathrm{n}} is the unique continuous solution of the above functional

equation under the boundary condition C_{\mathrm{n}}|s_{G}=0 and (II) C_{\mathrm{n}}=\displaystyle \sum_{j=0}^{\infty}M^{j}(F) in C(\hat{\mathbb{C}}) and in C^{ $\alpha$}(\hat{\mathbb{C}}) for small

 $\alpha$>0 . Thus, we have a system of functional equations for elements C_{\mathrm{n}} . Note that this is the first paper to

investigate the pointwise Hölder exponents and other properties of the higher order partial derivatives C_{\mathrm{n}}
of the functions T_{\mathrm{p}} of probability of tending to minimal sets with respect to the probability parameters

regarding random dynamical systems which have several variables of probability parameters. This is a

completely new concept. In fact, even in the real line, there has been no study regarding the objects similar

to the above. Even more, in this paper we deal with the complex hnear combinations of partial derivatives

C_{\mathrm{n}} , which are of course completely new objects in mathematics coming naturally from the study of random

dynamical systems and fractal geometry. We also remark that the original Takagi function is associated

with Lebesgue�s singular functions, but there has been no study about the higher order partial derivatives of

the distribution functions of singular measures with respect to the parameters.

The key in the proof of the main results of this paper is to consider the system of functional equations satis‐

fied by the elements of \mathscr{C} . The composition of these equations along oruits is best described in terms of an

associated matrix cocycle A( $\omega$,k) . By using combinatorial arguments, we show a formula for the compon‐

ents of the matrix A(\mathrm{o}\mathrm{J},k) , and we carefully estimate the polynomial growth order of these components, as

k tends to infinity. Combining this with some calculations of the determinants of matrices which are similar

to the Vandermonde detenninant, we deduce the linear independence of the vectors (C_{\mathrm{r}}(a)-C_{\mathrm{r}}(b))_{\mathrm{r}\leq \mathrm{n}} for

cenain points a,b\in J(G) which are close to a given point x_{0}\in J(G) . Here, \mathrm{r}\leq \mathrm{n} means that r_{i}\leq n_{i} for

each i . From the‐linear independence of these vectors we deduce that a certain linear combination of vec‐

tors (C_{\mathrm{r}}(a)-C_{\mathrm{r}}(b))_{\mathrm{r}\leq \mathrm{n}} is bounded away from zero. This gives us the upper bound of the pointwise Hölder

exponents of C\in \mathscr{C} . Note that this argument is the key to prove Theorem 1.1 and it is the crucial point to

derive that the elements C\in \mathscr{C} are not locally constant in any point of the Julia set (Corollary 1.6). We

emphasize that those ideas are very new and they give us strong and systematic tools to analyze random

dynamical systems, singular functions, fractal functions and other related topics.

2. EXAMPLES

In this section, we give some examples which illustrate the main results of this paper.

For f\in \mathrm{R}\mathrm{a}\mathrm{t}, we set F(f) :=F ( \{f\rangle),J(f) :=J(\{f)) , and P(f)=P(\langle f) ). We denote by \mathscr{P} the set of poly‐
nomials of degree two or more. For g\in \mathscr{P} , we denote by K(g) the filled‐in Julia set. If G is a rational

semigroup and if K is a non‐empty compact subset of \hat{\mathbb{C}} such that g(K)\subset K for each g\in G , then Zorn�s

lemma implies that there exists a minimal set L of G with L\subset K ([Sumlla, Remark 3.9]).

The following propositions show us several methods to produce many examples of (fl, \cdots
,  f_{s+1} ) \in(\mathrm{R}\mathrm{a}\mathrm{t})^{s+1}

which satisfy assumptions (1)(2)(3) of this paper. For such elements (fl, . f_{s+1} ) and for every \mathrm{p}=
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(p_{i})_{i=1}^{s}\in(0,1)^{s} with \displaystyle \sum_{i=1}^{s}p_{i}<1 , we can apply the results Theorems 1.1, 1.2, 1.3, 1.4, 1.5 and Corol‐

laries 1.6, 1.7, 1.9 and 1.11 in Section 1.

