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Abstract

- In this paper, we treat our recent results about sharp interface limit for the stochastic
Allen-Cahn equations in several settings. Especially, we focus on the generation and motion
of interface. Finally, we show the simulation concerned with these models.

1 Introduction

Allen-Cahn equation is a reaction-diffusion equation which has a bistable reaction term;

w0, ) = ué(z) .

{ué(t, z) = Auf(t,z) + Lf(us(t,2)), t>0, ’xre R,

where A := %. This equation is parametrized by a small parameter € > 0. The reaction term
has the conditions;

(i) f has only three zeros + 1 and 0,

(i) f'(1) <0, f'(0) >0,

(iii) f is odd (A(f) = [, f(u)du = 0), (1.2)
(iv) f(u) < C(1 + |ul?) with some C,q > 0,

(v) f'(u) £ ¢ with some ¢ > 0.

The conditions (i) and (i) mean that the reaction term is bistable. The existence and the
uniqueness of the solution are assured by the conditions (iv) and (v). We impose the condition
(i) for some technical reasons, however, the condition A(f) = 0 is rather important. We can
take f(u) = u — u3 as a typical example. )
We can regard the PDE (1.1) as a one-dimensional dynamics by ignoring the diffusion term,”
because the reaction term % f(u) is larger than the other term. Hence, the solution tends to
+1 in. an' early time, and interfaces appear between the two phases £1. We call this process
” generation of interface”, which occurs in the time of order O(e|loge|). After the generation, the
interfaces move slowly. The constant A(f) corresponds to a speed of traveling waves. However,
the waves become standing waves because A(f) = 0 from the condition (iii) of (1.2). Thus, the
interface motion becomes extremely slow. Indeed, Carr-Pego [2] proved that the proper time
scale for the interface motion is of order O(exp(—%)). In the article of Chen [1], it is called

”super slow motion”. We note that the width of interface is of order 0(5%).
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The annihilation of interface is also studied by Chen [1]. When the width of two interfaces
once reaches smaller than O(s%),_ interfaces are annihilated in the speed of order O(1), and form

a new phase.
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Reminding that the width of the interfaces is of order O(E%), the shape of interface becomes
sharp as € = 0. Our goal is to specify the dynamics of the interface and its proper time scale
when we take the limit € — 0 in the stochastic case. We call this limit ”sharp interface limit”.

2 = Generation of interface in one-dimensional stochastic case

Now we consider a stochastic Allen-Cahn equation;

, {uf(t,z) = Opau®(t, ) + —:—f(us(t,zj) + Ya(z)W(t,z), t>0, z€R, 1)

u¥(0,z) = u§(x), z € R, wus(t,+o0) ==1, t>0,

where a € C§°(R) and W (t,z) is a space-time white noise which formally has a covariance
structure;

E[W (t,2)W (s,y)] = 8(t - )3(z - ).

Thus, the solution is defined by a mild solution or a solution in the sense of generalized function.
This case was well studied by Funaki [3]. He considered the case that u§ — Xg, in L%(R) where
the function x is a step function defined by x¢(z) = 1if 2 > { and x¢(z) = -1ifz < & In
other word, an interface is generated at the initial time. He proved that 4° = x¢, as € — 0

where (¢, z) := us(a‘z’y‘%t, z), and the process & obeys an SDE;
dé; = a1a(&)dBy + ana(&s)a (&)dt, _ (2:2)

and sta.rt1 at & where a; and as € R depend on f. Namely, the proper time scale is of order
O(e~?'72) and the interface motion is described by the SDE (2.2).
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2.1 Settings and main result

We consider a more general initial value, and prove the generation of interface in [6]. The initial
value u§ € C%(R) satisfies

Dlulloo + 145 oo + 1ug”lloo < Co,

(ii) There exists a unique & € [—1,1] independent of € > 0 such that u§(&) = 0,

(i) u5(x)] = Cre? (o~ &ol = Caed), (2:3)

(V) [u§(2) — 1 + [u§ (@) + |u§" ()] < *Crexp(=457) (2 2 1),

Wlug(@) + 11 + g (@)] + [0 (2)] < e*Csexp(YE) (& < 1),
for some &, Cp, C1, C2, C3 > 0 and p = f'(0).
Theorem 2.1. If u§ satisfies (2.3) and @€(t,z) := u“:(a_z”‘%t, x), then there exist a.s. positive
random variable C(w) and stochastic processes & such that

P(l[a@(t, ) ~ xes ()l z2my < 8 for all t € [C(w)e?*3[loge, T]) =1 (e 0).

