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Abstract

We review the application of the notion of local convergence on 10‐

cally finite randomly rooted graphs, known as Benjamini‐Schramm con‐

vergence, to the calculation of the global eigenvalue density of random

matrices \mathrm{f}^{l}\mathrm{r}om the  $\beta$‐Gaussian and  $\beta$‐Laguerre ensembles. By regarding a

random matrix as the weighted adjacency matrix of a graph, and choos‐

ing the root of such a graph with uniform probability, one can use the

Benjamini‐Schramm limit to produce the spectral measure of the ad‐

jacency operator of the limiting graph. We illustrate how the Wigner
semicircle law and the Marchenko‐Pastur law are obtained from this ma‐

chinery.

1 Introduction

The one‐point density of the eigenvalues of random matrices from the Gaussian

and Wishart ensembles, given by the Wigner semicircle and Marchenko‐Pastur

laws respectively, are well‐known objects in random matrix theory, and they
have been derived by several different methods (see, e.g., [1, 2 most notably
the orthogonal polynomial method and the method of eigenfunction expansions
in the Coulomb gas analogy. These methods rely on the direct calculation of

eigenvalue densities for matrices of finite size, after which the infinite size hmit

is taken and the (one‐point) eigenvalue density is recovered from the dominant‐

order quantities.
In this review, we focus on a different approach: we illustrate hòw to use

the Benjamini‐Schramm convergence on randomly rooted locally finite graphs
{3] to obtain an object which contains the information of the eigenvalue density
of the random matrix ensemble in question after taking the infinite‐size limit.

The Benjamini‐Schramm convergence was initially developed with the goal of

proving that, if one considers a random walk on a finite graph which has a

randomly rooted locally finite limiting graph, the random walk on the limiting
graph is recurrent. However, this notion of convergence can be used to study the

behavior of other quantities related to the limiting graph, such as its adjacency
operator and its eigenvalues.

The connection between the Benjamini‐Schramm convergence and random

matrix theory comes from regarding any one particular ensemble of random ma‐

trices as a set of adjacency operators on graphs. In particular, the  $\beta$‐ensembles

introduced by Dumitriu and Edelman [4] and Edelman and Sutton [5], which
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extend the classical (threefold) random matrix ensembles from the discrete pa‐

rameter  $\beta$=1 , 2 or 4 to  $\beta$ real and positive, are sparse matrices with finite

entries almost surely. These two properties (sparsity and boundedness of en‐

tries) turn out to be critical in the application of the method reviewed here.

Once one considers the graph represented by the matrix ensemble in question,
one. can take the Benjamini‐Schramm limit to obtain the randomly rooted lim‐

iting graph and calculate the spectral measure of its adjacency operator, and

subsequently the eigenvalue density of the random matrix ensemble in question
by using the results in [6].

We review the definition of the Benjamini‐Schramm convergence in Sec. 2,
we study the adjacency operator and its spectral measure in Sec. 3, and we

illustrate the cases of the  $\beta$‐Hermite and  $\beta$‐Laguerre ensembles in Sec. 4. We

offer a few concluding remarks in Sec. 5. This review is based on notes taken

during lectures given by B. Virág at the Les Houches Physics School during the

July 2015 summer school: Stochastic Processes and Random Matrices.

2 The Benjamini‐Schramm convergence

Following [3], we consider the set of connected graphs  G=(V, E) , and we define

rooted graphs as ordered pairs (G, 0) where the vertex 0\in V is the root. We

define the space of isomorphism classes of rooted, connected, and locally finite

graphs of maximum degree D by \mathcal{R}\mathcal{G}_{D} . This means that every.vertex v\in V of a

rooted graph (G, 0)\in \mathcal{R}\mathcal{G}_{D} has a finite number of neighbors, but the number of

vertices in the graph may be infinite. Consider the locally finite rooted graphs
(G, 0) and (G', 0 Then, we can define the metric

d[(G, 0) , (G', o :=2^{-k[(G,0),(G',0')]} , (1)

where

k[(G, 0) , (G', 0 :=\displaystyle \sup\{r\in \mathrm{N}_{0}:B_{r}(G, 0)\simeq B_{r}(G', 0 (2)
and B_{r}(G, 0) is the subgraph of radius r around the root 0 of G . If the two

rooted graphs are isomorphic, then k tends to infinity and d[(G,0),.(G', 0)]=0.
We see that \mathcal{R}\mathcal{G}_{D} is compact under the metric d[(G, 0) , (G', 0

We consider the random rooted graphs obtained by choosing the root 0 with

uniform probability from the vertices of G . Thanks to the metric in Eq. (1) and

the compactness of \mathcal{R}\mathcal{G}_{D} , we can define probability measures on \mathcal{R}\mathcal{G}_{D} . Consider

a Borel set \mathcal{B}\subset \mathcal{R}\mathcal{G}_{D} . Then, for the random graphs we consider, we denote the

probability that (G, 0)\in \mathcal{B} with 0\in V chosen randomly uniformly by $\nu$_{G}(B) .