Proposition 2.1. Laet (gl, \cdots

,  g_{s+1} ) \in(\mathrm{R}\mathrm{a}\mathrm{t})^{s+1} with \deg(g_{i})\geq 2,i=1\ldots,s+1 . Suppose that \langle g_{1}, g_{s+1} }
is hyperbolic,  J(g_{i})\cap J(g_{j})=\emptyset for every (i,j) with i\neq j, and that there exist at least two distinct minimal

sets of \langle g_{1} ,
\cdots

,  g_{s+1} }. Then there exists m\in \mathrm{N} such thatfor every n\in \mathrm{N} with n\geq m, setting f=g_{i}^{n},i=
1, s+1 , the element (fl, \cdots

,  f_{s+1} ) satisfies assumptions (1)(2)(3) of this paper

Proposition 2.2. Let (gl, \cdots
,  g_{s+1} ) \in(\mathrm{R}\mathrm{a}\mathrm{t})^{s+1} with \deg(g_{i})\geq 2, i=1, s+1 . Suppose that \displaystyle \bigcup_{i=1}^{s+1}P(g_{i})\subset

\displaystyle \bigcap_{i=1}^{s+1}F(g_{i}) , that  J(g_{i})\cap J(g_{j})=\emptyset for every (i,j) with i\neq j, and that there exist two compact subsets K_{1},K_{2}

of \hat{\mathbb{C}} with  K_{1}\cap K_{2}=\emptyset such that  g_{i}(K_{j})\subset K_{j} for every i=1 ,
\cdots

,  s+1 andfor \acute{j}=1,2 . Then there exists

m\in \mathbb{N} such that for every n\in \mathbb{N} with n\geq m, setting f_{i}=g_{i}^{n}, i=1 ,
\cdots

,  s+1 , the element (fl, \cdots ,  f_{s+1} )
satisfies assumptions (1)(2)(3) of this paper.

Combimng [Sumlla, Remark 3.9] with [Sumlla, Proposition 6.1], we also obtain the following.

Proposition 2.3. Let f_{1}\in \mathscr{P} be hyperbolic, i.e., P(f_{1})\subset F(f_{1}) . Suppose that Int (K(f_{1}))\neq\emptyset, where Int

denotes the set of interior points. Let  b\in \mathrm{I}\mathrm{n}\mathrm{t}(K(f_{1})) be a point. Let d\in \mathbb{N} with d\geq 2 . Suppose that

(\deg(f_{1}), d)\neq(2,2) . Then there exists a number c>0 such thatfor each  $\lambda$\in\{ $\lambda$\in \mathbb{C}:0<| $\lambda$|<c\} , setting

f_{2, $\lambda$}(z) := $\lambda$(z-b)^{d}+b, we have thefollowing.

(1) (f_{1},f_{2, $\lambda$}) satisfies assumpnons (1)(2)(3) of this paper with s=1.

(2) IfJ(f_{1}) is connected, then P(\{f_{1},f_{2, $\lambda$}\})\backslash \{\infty\} is bounded in \mathbb{C}.

Thus combining the above with Remark 1.15, we obtain that for any (f_{1},f_{2, $\lambda$}) in the above, there exists a

neighborhood V of (f_{1},f_{2, $\lambda$}) in (Rat)2 such that for every (g_{1},g_{2})\in V , assumptions (1)(2)(3) of this paper

are satisfied and Theorems 1.1, 1.2, 1.3, 1.4, 1.5 and Corollaries 1.6, 1.7,1.9 and 1.11 in Section 1 hold.

Also, endowing \mathscr{P} with the relative topology from Rat, we have that there exists an open neighborhood W

of (f_{1},f_{2, $\lambda$}) in \mathscr{P}^{2} such that for every (g_{1},g_{2})\in W and for every \mathrm{p}=p_{1}\in(0,1) , Corollary 1.8 holds.

