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Abstract

We review the recent progress on the definition of randomness with

respect to conditional probabilities and a generalization of van Lambal‐

gen theorem (Takahashi 2006, 2008, 2009, 2011). In addition we show

a new result on the random sequences when the conditional probabili‐
tie \mathrm{s}^{\backslash }\mathrm{a}\mathrm{r}\mathrm{e} mutually singular, which is a generalization of Kjos Hanssen�s

theorem (2010). Finally we propose a definition of random sequences
with respect to conditional probability and argue the validity of the

definition from the Bayesian statistical point of view.
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1 Introduction

The notion of conditional probability is one of the main idea in probability
theory. In order to define conditional probability rigorously, Kolmogorov
introduced measure theory into probability theory [4]. The notion of ran‐

domness is another important subject in probability and statistics.

In statistics, the set of random points is defined as the compliment of

give statistical tests. In practice, data is finite and statistical test is a set of

small probability, say 3%, with respect to null hypothesis. In order to dis‐

cuss whether a point is random or not rigorously, we study the randomness

of sequences (infinite data) and null sets as statistical tests. The random

set depends on the class of statistical tests. Kolmogorov brought an idea of

recursion theory into statistics and proposed the random set as the compli‐
ment of the effective null sets [5, 6, 8]. The effective null set is defined as the

*

Tokyo 121‐0062 Japan. hayato.takahashi@ieee.org
r

This work was done when the author was with Gifu University and supported by KAK‐

ENHI (24540153).

数理解析研究所講究録
第2030巻 2017年 39-46

39



limit of recursively enumerable sets that goes to zero effectively. Many stan‐

dard statistical tests are shown to be effective null set. One of the advantage
of this definition is that the universal (nonparametric) character of the class

of tests, which leads to universal (nonparametric) theory of statistics, for

example see [7]. Another advantage of the definition is that the random set

is characterized with entropy, i.e., Kolmogorov complexity. It is impossible
to. define randomness of finite strings rigorously, however it is possible to

argue asymptotic theory of random sequences with the help of complexity
theory.

Kolmogorov showed that conditional probabilities exist with probability
one, however it was not known whether conditional probability exists for

each given parameter. Therefore only a few research have been made about

conditional randomness with very restricted conditions [16]. For survey on

conditional randomness, see [1].
In this paper we review the recent progress on the definition of random‐

ness with respect to conditional probabilities and a generalization of van

Lambalgen theorem [10, 12, 11, 13 In addition we show a new result on

the random sequences when the conditional probabilities are mutually sin‐

gular, which is a generalization of Kjos Hanssen�s theorem [3]. There are

three variations of Martin‐Löf (ML) randomness for conditional probabil‐
ities, i.e., section of global ML‐random set at the parameter, ML‐random

set defined form conditional probabilities, and ML‐random set defined form

conditional probabilities with oracle of the parameter. Generalized form of

van Lambalgen theorem and generalized form of Kjos Hanssen�s theorem

show the relations of above three variants of randomness. In particular if

the conditional probability is computable with oracle of the parameter then

section of global ML‐random set at the parameter and ML‐random set de‐

fined form conditional probabilities with oracle of the parameter are equal,
and in addition if conditional probabilities are mutually singular then the

above three variations are equal.
Finally we propose a definition of random sequences with respect to

conditional probabiities as the section of ML‐random set at the parameter
and argue the validity of the definition from the Bayesian statistical point
of view.
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2 Conditional probabilities and generalized Lam‐

balgen theorem

Since conditional probabilities are defined through a joint probability of

product space, we study the randomness of a joint probability of product
space. We consider the space  $\Omega$:=\{01\}^{\infty} and computable probability
on ( $\Omega$\times $\Omega$, \mathcal{B}_{2})_{:}\mathcal{B}_{2} is the  $\sigma$‐algebra generated from cylinder sets \{ $\Delta$(x)\times
\triangle(y)|x, y\in S\} . Note that the completion of B_{2} does not change the random