Then, \mathrm{v}_{G}(\{(G, u =\mathrm{v}_{G}(\{(G, v for all u, v\in V by definition. Then, in the

case where G is a finite graph, and denoting by \# V the number of vertices in G,

$\nu$_{G}(\displaystyle \{(G, v =\frac{1}{\# V} (3)

for all v\in V . When G is infinite, its vertices are labeled with a continuous

parameter r\in[0 , 1 ] , say, and $\nu$_{G}(\{(G, v_{r})_{r\in R}\}) is the Lebesgue measure of the

set R\subset[0 , 1 ] . If we write B=\{(H_{j}, v_{j})\}_{j}, \mathrm{v}_{G}(B) is given by

$\nu$_{G}(B)=1[G\displaystyle \in\{H_{j}\}_{j}]\int_{r:(G,v_{r})\in B}$\nu$_{G}(\{(G, v_{r} dr, (4)
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where 1 is the indicator function. The probability that (G, 0)\in B is zero when

no graph in B is isomorphic to G , and the integral represents the fraction of all

the random rooted graphs obtained from G which he in B . We denote by \mathbb{P}_{G}
the probability law with respect to $\nu$_{G}(B) , and its expectation will be denoted

by \mathbb{E}_{G} . We are now ready to give the definition of the Benjamini‐Schramm
convergence.

Definition 2.1 (Benjamini‐Schramm convergence). Consider the sequence of

rooted graphs \{(G_{n}, 0_{n})\}_{n=0}^{\infty} , with roots chosen randomly with uniform prob‐
ability. The rooted random graph (G, 0) is the distributional limit of the

sequence if for every r>0 and every finite rooted graph (H, 0

\mathbb{P}_{G_{n}}[(H, 0')\simeq(B_{r}(G_{7},0_{n}), 0_{n})]^{j}\vec{\rightarrow}\infty \mathbb{P}_{G}[(H, 0)\simeq(B_{r}(G, 0), 0
that is, if the law of (G_{n}, 0_{n}) tends locally weakly to the law of (G, 0) as j\rightarrow\infty.

3 The adjacency operator and its spectral mea‐

sure

Let us continue by considering the adjacency operator A of a locally finite graph
G=(V, E) . This is an operator defined on the space \mathscr{L}^{2}(G) of complex, square‐

summable functions f on the vertex set V , for which we define the inner product

(f, g\displaystyle \rangle=\sum_{v\in V}\overline{f}(v)g(v) . (5)

That is, A:\mathscr{L}^{2}(G)\rightarrow \mathscr{L}^{2}(G) , and its action on the function f\in \mathscr{L}^{2}(G) is

[Af](v)=\displaystyle \sum_{u:(v,u)\in E}l((v, u))f(u) , (6)

where l((v, u)) denotes the weight of the edge (v, u)\backslash connecting the vertices v

and u . From our previous assumptions, the number of edges connected to any
one vertex with nonzero weight is bounded. In addition, we require that the

weights be symmetric, i.e., l((v, u))=l((u, v real and bounded in absolute

value. We denote the bound on the weights by M_{w} . Under these conditions,
it follows that the adjacency operator is bounded, and by the spectral theorem

there exists an orthonormal basis of \mathscr{L}^{2}(G) ,
which we denote by \{e_{r}\}_{r} , such

that

Ae_{r}(v)=$\lambda$_{r}e_{r}(v) (7)

and with $\lambda$_{r}\in \mathbb{R}.
Note that the adjacency operator only depends on the graph G , and does

not depend on the choice of a root 0 . However, the Benjamini‐Schramm limit is

taken with respect to the measure of a limiting random rooted graph, and for

that reason we introduce the spectral measure of the adjacency operator with

respect to the root. Denote the projection operator‐valued measure on Borel

sets X\subset \mathbb{R} acting on f\in \mathscr{L}^{2}(G) by [PXf](v); the characteristic function  $\chi$ó(v)
is equal to one if  0=v\in V and zero otherwise.
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Definition 3.1. The spectral measure of A with respect to the root 0 is defined

as

$\mu$_{G,0}(X):=\displaystyle \sum_{?1\in V}\overline{[P_{X}$\chi$_{0}]}(v)$\chi$_{0}(v)=\langle P_{X}$\chi$_{0}, $\chi$_{0}\rangle . (8)