Example 2.4. Let (f_{1},f_{2})\in \mathscr{P}^{2} be an element such that \{f_{1},f_{2}\} is hyperbolic, P((f_{1},f_{2}))\backslash \{\infty\} is bounded

in \mathbb{C} and  J(\{f_{1},h\rangle ) is disconnected. Note that there are plenty of examples of such elements (f_{1},f_{2})
(Proposition 2.3, [Sumllb, \mathrm{S}\mathrm{u}\mathrm{m}\mathrm{l}5\mathrm{b} Then Uy [Sum09, Theorems 1.5, 1.7], we have that  f_{1}^{-1}(J(G))\cap
 f_{2}^{-1}(J(G))=\emptyset where  G=(f_{1},f_{2} }. Thus (f_{1},h) satisfies assumptions (1)(2)(3) of this paper with s=1

and \mathrm{a}\mathrm{U} results in Section 1 hold for (f_{1},f_{2}) and for every \mathrm{p}=p_{1}\in(0,1) .

Example 2.5. Let g_{1}(z)=z^{2}-1,g_{2}(z)=z^{2}/4 , and let f_{i}=g_{i^{\mathrm{O}}}g_{i}, i=1,2 . Let \mathrm{p}=p_{1}=1/2 . Let G=

\langle f_{1},h\} . Then (f_{1},h) satisfies the assumptions (1)(2)(3) of this paper with s=1 and P(G)\backslash \{\infty\} is bounded

in \mathbb{C} ([Sumlla, Example 6.2],[Suml3, Example 6.2]). Thus for this (f_{1} ,h) , all results of Section 1 hold,

In particular, every non trivial C\in \mathscr{C} is Hölder continuous on \hat{\mathbb{C}} and varies precisely on the Julia set J(G)
(Corollary 1.6). Moreover, Uy Corollary 1.8, there exists a Borel dense subset A of J(G) with $\mu$_{\mathrm{p}}(A)=
1, \displaystyle \dim_{H}(A)\geq\dim_{H}($\mu$_{\mathrm{p}})=\frac{3}{2} such that for every non trivial C\in \mathscr{C} and for every z\in A , we have $\alpha$_{-}\leq

Höl(C,  z) =\displaystyle \frac{1}{2}\leq$\alpha$_{+} and C is not differentiable at z . For the figures of J(G) and the graphs of C_{0},C_{1} with

L=\{\infty\} , see [Sum13, Figures 2,3,4]. Note that Theorem 1.2 implies that $\alpha$_{-}<$\alpha$_{+} for every probability
vector (parameter) \mathrm{p}'\in(0,1) .

Example 2.6. Let  $\lambda$\in \mathbb{C} with 0<| $\lambda$|\leq 0.01 and let f_{1}(z)=z^{2}-1,f_{2}(z)= $\lambda$ z^{3} . Then by [\mathrm{S}\mathrm{u}\mathrm{m}\mathrm{i}\mathrm{l}5\mathrm{a}, Exam‐

ple 5.4], the element (f_{1},f_{2}) satisfies assumptions (1)(2)(3) of this paper with s=1 and P((f_{1},f_{2}\rangle)\{\infty\}
is bounded in \mathbb{C} . Thus all results in Section 1 hold for (f_{1},f_{2}) and for every probability vector (parameter)

17



\mathrm{p}=p_{1}\in(0,1) . Thus, semng p_{1}=\displaystyle \frac{1}{2} , G=\langle f_{1},h) and L=\{\infty\}, every non‐tnvial C\in \mathscr{C} is Hölder contin‐

uous on \hat{\mathbb{C}} and vmes precisely on J(G) , and Corollary 1.8 implies that there exists a Borel dense subset A

of J(G) with $\mu$_{\mathrm{p}}(A)=1 and \displaystyle \dim_{H}(A)'\geq 1+\frac{2\log 2}{\log 2+\log 3} 1.7737 such that for every non‐mvial C\in \mathscr{C} and

for every z\in A , we have  $\alpha$‐ \leq Höl(C,  z) =\displaystyle \frac{2\log 2}{\log 2+\log 3}(=.0.7737)\leq$\alpha$_{+} and C is not differentiable at z . Also,

by Theorem 1.2, we have $\alpha$_{-}<$\alpha$_{+} for every \mathrm{p}'. \in(0,1) .