set and it does not matter the following argument. S is the set of the finite

binary strings and  $\Delta$(x) :=\{x $\omega$| $\omega$\in $\Omega$\} , where  x $\omega$ is the concatenation of

 x and  $\omega$ . Let  $\lambda$ be the empty word. We write  x\sqsubseteq y if x is a prefix of y. \mathbb{N}

is the set of natural numbers and \mathbb{Q} is the set of rational numbers. In order

to clear the difference between strings and sequences, we use symbols such

as x, y for strings S and x^{\infty}, y^{\infty} for sequences  $\Omega$.

P on ( $\Omega$\times $\Omega$, \mathcal{B}_{2}) is called computable if there is a computable function

A : S\times S\times\cdot \mathrm{N}\rightarrow \mathbb{Q} such that Vx, y\in S, k\displaystyle \in \mathrm{N}|F(x, y)-A(x, y, k)|<\frac{1}{k}.
Intuitively speaking, P is computable if it is approximated with arbitrary
precision with Turing machine. Computable probabilities on ( $\Omega$, \mathcal{B}) are de‐

fined similar manner, where B is the  $\sigma$‐algebra generated from \{ $\Delta$(x)|x\in S\}.
Let U\subseteq S\times \mathrm{N}. U is called test (effective null set) with respect to

( $\Omega$, \mathcal{B}, P) if

U is a recursively enumerable set (r.e. set), (1)
\forall n Ũn\supseteq\tilde{U}_{n+1} , and P (Ũn ) <2^{-n}

where U_{n}=\{x|(x, n) \in\'{U}\} and \displaystyle \ovalbox{\tt\small REJECT} n=\bigcup_{x\in U_{n}}\triangle(x) . In the following we write

Ã :=\displaystyle \bigcup_{x\in A}\triangle(x) for A\subseteq S . A set A is called recursively enumerable if there

is a computable f : \mathrm{N}\rightarrow A such that f(\mathrm{N})=A.
The set of Martin‐Löf random | ( \mathrm{M}\mathrm{L}‐random) sequences w.r. \mathrm{t}. P is defined

as the compliment of the effective null sets w.r. \mathrm{t}. P . We denote it Uy \mathcal{R}^{P},
i.e., \mathcal{R}^{P} := (\displaystyle \bigcup_{U:test}\bigcap_{n}\ovalbox{\tt\small REJECT} n)^{c} . Note that if P is not computable, it is also called

Hippocratic randomness [3]. For simplicity, throughout the paper, we call

\mathcal{R}^{P} as ML‐random set and if computability assumption of P is necessary, we

always state it. Tests and ML‐random set \mathcal{R}^{P} with respect to ( $\Omega$\times $\Omega$ B_{2}\mathrm{P})
are defined in similar manner. If we consider the class of tests that is r.e. with

oracle y^{\infty} in (1), the random set defined with the extended class of tests is

called ML‐random with oracle y^{\infty} and denote it with \mathcal{R}^{P,y^{\infty}}

Lambalgen�s theorem [15] says that a pair of sequences (x^{\infty}, y^{\infty})\in$\Omega$^{2}
is ML‐random w.r. \mathrm{t} . the product of uniform measures iff x^{\infty} is ML‐random

and y^{\infty} is ML‐random with oracle x^{\infty} . In [16, 10, 12, 11, 13] Lambalgen�s
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theorem is generalized for computable correlated probabilities.
Let  X=Y= $\Omega$ and  P be a computable probability on X \times Ỳ.  P_{X} and

P_{Y} are marginal distributions on X and Y
, respectively. In the following we

write P(x, y) :=P( $\Delta$(x)\times $\Delta$(y)) and P(x|y) :=P( $\Delta$(x)| $\Delta$(y)) for x, y\in S.
Let \mathcal{R}^{P} be the set of ML‐random points and \mathcal{R}_{y^{\infty}}^{P} :=\{x^{\infty}|(x^{\infty}, y^{\infty})\in

\mathcal{R}^{P}\} . In [10, 11] ML‐random sequences satisfies martingale convergence
theorem and from this fact we can show the existence of conditional proba‐
bilities as follows.

