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1 Introduction

In this paper, we investigate a pollutant abatement investment strategy when the abatement

technology is stochastic. We consider a production economy and develop a stochastic endogenous

growth model. For analytical simplicity, the economy consists of a representative consumer and

a firm. The representative consumer has constant relative risk‐averse preferences and maximizes

his/her utility. The representative firm produces output using production capital and maximizes

its profit. The production process, however, generates pollutant emissions proportional to out‐

put, and these damage the consumer. Therefore, the firm must invest in pollutant abatement

activities to reduce pollutant emissions. We assume that the level of abatement technology is

governed Uy a stochastic differential equation. We formulate both agents� problems as a cen‐

tral planner�s problem that maximizes social welfare and obtain a nonlinear partial differential

equation that derives the optimal investment strategy.
Smulders and Gradus (1996), Steger (2005), Wälde (2011), and Bucci et al. (2011) also

investigated the social welfare maximizing problem. Smulders and Gradus investigated the

sustainable economic growth rate when pollutants from a production process were included in

the economy, and showed the socially optimal growth rate. Steger, Wälde, and Bucci et al.

considered stochastic technological progress and investigated an endogenous stochastic growth
model. This paper considers both components, pollutants from the production process and

stochastic technology, and investigates the optimal investment strategy for production capital
and abatement activity when the abatement technology is stochastic. The rest of the paper is

organized as follows. In Section 2, we analyze the social welfare maximizing problem, excluding

pollution from the production process as a base case. We derive the optimal consumption rate

in the closed form. In Section 3, we extend the base case model of Section 2 by incorporating

pollutants from the production process into the model. We solve the social welfare maximizing

problem and derive the equation, which leads to the optimal aUatement investment strategy.

Finally, Section 4 concludes the paper.

2 Base Case Model

In this section, we consider a social maximizing problem, excluding pollutants from the produc‐
tion process, as a base case model.

We consider a production economy with an infinite time horizon. For analytical simplicity,
the economy consists of a representative consumer and a firm.
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The representative firm produces output Y_{t} using production capital K . The firm�s produc‐
tion function F(K_{t}) is given Uy the following AK‐form:

Y_{t}=F(K_{t})=AK_{t},

where A is the level of production technology. As in Wälde (2011), the dynamics of the capital

stock are given by:

\mathrm{d}K_{t}=(I_{t}- $\delta$ K_{t})\mathrm{d}t- $\sigma$ K\mathrm{d}W_{t}^{K}, K_{0}=k (2.1)

where I_{t} is the capital investment,  $\delta$\in(0,1) is the depreciation rate,  $\sigma$>0 is the volatility, and

W_{t}^{K} is a standard Brownian motion on a filtered probability space ( $\Omega$, \mathcal{F}, \mathbb{P}, \{\mathcal{F}_{t}\}_{t\geq 0}) .

The representative consumer receives utility from consumption C_{t} . He/she has constant

relative risk‐averse preferences and a utility function given by:

U(C_{t})=\displaystyle \frac{1}{1- $\gamma$}C_{t}^{1- $\gamma$} , (2.2)

where  $\gamma$>0 is the degree of relative risk aversion. The consumer�s budget constraint is:

Y_{t}=I_{t}+C_{t}.

Then, we have:

I_{\mathrm{t}}=Y_{t}-C_{t} (2.3)

It follows from (2.1) and (2.3) that the dynamics of the production capital can be rewritten as:

\mathrm{d}K_{t}=(Y_{t}- $\delta$ K_{t}-C_{t})\mathrm{d}t-$\sigma$_{K}K_{t}\mathrm{d}W_{t}^{K}, K_{0}=k (2.4)

The representative firm maximizes its profits. The representative consumer maximizes

his/her utility, subject to the budget constraint. Therefore, the central planner�s problem is

to choose consumption \{C_{t}\} in order to maximize the social welfare:

\displaystyle \hat{V}(k)=\max_{\{C_{t}\}}\mathrm{E}[\int_{0}^{\infty}\mathrm{e}^{-rt}U(C_{t})\mathrm{d}t] . (2.5)