Moreover, if & is a unique zero of u§ as in (2.3), the distribution of the process & on C(|0,T],R)
weakly converges to that of & and & obeys the SDE (2.2) starting at &.

This result means that the generation of interface occurs until the time of order O(e|logel),
and the dynamics of interface is described by the SDE (2.2).

2.2 Outline of the proof

We explain an outline of the proof. The Allen-Cahn equation is also described by an L2-gradient
flow of Ginzburg-Landau free energy H¢(u) = [ {1|Vu|? + 1F(u)} dz where F' = —f. The
minimizers of H* with the boundary condition u(+o0) = +1 is M* := {m(e'%(x - &)|¢ e R}
where m satisfies an ODE;

Am + f(m) =0, m(0) =0, m(to0) = £1,

m is monotonous increasing.

We consider a scale change of the solution v(t, z) = u®(t, e%x) and M := M'. We can decompose
v € L*(R) + m into s(v) + m(- — n(v)) such that ||s(v)||zz = dist;2(v, M) where n € R, and
this is a unique decomposition if distyz(v, M) < 3B. We call the coordinate (s(v),n(v)) Fermi
coordinate. Then, we can consider that the interface is generated when v(t, z) goes into a tubular
neighborhood of M. Thus, we prove the decay of ||s(v)| ;2 by using an energy estimate. After
entering the neighborhood of M, the scaled solution never goes out of this neighborhood with
high probability, and we can connect it to the result of Funaki [3].

3 Generation of interface in multi-dimensional case

In this section, we consider a multi-dimensional stochastic Allen-Cahn equation with Neumann
boundary condition;
. 1 '
us(t,z) = Auf(t, x) + ;f(us(t, z))+ Wi(z), t>0, ze D,
u(0,z) = up(z), z € D, (3.1)
g%(t,a:) =0, t>0, z€dD,
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where D € R% is a domain with a smooth boundary and v is a unit normal vector on dD. The
external noise is defined by W¢(z) := 5'7I/VtQ" (z), where WtQ"(z) is a Q-Brownian motion which
has a covariance structure E[Wth (z)WsQ" (¥)] = (t A 8)Q4(z,y). The function Qz: Dx D =R
is a positive, symmetric and compactly supported smooth function.

3.1 Main result

Now we state the generation of interface for multi-dimensional Allen-Cahn equation.

Theorem 3.1. Assume that ug satisfies ||uolloo + ||4glloo + |uhllco < Co. If there exist constants
C1 > 0, k and « satisfying k > a > %, k> 1 and % + % <C < %, then there exist positive
constants 74 > 0 and, for all v > 74, we have that

(1) 1i_1£)P(—1 —&" < uf(z,Crelloge]) <1+ for all z € D) =1,
€

(i) lir%P(us(x, Cielloge|) > 1 —€* for x € D s.t. up(x) > eP) = 1,
e

(iii) lim P(uf(z,Cie|loge|) < —1 +¢&* for z € D s.t. up(z) < —€f) =1,
PaaY

where =1 - Cp.
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Also in the multi-dimensional case, the interface is generated until the time of order O(¢| loge|).

3.2 Outline of the proof

The proof is based on the comparison argument. Before the generation of interface, the reaction
term is greater than the other term. We ignore the diffusion term, and consider the one-
dimensional dynamics which is represented by an SDE;

Ve(r,£,2) = F(V¥(r,€, 7)) + H3WRi(a), 70,
Ye(0,¢,7) = € € [~2Cp, 2C0).

where 7 := et. We set w(t,z) = Y*(%,us(z) +eCy(e's — 1), z) and prove that w(t,z) are the
super and sub solutions of the SPDE (3.1). In this process of proof, we extend the comparison
principle of PDEs to that of SPDEs.

Lemma 3.2. For every 0 < Cy < %, we have that
P (w (t,z) < u(t,z) < wF(t,z) for every t € [0,Cie|logel], z € D) — 1,
as € — 0.

solution .
super solution

sub solution

'The main result is implied by a behavior of Y#, because the solution u° exists between the super
and sub solutions w¥ which is constructed by using Y*.