One can recover the spectral measure of  A from this expression if G_{n} is a

finite graph with n vertices. Indeed, $\mu$_{G_{n},0}(X) is given by

\displaystyle \sum_{v\in V}\overline{[P_{X}$\chi$_{0}]}(v)$\chi$_{0}(v)
= \displaystyle \sum_{v\in V}\sum_{u\in V}\sum_{m=1}^{n}1[$\lambda$_{rn}\in X]\overline{e}_{m}(u)$\chi$_{0}(u)e_{m}(v)$\chi$_{0}(v)(9)
= \displaystyle \sum_{m=1}^{n}1[$\lambda$_{m}\in X]|e_{m}(0)|^{2} , (10)

and the expected measure $\mu$_{G_{n}} , which we define as the expectation with respect
to G_{n} of the spectral measure at 0 , is given by

$\mu$_{G_{n}}(X):=\displaystyle \mathrm{E}_{G_{n}}[$\mu$_{G_{n},0}(X)]=\sum_{o\in V}$\mu$_{G_{n},0}(X)\mathrm{v}_{G_{n}}(\{(G_{n}, o =\displaystyle \frac{1}{n}\sum_{m=1}^{n}1[$\lambda$_{m}\in X]
(11)

due to the orthonormality of the basis \{e_{m}\}_{m=1}^{n} and because $\nu$_{G_{n}}(\{(G_{n}, 0 =

1/n . This is the spectral� measure of A.

When G is infinite, however, the last expression in Eq. (11) may not be well‐

defined. Therefore, Def. 3.1 is useful in making sense of the spectral measure

of A when G is infinite. In fact, if G is the limit of a sequence of finite random
rooted graphs (in this case, we say that G is sofic), the expected measure of

$\mu$_{G,0}(X) is the spectral measure of A . Abért, Thom and Virág [6] have proved
the pointwise convergence of the expected measure, and we give its statement

as follows.

Lemma 3.2. Let (G, 0) be a sofic random rooted graph, and let \{(G_{n}, 0_{n})\}_{n=1}^{\infty} be

a sequence of finite random rooted graphs converging to (G, 0) . Then, $\mu$_{G_{n}}(\{x\})
converges to $\mu$_{G}(\{x\}) for every x\in \mathbb{R}.

We omit the proof for brevity. We finish this section by listing the steps for

finding the spectral measure of the adjacency operator of the limiting graph:

1. Start with a sequence of Benjamini‐Schramm converging graphs with ad‐

jacency operators that satisfy the requirements of symmetry, bounded

degree and bounded edge weights.

2. Calculate the eigenfunctions and eigenvalues of the limiting adjacency
operator with respect to the random root�

3. Calculate the spectral measure with respect to the random root.

4. Take the expectation over the roots to obtain the spectral density of the

limiting adjacency operator.

4 The  $\beta$‐Hermite and  $\beta$‐Laguerre cases

Let us now consider random matrices of size  n\times n from the  $\beta$‐Hermite (or
Gaussian) and  $\beta$‐Laguerre ensembles [4]. These are tridiagonal matrices given,
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a) b)

Figure 1: Graphs corresponding a) to the  $\beta$‐Hermite and b) to the  $\beta$‐Laguerre
ensembles before taking the Benjamini‐Schramm limit.

in the  $\beta$‐Hermite case, by the random entries

 a^{\mathrm{H}} \sim \mathcal{N}(0,2)/\sqrt{n},
b_{j}^{ $\xi$} \sim $\chi$_{ $\beta$ j}/\sqrt{n}, 1\leq j\leq n , (12)

and a matrix H_{ $\beta$}^{(n)} from the ensemble is given by

H_{ $\beta$}^{(n)}=\left(\begin{array}{lllll}
a_{1}^{\mathrm{H}} & b_{1}^{\mathrm{H}} &  &  & \\
b_{1}^{\mathrm{H}} &  & a_{2}^{\mathrm{H}}\ddots &  & \\
 & \ddots &  & \ddots & \\
 &  & b_{n-1}^{\mathrm{H}} &  & b_{n-1}^{\mathrm{H}}a_{n}^{\mathrm{H}}
\end{array}\right)=:\mathrm{T}\mathrm{r}\mathrm{i}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}_{n}(\{\mathrm{a}_{j}^{\mathrm{H}}\}_{j=1}^{n}, \{b_{j}^{\mathrm{H}}\}_{j=1}^{n-1}) . (13)