The Hamilton‐Jacobi‐Bellman (HJB) equation of the central planner�s problem (2.5) is:

r\displaystyle \hat{V}(k)=\max_{c}\{\frac{1}{1- $\gamma$}c^{1- $\gamma$}+(Ak- $\delta$ k-c)\hat{V}_{k}(k)+\frac{1}{2}$\sigma$_{K}^{2}k^{2}\hat{V}_{kk}(k)\} . (2.6)

From the first‐order condition for the optimality, we obtain the optimal consumption as follows:

\hat{c}^{*}=\hat{V}_{k}(k)^{-\frac{1}{ $\gamma$}} . (2.7)

From the utility function (2.2), we can guess that a candidate solution to the value function is:

\hat{V}(k)=Bk^{1- $\gamma$} , (2.8)

where B is a constant to be determined. Substituting (2.8) into (2.6), we obtain:

[ $\gamma$(1- $\gamma$)^{-\frac{1}{ $\gamma$}}B^{-\frac{1}{ $\gamma$}}+(A- $\delta$)(1- $\gamma$)-\displaystyle \frac{$\sigma$_{K}^{2}}{2}(1- $\gamma$) $\gamma$-r]Bk^{1- $\gamma$}=0 . (2.9)
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As (2.9) must hold for all k , the constant to be determined, B , is:

B=$\gamma$^{ $\gamma$}(1- $\gamma$)^{-1}[r-(A- $\delta$)(1- $\gamma$)+\displaystyle \frac{$\sigma$^{2}}{2} $\gamma$(1- $\gamma$)] . (2.10)

Thus, we obtain the optimal consumption in the following analytical form:

\displaystyle \hat{c}^{*}=$\gamma$^{-1}[r-(A- $\delta$)(1- $\gamma$)+\frac{$\sigma$^{2}}{2} $\gamma$(1- $\gamma$)]k . (2.11)

3 The Model with Pollution

In this section, we extend the base case model by incorporating pollutants from the production

process.

For simplicity, in this section, we assume that the production capital stock grows determin‐

istically and is given by:

\mathrm{d}K_{t}=(I_{t}- $\delta$ K_{t})\mathrm{d}t, K_{0}=k . (3.1)

The output production process generates pollutant emissions proportional to the output

level,  $\eta$ F(K_{t}) , where  $\eta$>0 is the emission conversion coefficient. As the pollutant damages the

consumer, the firm invests in pollutant abatement activity H(I_{t}^{A}) :

H(I_{t}^{A})=X_{t}(I_{t}^{A})^{2} , (3.2)

where I_{t}^{A} is the abatement investment and X_{t} is the level of abatement technology. As in Steger

(2005) and Wälde (2011), we assume that the abatement technology is governed by following
the geometric Brownian motion:

\mathrm{d}X_{t}= $\mu$ X_{t}\mathrm{d}t+ $\sigma$ X_{t}\mathrm{d}W_{t}, X_{0}=x . (3.3)

The abatement activity reduces the pollutant emissions, and the net pollutant emissions E_{t} are

expressed as:

E_{t}= $\eta$ F(K_{t})-H(I_{t}^{A}) . (3.4)

The pollutant emissions are accumulated by:

\mathrm{d}P_{t}=(E_{t}-$\delta$_{P}P_{t})\mathrm{d}t, P_{0}=p , (3.5)

where $\delta$_{P}\in(0,1) is the depreciation rate of the pollutant stock P_{t}.

The representative consumer suffers from the pollutant stock. As in Smulders and Gradus

(1996), incorporating disutility from the pollutant, the consumer�s utility function becomes:

U(C_{t}, P_{t})=\displaystyle \frac{1}{1- $\gamma$}(C_{t}P_{t}^{-( $\rho$})^{1- $\gamma$} (3.6)

where  $\phi$>0 is the disutility coefficient. The budget constraint of the consumer is:

Y_{t}=I_{t}+I_{t}^{A}+C_{t}
=I_{t}+$\theta$_{t}Y_{t}+C_{t},
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where $\theta$_{t}>0 is the abatement investment share, which is given by:

$\theta$_{t}=\displaystyle \frac{I_{t}^{A}}{Y_{t}}.
By employing this share, the net emissions flow is calculated as:

E_{t}= $\eta$ AK_{t}-X_{t}$\theta$_{t}^{2} (AKt)2 (3.7)

Substituting (3.7) into (3.5), the dynamics of the pollutant stock can be rewritten as:

\mathrm{d}P_{t}=[ $\eta$ AK_{t}-X_{t}$\theta$_{t}^{2}(AK_{t})^{2}-$\delta$_{P}P_{t}]\mathrm{d}t, P_{0}=p . (3.8)

Rewriting the budget constraint of the consumer, the capital investment is:

I_{\mathrm{t}}=(1- $\theta$)Y_{t}-C_{t} . (3.9)

Fkom (3.1) and (3.9), the dynamics of the capital stock are rewritten as:

\mathrm{d}K_{t}=((1- $\theta$)Y_{t}- $\delta$ K_{t}-C_{t})\mathrm{d}t, K_{0}=k . (3.10)

As in Section 2, the representative firm maximizes its profits and the representative consumer

maximizes his/her utility, subject to the budget constraint. However, the firm�s production ac‐

tivity generates a pollutant as a by‐product, and the consumer suffers from the pollutant, which

reduces his/her utility. Therefore, the central planner�s problem is to choose a consumption
level and an investment share for the abatement activity in order to maximize social welfare:

V(k,p, x)=\displaystyle \{C_{t},$\theta$_{t}\}\max \mathbb{E}[\int_{0}^{\infty}\mathrm{e}^{-rt}(U(C_{t}, P_{t}))\mathrm{d}t] . (3.11)

The HJB equation of the central planner�s problem (3.11) is:

rV=\displaystyle \max_{c, $\theta$}\{ \displaystyle \frac{1}{1- $\gamma$}(cp^{- $\phi$})^{1- $\gamma$}+[(1- $\theta$)Ak- $\delta$ k-c]V_{k}+
(3.12)

[( $\eta$ Ak-x$\theta$^{2}(Ak)^{2}-$\delta$_{P}p]V_{p}+ $\mu$ xV_{x}+\displaystyle \frac{1}{2}$\sigma$^{2}x^{2}V_{xx} .

From the first‐order condition for the optimality, we obtain the optimal consumption c^{*} and

optimal abatement investment share $\theta$^{*} :

c^{*}=p^{-\frac{ $\phi$(1- $\gamma$)}{ $\gamma$}}V_{k}^{-\frac{1}{ $\gamma$}} , (3.13)

$\theta$^{*}=-\displaystyle \frac{1}{2}x^{-1}(Ak)^{-1}\frac{V_{k}}{V_{p}} . (3.14)

Substituting (3.13) and (3.14) into (3.12), we obtain the following nonlinear partial differential

equation:

rV=\displaystyle \frac{ $\gamma$}{1- $\gamma$}p^{-\frac{ $\phi$(1- $\gamma$)}{ $\gamma$}}V_{k}^{-\frac{1-}{\prime $\gamma$}\mathrm{L}}+[(A- $\delta$)k+\frac{1}{2}x^{-1}(Ak)^{-1}\frac{V_{k}}{V_{p}}-\frac{1}{4}x^{-1}V_{k}]V_{k} (3.15)

+[ $\eta$ AkV_{p}-$\delta$_{P}p]V_{p}+ $\mu$ xV_{x}+\displaystyle \frac{1}{2}$\sigma$^{2}x^{2}V_{xx}.
The optimal consumption level and abatement investment share are derived from the nonlinear

partial differential equation (3.15). Because of the nonlinearity, we have to solve the equation

(3.15) numerically.
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4 Conclusion

In this paper, we analyzed a pollutant abatement investment strategy when the abatement tech‐

nology is stochastic. We obtained the nonlinear partial differential equation, which derives the

optimal abatement investment strategy. Because the partial differential equation is nonlinear,
it is solved numerically. We leave the numerical calculation for future work.

There are several ways to extend this paper in future. For instance, we could consider

abatement technological progress that follows ajump diffusion process, and we could incorporate
both the production and the abatement technology into the model.
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