Theorem 1 ([101211]) Let P be a computable probability on X\times Y

and

\forall x\in S, y^{\infty}\in \mathcal{R}^{p_{Y}}P(x|y^{\infty}) :=\displaystyle \lim_{y\rightarrow y^{\infty}}P(x|y) if the right‐hand‐side exist.

Then P(\cdot|y^{\infty}) is a probability on ( $\Omega$, \mathcal{B}) for each y^{\infty}\in \mathcal{R}^{P_{Y}}.
Let \mathcal{R}^{P(\cdot|y^{\infty}),y^{\infty}} be the set of ML‐random set w.r. \mathrm{t}. P(\cdot|y^{\infty}) with oracle

y^{\infty}.

Theorem 2 ([10121113]) Let P be a computable probability on  X\times

Y. Then

\mathcal{R}_{y^{\infty}}^{P}\supseteq \mathcal{R}^{P(\cdot|y^{\infty}),y^{\infty}} for all y^{\infty}\in \mathcal{R}^{P_{Y}} . (2)
Fix y^{\infty}\in \mathcal{R}^{P_{Y}} and suppose that P(\cdot|y^{\infty}) is computable with oracle y^{\infty}.
Then

\mathcal{R}_{y^{\infty}}^{P}=\mathcal{R}^{P(\cdot|y^{\infty}),y^{\infty}} (3)

It is known that there are non‐computaule conditional probabilities [9]
and in [2] Bauwens showed an example that violates the equality in (3)
when the conditional probability is not computable with oracle y^{\infty} . In [14]
an example that for all y^{\infty} , the conditional probabilities are not computable
with oracle y^{\infty} and (3) holds.

In Vovk and V�yugin [16] (3) is shown under the condition that condi‐

tional probabilities exist for all parameters and each conditional probability
is computable with oracle of parameter. Bayesian theory consists of prior
and parametric model and many models satisfy the assumption in [16], e.g.,
Bernoulli and finite order Markov processes satisfy the model. However in

our model we start with computable global P
, and prior and parametric

model are derived from P as marginal distribution and conditional proba‐
bilities, respectively. In particular we can argue the case that conditional

probability is not computable with oracle of given parameter., It is possible
that conditional probabilities and parametric model may differ at null set of

parameters [10].
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3 Bayesian statistics

We apply randomness theory to Bayesian statistics and show a point wise

theory for Bayesian statistics. In Bayesian statistics, we suppose a proba‐
bility on parameter space and it is called prior. Let X and Y be sample
and parameter spaces, respectively. Let P be a probability on X\times Y then

marginal distributions

P_{X}=\displaystyle \int_{Y}P(\cdot|y^{\infty})dF_{Y}
and F_{Y} are called mixture and prior distributions, respectively.

Theorem 3 ([101211| ) Let P be a computable probability‐ on X\times Y.

P(\mathcal{R}_{y^{\infty}}^{P})=1 if y^{\infty}\in \mathcal{R}^{P_{Y}} and \mathcal{R}_{y^{\infty}}^{P}=\emptyset else.

\displaystyle \mathcal{R}^{p_{X}}=\bigcup_{y^{\infty}\in \mathcal{R}^{P_{\mathrm{Y}}}}\mathcal{R}_{y^{\infty}}^{P} . (4)

(4) shows that the natural properties of Bayesian mixture.

Next we study mutually singular conditional probabilities. Kjos Hanssen

[3] showed that for Bernoulli model P(\cdot| $\theta$) ,

\mathcal{R}^{P(\cdot| $\theta$)}=\mathcal{R}^{P(\cdot| $\theta$), $\theta$} for all  $\theta$ . (5)

We generalize Kjos Hanssen�s theorem (5) for mutually singular conditional

probabilities. Strictly speaking, prior space of Bernoulli model is [0 , 1 ] ,
how‐

ever we consider  $\Omega$ as prior space.