In the case of the  $\beta$‐Laguerre ensemble, given the parameters  $\gamma$\geq 1 and  $\alpha$ :=

 $\beta \gamma$(n-1),[2 , a matrix L_{ $\beta$}^{(n)} from the ensemble is given by

a_{0}^{\mathrm{L}} \sim $\chi$_{2 $\alpha$}^{2}/n,
L_{ $\beta$}^{(n)}=\mathrm{T}\mathrm{r}\mathrm{i}\mathrm{d}\mathrm{i}\mathrm{a}'\mathrm{g}_{n}(\{a_{j}^{\mathrm{L}}\}_{j=0}^{n-1}, \{b_{j}^{\mathrm{L}}\}_{j=1}^{n-1}) , a_{j}^{\mathrm{L}} \sim $\chi$_{2 $\alpha$+ $\beta$(n-2j)}^{2}\displaystyle \int n , (14)

b_{j}^{\mathrm{L}} \sim x_{2 $\alpha$- $\beta$(j-1)$\chi$_{ $\beta$(n-j)/n}}.
Because they are tridiagonal, these matrices represent a graph in which each

vertex is connected to two neighbors through edges with random weight b_{j} , and

to itself through an edge with weight a_{j} , as depicted in Fig. 1.

We present the result of using the procedure outlined in the previous section

on‐these ensembles in the following two theorems.

Theorem 4.1. The sequence of random rooted graphs obtained from the adja‐

cency matrix \{H_{ $\beta$}^{(n)}\}_{n=1}^{\infty} is Benjamini‐Schramm convergent in the limit n\rightarrow\infty,
and the expected measure of the limiting adjacency operator is given by

$\mu$_{H}(dx)=1[x\displaystyle \in[_{\backslash }-2\sqrt{ $\beta$}, 2\sqrt{ $\beta$}]]\frac{\sqrt{4 $\beta$-x^{2}}}{2 $\pi \beta$}dx . (15)

For the  $\beta$‐Laguerre ensemble, the limiting measure depends on the parameter
 $\gamma$ in the form of the quantities  L\pm:= $\beta$(1\pm\sqrt{ $\gamma$})^{2}.
Theorem 4.2. The sequence of random rooted graphs obtained from the adja‐
cency matrix \{L_{ $\beta$}^{(n)}\}_{n=1}^{\infty} is Benjamini‐Schramm convergent in the limit n\rightarrow\infty,
and the expected measure of the limiting adjacency operator is given by

$\mu$_{L}(dx)=1[x\displaystyle \in[L_{-}, L_{+}]]\frac{\sqrt{(x-L_{-})(L_{+}-x)}}{2 $\pi \beta$ x} &. (16)
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\overline{\sqrt{ $\beta$ u}}
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a) b)

Figure 2: Benjamini‐Schramm limiting graphs for a) the  $\beta$‐Hermite and b) the

 $\beta$‐Laguerre ensembles.

We present the proof of both statements in succession.

Proof of Thm. 4.1. We take the Benjamini‐Schramm limit as follows. Denote

the finite graph in Fig. la) by  H_{n} . The graph satisfies the assumptions of

Def. 2.1. It suffices to show that the weights on the edges are finite as n\rightarrow\infty.

Assume that we label the vertices with integers in \{ 1, . . . , n\} and that for every

graph H_{n} the root is labeled j_{n} . Consider an integer sequence \{j_{n}\}_{n=1}^{\infty} such that

 j_{n}\rightarrow\infty and  j_{n}/n\rightarrow u\in[0 , 1 ] . Then, choosing the root randomly uniformly is

equivalent \mathrm{t} setting u\sim \mathrm{U}\mathrm{n}\mathrm{i}\mathrm{f}[0 , 1 ] . In the limit, we have