Example 2.7. Let g_{1},g_{2}\in \mathscr{P} be hyperbolic. Suppose that (J(g_{1})\cup J(g_{2}))\cap(P(g_{1})\cup P(g_{2}))=\emptyset,  K(g_{1})\subset
\mathrm{I}\mathrm{n}\mathrm{t}(K(g_{2})) , and the union of attracting cycles of g_{2} in \mathbb{C} is included in Int (K(g_{1})) . Then by [Sumlla,

Proposition 6.3], there exists an m\in \mathbb{N} such that for each n\in \mathbb{N} with n\geq m , setting f_{1}=\cdot g_{1}^{n},f_{2}=g_{2}^{n} , we

have that (f_{1},h) satisfies assumptions (1)(2)(3) of this paper with s=1 . Thus all statements of the results

in Section 1 hold fbr (f_{1},h) and for every \mathrm{p}=p_{1}\in(0,1) .

The following proposition provides us a method to construct examples of (fl, \cdots

,  f_{s+1} ) \in \mathscr{P}^{s+1} for which

(1)(2)(3) hold and P((f_{1}, \ldots,f_{s+1}))\backslash \{\infty\} is bounded in \mathbb{C} . For such elements (fl, \cdots ,  f_{s+1} ) and for every

\mathrm{p}\in(0,1)^{S} with \displaystyle \sum_{i=1}^{s}p_{i}<1 , we can apply all the results in Section 1.

Proposition 2.8. Let g_{1}, g_{s+1}\in \mathscr{P} be hyperbolic and suppose that J(f_{i}) is connected for every i=

1
,

\cdots

,  s+1 . Suppose that J(f_{i})\subset Int(K(f_{i+1})) for every i=1 , \cdots ,  s. Suppose also that \displaystyle \bigcup_{i=2}^{s+1}P(g_{i})\backslash \{\infty\}\subset
 Int(K(f_{1})) . Then there exists an m\in \mathrm{N} such thatfor every n\in \mathbb{N} with n\geq m, setting f=g_{\mathrm{i}}^{n},i=1 ,

\cdots
,  s+1,

the element (fl, \cdots

,  f_{s+1} ) satisfies assumptions (1)(2)(3) and P(\{f_{1}, \ldots,f_{s+1}\rangle) \backslash \{\infty\} is bounded in \mathbb{C}.

Example 2.9. Let g_{1}(z)=z^{2}-1 and let g_{i}(z)=\displaystyle \frac{1}{10i}z^{2}, i=2 , \cdots ,  s+1 . Then (g_{1}, \cdots,g_{s+1}) satisfies the

assumptions of Proposition 2.8. Note that z^{2}-1 can be replaced by any hyperbolic element f\in \mathscr{P} with

connected Julia set such that J(f)\subset\{z\in \mathbb{C}:|z|<10\} and 0\in \mathrm{I}\mathrm{n}\mathrm{t}(K(f)) .

From one element (gl, . g_{m} ) \in(\mathrm{R}\mathrm{a}\mathrm{t})^{m} which satisfies assumptions (1)(2)(3) (with s+1=m), we obtain

many elements which satisfy assumptions (1)(2)(3) of our paper as follows.