In [10, 13] equivalent conditions for mutually singular conditional prob‐
abilities are shown.

Theorem 4 ([101213]) Let P be a computable probability on X\times Y,
where  X=Y= $\Omega$ . The following six statements are equivalent:
(1)  P(\cdot|y)\perp P(\cdot|z) if  $\Delta$(y)\cap\triangle(z)=\emptyset for  yz\in S.
(2) \mathcal{R}^{P(\cdot|y)}\cap \mathcal{R}^{P(\cdot|z)}=\emptyset if  $\Delta$(y)\cap\triangle(z)=\emptyset for  y, z\in S.

(3) P_{Y|X}(\cdot|x) converges weakly to  I_{y}\infty as  x\rightarrow x^{\infty} for (x^{\infty}, y^{\infty})\in \mathcal{R}^{P_{f}}
where  I_{y}\infty is the probability that has probability of 1 at  y^{\infty}.
(4) \mathcal{R}_{y^{\infty}}^{P}\cap \mathcal{R}_{z^{\infty}}^{P}=\emptyset if  y^{\infty}\neq z^{\infty}.
(5) There exists f : X\rightarrow Y such that f(x^{\infty})=y^{\infty} for (x^{\infty}, y^{\infty})\in \mathcal{R}^{P}.
(6) There exists f : X\rightarrow Y and Y\underline{\subseteq}Y such that P\mathrm{y}(Y)=1 and f=

y^{\infty}, P(\cdot;y^{\infty})-a.s . for y^{\infty}\in Y.
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The above theorem shows that consistency of posterior distribution for each

pair of random sequences and their equivalent conditions. It is interesting
to see that the condition (1) and (6) do not have algorithmic notion.

Generalized form of Kjos Hanssen�s theorem (5) is as follows.

Theorem 5 Let P be a computable probability on X\times Y , where X=Y= $\Omega$.

Under one of the condition of Theorem 4, we have

\mathcal{R}_{y}^{p_{\infty}}\supseteq \mathcal{R}^{P(\cdot|y^{\infty})}\supseteq \mathcal{R}^{P(\cdot|y),y^{\infty}} for all y^{\infty}\in \mathcal{R}^{P_{Y}}.

Fix y^{\infty}\in \mathcal{R}^{P_{Y}} and suppose that P(\cdot|y^{\infty}) is computable with oracle y^{\infty}.
Then

\mathcal{R}_{y^{\infty}}^{P}=\mathcal{R}^{P(\cdot|y^{\infty})}=\mathcal{R}^{P(\cdot|y^{\infty}),y^{\infty}}
Before we prove Theorem 5, we need a lemma.

Lemma 1 Let P be a computable probability on X\times Y , where X=Y= $\Omega$.

Fix y^{\infty}\in \mathcal{R}^{P_{Y}} then

\forall y\subset y^{\infty}\mathcal{R}^{P(\cdot|y^{\infty})}\subseteq \mathcal{R}^{P(\cdot|y)}.

Proof) In [11] Corollary 4.1, it is shown that there is an integer M such that

 y^{\infty}\displaystyle \in \mathcal{R}^{P_{Y}}\Rightarrow\sum_{n}P((\ovalbox{\tt\small REJECT} n)_{y}\infty|y^{\infty})<M<\infty , (6)

where  U is a test with respect to P and ( Ũn)_{y}\infty=\{x^{\infty}|(x^{\infty}, y^{\infty})\in \ovalbox{\tt\small REJECT} n\}.
From (6), we have for all k

P(\displaystyle \sum_{n}I_{(U_{n})_{y}\infty}->k|y^{\infty})<\frac{M}{k} , (7)

where I is the characteristic function, i.e., I_{(}Ũn)_{y}\infty(x^{\infty})=1 if x^{\infty}\in( Ũ n)_{y}\infty
else O.