a_{j_{n}}^{H}\displaystyle \sim\frac{\mathcal{N}(0,2)}{\sqrt{n}}\rightarrow 0, b_{j_{n}}^{H_{\sim}}\sqrt{\frac{ $\beta$ j_{n}}{n}}\frac{$\chi$_{ $\beta$ j_{n}}}{\sqrt{ $\beta$ j_{n}}}\vec{\rightarrow}\sqrt{ $\beta$ u} (17)

almost surely as  n\rightarrow\infty . The limit for  b_{j_{n}}^{H}
. follows from the properties of the

moment generating function of the chi distribution. The limiting graph, which

we denote by H , is depicted in Fig. 2\mathrm{a}). Note that u indicates the section of the

graph where the root was chosen, but the vertices are still labeled by integers.
The action of the adjacency operator A_{H} is given by

A_{H}f(v)=\sqrt{ $\beta$ u}[f(v-1)+f(v+1 (18)

This operator can be diagonalized by a Fourier basis, yielding the eigenvalues
$\lambda$_{\mathrm{u}, $\omega$}^{H} :

e_{ $\omega$}(v)=\mathrm{e}^{\mathrm{i} $\omega$ v}/\sqrt{2 $\pi$}, $\lambda$_{u, $\omega$}^{H}=2\sqrt{ $\beta$ u}\cos( $\omega$) . (19)

Here, \mathrm{i}=\sqrt{-1} and - $\pi$\leq $\omega$\leq $\pi$ . The next step is to calculate the spectral
measure at  u . From Def. 3.1 and Lemma 3.2, and denoting the Dirac measure

concentrated at  $\lambda$ by  $\delta$_{ $\lambda$}(X) , X\subset \mathbb{R} , we write

$\mu$_{H,u}(\displaystyle \mathrm{d}x)=\int_{- $\pi$}^{ $\pi$}\frac{1}{2 $\pi$}$\delta$_{$\lambda$_{u_{i} $\omega$}^{H}} (dx ) \displaystyle \mathrm{d} $\omega$=\frac{1[x\in[-2\sqrt{ $\beta$ u},2\cap $\beta$ u]}{ $\pi$\sqrt{4 $\beta$ u-x^{2}}} dx . (20)

Note that the measure is nonzero only when û \geq  x^{2}/(4 $\beta$) and that the singu‐
larities at u=x^{2}/(4 $\beta$) pose no problem, because they are integrable. Finally,
we take the expectation with respect to u . The result is

$\mu$_{H} (dx) =\displaystyle \int_{0}^{1}\frac{1[x\in[-2\sqrt{ $\beta$ u},2\sqrt{ $\beta$ u]}]}{ $\pi$\sqrt{4 $\beta$ u-x^{2}}} du dx=\displaystyle \int_{x^{2}/4 $\beta$}^{1}\frac{1[x\in[-2\sqrt{ $\beta$},2 $\Gamma \beta$]]}{ $\pi$\sqrt{4 $\beta$ u-x^{2}}}\mathrm{d}u dx.

(21)
Performing the integral yields the result. \square 
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Remark. The measure $\mu$_{H}(X) is the well‐known Wigner semi‐circle law. Note

that  $\beta$ is simply a scale factor; setting  y :=\sqrt{ $\beta$}x in Eq. (15) yields the semicircle

law for  $\beta$=1 . This is evidence of the universality of the semicircle distribution.

Proof of Thm. 4.2. As in the previous proof, we denote the graph in Fig. lb)
by L_{n} . We take the Benjamini‐Schramm limit by choosing a root j_{n} such that

 j_{n}\rightarrow\infty and  j_{n}/n\rightarrow u\in[0 , 1 ] and set u\sim \mathrm{U}\mathrm{n}\mathrm{i}\mathrm{f}[0 , 1 ] . Then, the weights on the

edges converge to

a_{j_{n}}^{L}\displaystyle \sim\frac{2 $\alpha$+ $\beta$(n-2j_{n})}{n}\frac{$\chi$_{2 $\alpha$+ $\beta$(n-2j_{n})}^{2}}{2 $\alpha$+ $\beta$(n-2j_{n})}\vec{\rightarrow} $\beta$( $\gamma$+1-2u) , (22)