Proposition 2.10. Let (gl, . g_{m} ) \in(\mathrm{R}\mathrm{a}\mathrm{t})^{m} with \deg(g_{i})\geq 2,i=1 ,
. m, and suppose that (gl, \cdots

,  g_{m} )
satisfies assumptions (1)(2)(3) of this paper Let n\in \mathrm{N} with n\geq 2 and let f_{1} ,

\cdots

,  f_{s+1} be mutually distinct

elements of \{g_{0\}_{l}}\mathrm{o}\cdots \mathrm{o}g_{a11}| ($\omega$_{1}, \cdots, w)\in\{1, m\}^{n}\} where s\geq 1 . Then we have the following.

(I) (fl, \cdots

,  f_{s+1} ) satisfies assumptions (1)(2)(3) of this paper Thus all statements in Theorems 1.1,

1.2, 1.3, 1.4, 1.5 and Corollaries 1.6, 1.7, 1.9 and 1.1l in Section 1 holdfor (fl, \cdots

,  f_{s+1} ), for

every minimal set L of \{f_{1} , ,  f_{s+1}\rangle andfor every \mathrm{p}=(p_{1}, \ldots,p_{s})\in(0,1)^{s} with \displaystyle \sum_{i=1}^{s}p_{i}<1.
(II) If, in addition to the assumption, (fl, \cdots

,  f_{s+1} ) \in \mathscr{P}^{s+1} , then statement (1) in Corollary 1.8 holds

for (fl, \cdots

,  f_{s+1} ) andfor every \mathrm{p}, and statement (2) in Corollary 1.8 holds for (fl, \cdots ,  f_{s+1} ) and

for every \mathrm{p} provided that one of (a)(b)(c) in the assumption of Corollary 1.8 (2) holds.

(m) If in addition to the assumption ofourproposition, (gl, \cdots

,  g_{m} ) \in \mathscr{P}^{m} and P((g_{1}, \ldots,g_{m}\rangle)\backslash \{\infty\}
is bounded in \mathbb{C} then P(\langle f_{1},\ldots,f_{s+1}\})\backslash \{\infty\} is bounded in \mathbb{C} . Thus, statement(2) in Corollary 1.8

holdsfor (fl, \cdots

,  f_{+1} ) andfor every \mathrm{p}.

Regarding Remark 1.15, we also have the following.

Lemma 2.11. Let s\geq 1 and letl=\{1, s+1\} . Then the set

{ (f_{i})_{i\in I}\in \mathscr{P}^{I} : (f_{i})_{i\in I} satisfies assumptions (1)(2)(3) and P( (f_{1}, \ldots

,  f_{s+1}\})\backslash \{\infty\} is bounded in \mathbb{C}}

is open in \mathscr{P}^{J}.
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We remark that the above examples, propositions and lemma in this section and Remark 1.15 imply that we

have plenty of examples to which we can apply the results in Section 1.

We give examples to which we can apply Corollary 1.11.

Lemma 2.12. Let (gl, \cdots

,  g_{s+1} ) be an element which satisfies assumptions (1)(2)(3). Let \mathrm{p}=(p_{i})_{i=1}^{s}\in
(0,1)^{S} with \displaystyle \sum_{i=1}^{s+1}p_{i}<1 . Let p_{s+1}=1-\displaystyle \sum_{i=\mathrm{i}}^{s}p_{i} . Then there exists an m\in \mathrm{N} such thatfor every n\in \mathbb{N} with

n\geq m, setting f=g_{i}^{n},i=1\ldots,s+1 , and setting G :=\{f_{1} ,
\cdots

,  f_{s+1} ), we have that (f_{1}, f_{s+1}) satisfies

assumptions (1)(2)(3) and  p_{i}\displaystyle \min_{z\in f_{i}^{-1}(J(G))}\Vertfí (z)\Vert>1 for every i=1, s+1 . Thus, for every minimal set

L of \langle f_{1} , \cdots ,  f_{s+1}\rangle , andfor every  z\in J(G) , we have that every non‐trivial C\in \mathscr{C} satisfies Höl(C, z) \leq$\alpha$_{+}<1
and C is not differentiable at z.
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