Let  y= $\lambda$ then we have  P(\cdot| $\lambda$)=P_{X} . Let U^{X} be a test with respect to

P_{X} and U^{X\times $\lambda$} :=\{(x $\lambda$, n)|(x, n)\in U^{X}\} . We see that U^{X\times $\lambda$} is a test with

respect to P . Since (\tilde{U}_{n}^{X\mathrm{x} $\lambda$})_{y}\infty=\tilde{U}_{n}^{X} , from (7) we have

\displaystyle \forall kP(\sum_{n}I_{U_{n}^{X}}->k|y^{\infty})<\frac{M}{k}.
Thus we have a test V^{X} with respect to \mathcal{R}^{P(\cdot|y^{\infty})} such that \forall k\tilde{V}_{k}^{X}=
\displaystyle \{\sum_{nU_{n}^{X}}I->M2^{k}\} and the lemma proved for y= $\lambda$.
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We can show the lemma for any finite prefix y\subset y^{\infty} in the similar way.

\blacksquare

Proof of Theorem 5) As with the same way of Theorem 3, we have

\displaystyle \forall y\mathcal{R}^{P(\cdot|y)}=\bigcup_{y^{\infty}\in \mathcal{R}^{P_{Y}}\cap $\Delta$(y)}\mathcal{R}_{v^{\infty}}^{P} . (8)

For example consider P(\cdot|X\times $\Delta$(y)) and its ML‐random set and observe

that \mathcal{R}^{P(\cdot|X\times\triangle(y))}=\mathcal{R}^{P}\cap(X\times\triangle(y)) .

Suppose that \mathcal{R}_{y^{\infty}}^{P}\cap \mathcal{R}_{z^{\infty}}^{P}=\emptyset if  y^{\infty}\neq z^{\infty} . Then from (8), we have

\mathrm{n}_{y\rightarrow y^{\infty \mathcal{R}^{P(\cdot|y)}=\mathcal{R}_{y^{\infty}}^{P}}}.
From Lemma 1, we have the first statement of the theorem. The latter part
follows from Theorem 2 and the first statement. \blacksquare

4 Bayesian definition of random sequences

In this paper we discussed three variations of ML‐randomness with respect
to conditional probabilities, i.e., \mathcal{R}_{y^{\infty}}^{P}, \mathcal{R}^{P(\cdot|y^{\infty})} , and \mathcal{R}^{P(\cdot|y^{\infty}),y^{\infty}} These

relation are shown in Theorem 2 and 5. However the only proven variants

that satisfy the properties of Bayesian mixture (4) is \mathcal{R}_{y^{\infty}}^{P} . Therefore as in

[10, 11] I propose that \mathcal{R}_{y^{\infty}}^{P} as the Bayesian definition of random sequences

with respect to conditional probabilities.
Note that \mathcal{R}^{P(\cdot|y^{\infty})} and \mathcal{R}^{P(\cdot|y^{\infty}),y^{\infty}} are defined from local conditional

probability P(\cdot|y^{\infty}) and y^{\infty} , and \mathcal{R}_{y^{\infty}}^{P} is defined from global P and y^{\infty}.
It is interesting to see that these three sets are equal if the conditional

probabilities are mutually singular and computable with oracle y^{\infty}.
One might think that a sequence is a good random one if it is in the

compliment of the large class of statistical tests. The class of tests of local

conditional probabilities are larger than the class of tests of the section of

global probability at the parameter under the conditions of Theorem 2 and

5. However from Theorem 2, 3, and 5, the properties of Bayesian mixture

(4) might be violated for local conditional randomness, which may lead to

a completely new idea in randomness theory.

\mathcal{R}_{y^{\infty}}^{P} satisfies many probability law related to Bayesian statistics and

information theory, for more details, see [1113].
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