and

b_{j_{n}}^{L} \sim \displaystyle \sqrt{\frac{2 $\alpha$- $\beta$(j_{n}-1)}{n}}\frac{$\chi$_{2 $\alpha$- $\beta$(j_{n}-1)}}{\sqrt{2 $\alpha$- $\beta$(j_{n}-1)}}\sqrt{\frac{ $\beta$(n-j_{n})}{n}}\frac{$\chi$_{ $\beta$(n-j_{n})}}{\sqrt{ $\beta$(n-j_{n})}}
n_{\vec{\rightarrow}^{\infty}}  $\beta$\sqrt{ $\gamma$-u}\sqrt{1-u} (23)

almost surely, by the properties of the moment generating functions of the chi

and chi‐square distributions. The limiting graph, L , is shown in Fig. 2\mathrm{b}). The

action. of the adjacency operator A_{L} is then given by

A_{L}f(v)= $\beta$\sqrt{ $\gamma$-u}\sqrt{1-u}[f(v-1)+f(v+1)]+ $\beta$( $\gamma$+1-2u)f(v) , (24)

and using the Fourier basis in Eq. (19) we find that the eigenvalues are given by

$\lambda$_{u, $\omega$}^{L}=c_{1}(u)+2c_{2}(u)\cos $\omega$, c_{1}(u)= $\beta$( $\gamma$+1-2u) , c_{2}(u)= $\beta$\sqrt{ $\gamma$-u}\sqrt{1-u}.
(25)

The spectral measure at u is given by

$\mu$_{L,u} (dx) =\displaystyle \frac{1[x-c_{1}(u)\in[-2c_{2}(u),2c_{2}(u)]]}{\sqrt{4c_{2}^{2}(u)-(x-c_{1}(u))^{2}}}\frac{\mathrm{d}x}{ $\pi$} . (26)

The argument in the indicator function comes from the fact that the measure

must be zero if x is not in the image of $\lambda$_{u, $\omega$}^{L} for - $\pi$\leq $\omega$\leq $\pi$ , that is,  x must

be in the interval [c_{1}(u)-2c_{2}(u), c_{1}(u)+2c_{2}(u)] . This is equivalent to requiring
that

u\displaystyle \leq[ $\beta$(1+\sqrt{ $\gamma$})^{2}/x-1][x/ $\beta$-(1-\sqrt{ $\gamma$})^{2}]=\frac{(L_{+}-x)(x-L_{-})}{ $\beta$ x}=:l_{ $\beta$}(x) . (27)

Because u\in[0 ,
1 ] , we must require that 1_{ $\beta$}(x) be positive, and because L+>

L_{-}\geq 0 for  $\gamma$\geq 1 we see that the measure is positive for (L_{+}-x)(x-L_{-})>0.
Then, we write

$\mu$_{L} (dx) =\displaystyle \mathrm{E}_{L}[$\mu$_{L,u}(\mathrm{d}x)]=\int_{0}^{l_{ $\beta$}(x)}\frac{1[x\in[L_{-},L_{+}]}{\sqrt{2 $\beta$ x( $\gamma$+1)-$\beta$^{2}( $\gamma$-1)^{2}-4 $\beta$ xu-x^{2}}}\frac{\mathrm{d}u}{ $\pi$} dx.

(28)
By computing the integral, the claim is proved. \square 

Remark. In this case, we obtain the Marchenko‐Pastur law. As before,  $\beta$ is

simply a scale factor, which is evidence of the universality of this distribution.
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This means that  $\gamma$ dictates the shape of the distribution. Also, note that if

 $\beta$=1 , the case we consider here,  $\gamma$\geq 1 , corresponds to the matrices from the

Wishart ensembles given by L_{1}=B_{1}B_{1}^{T} , where B_{1} is a real, rectangular matrix

with Gaussian‐distributed entries and dimensions n\times m with m\geq n . In other

words, L_{ $\beta$} does not
\cdot

have a concentrated density of eigenvalues at zero almost

surely. The case where  0< $\gamma$<1 can be treated using the method presented
here, but care must be taken in calculating the tridiagonal form.

5 Concluding remarks

Similar results to those illustrated here can be found for the  $\beta$‐Jacobi ensembles.

If the matrices in question are sparse (i.e., the number of nonzero entries per

row is bounded) and its entries themselves are bounded, the method shown

here should be applicable. However, this requirement makes the use of the

Benjamini‐Schramm limit ineffective in treating problems such as finding the

spectral measure in \mathbb{C} of the Ginibre ensemble, as it cannot be reduced into a

manageable sparse matrix ensemble. The method itself is interesting, however,
and we plan to find other applications for it in the future, such as the time

evolution of the spectral measure of sparse matrix‐valued stochastic processes.
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