4 Stochastic Allen-Cahn equation with Dirichlet boundary con-
ditions
Next, we consider the stochastic Allen-Cahn equation with Dirichlet boundary condif.ioqs;

Buf(t, ) = Opguf + %f(ue) + V26" Wi(z), t>0, z€[-1,1],
u¥(0,2) = u§(z), z € [-1,1], wf(¢,+1) ==L, t>0,

where W;(z) is a space-time white noise on [~1,1] and u§ — xg, as € — 0 in L2[-1,1] for
fixed & € [—1,1]. In particular, we focus on the motion of interface in this section. From the
boundary conditions, the solution is pinned at the boundary z = +1. If we formally consider
that @ = 1 in the SDE (2.2), & moves as a one-dimensional Brownian motion multiplied by a
constant. In our case, we can expect that the dynamics of interface should be described as a
Brownian motion on [—1,1] which has an reflected wall on z = +1 because we impose Dirichlet
boundary conditions. However, it -is not easy to analyze the behavior of interface near the
boundary, because of its singularity. '

4.1 Main result

Let P be a probability measure of the solution scaled in time 4(t,z) = u® (5“2"’"%:‘,,-3:) on
C([0,T)], L?[-1,1]), and let P be that of Markov process ¥ V3B(a2t) O the same space, where
B(t) is a reflected Brownian motion on [—1,1] starting from & € [-1,1] and a1 := |[Vm]|..

Theorem 4.1. If7 > 1 then P¢ cb@verges to P weakly on C([0,T), L*[-1,1]) as e — 0.

Theorem 4.1 implies that @ = x V3B(a2t) 38 € = 0 and the proper time scale is .of order

0(6_27_%). As we discussed above, the interface motion at the limit is a reflected Brownian

motion.

4.2 OQutline of the proof
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By considering the solution u¢(t) as a L?|—1, 1]-valued Markov process, there is a corresponding -

Dirichlet form (£%, D¢), and it is defined by

E%(p, %) := B* [(Do, Dy))] = E* [~ L)Y,
where ¢, ¥ € D° C L2(L*[-1,1], ) and p¢ is an invariant measure of the SPDE. The operator
LE is a generator of uf;

L5F(u) = (DF(u), " + % F(u)) + T (D*F)(u),

and £° geﬁerates Markov semigroup {T7} of u°. On the other hand, Brownian motion on [—1,1]
is associated with Dirichlet form (&, D);

1

1
e =3 [ POV, (o veD),

and the'meas'u.ré'%ll[_l,ll (€§)d¢ can be regard as a uniform distribution on [~1,1]. Weber [8]
proved that. the invariant measure u° concentrates on S := {x¢}ee(-1,1) as € = 0. Otto et.



al. [7] also proved that u® converges to 4 which is a uniform distribution on S weakly. From
this observation, if we can characterize the convergence (£%,D°) — (£,D) as € — 0, it is
natural to prove the result through this convergence, and this is our motivation. We consider
Mosco convergence of the quadratic form which is determined by Dirichlet form. Indeed, Mosco
convergence and the strong convergence of Markov semigroup is equivalent.

Theorem 4.2 (Kuwae, Shioya [5], Kolesnikov [4]). Let (5, D(E%)). and (€, D(E)) be Dirichlet
forms, and let T{ and Ty be semigroups which is associate with these closed forms. Then Mosco
convergence (£5, D(E%)) — (£, D(E)) is equivalent to the strong convergence of operator Ty — T
for allt > 0.

The domain D of the limit is also important. If D = H1(S), then Dirichlet form (&, D(£))
corresponds to a reflected Brownian motion. However, if D = H}(S), then Dirichlet form
corresponds to a Brownian motion absorbed in a boundary. Thus, we need to prove that
D = H'(S). Now we state Mosco convergence of Dirichlet form which corresponds to the
solution %°. '

Lemma 4.3. The Dirichlet form (5_27_%85,1)(55)) converges to (£,D(E)) where E(-,-) =
m(%-, d%i) and D(E) := H(S) in Mosco sense. In particular, (£, D(E)) associates with
Markov process {x \/iB(aft)} where B(t) is a reflected Brownian motion on [—-1,1].

Theorem 4.2 concludes the convergence of Markov semigroup, and this implies the weak
convergence of finite dimensional distribution of u* on L?[~1,1]. Combining with the tightness
which follows from Funaki [3], we complete the proof of the main result.

Dirichlet forms Markov semigroups Solutions
(e73€e, D) Ts w(t, z)
Kuwae—Shioya
Mosco fin. dim. dist.
(2(1%5, Hl) - T; XﬁB(a';’t)(x)

5 Simu_lations

In this section, we simulate the one-dimensional stochastic Allen-Cahn equation;
a(t, ) = Ault, ) + af (u(t, ©)) + bWi(z), ¢>0, z € [-1,1],
where a > 0, b € R, f(u) = u — u3 and W;(z) is a space-time white noise. We impose Dirichlet
boundary conditions u(3:1) = £1. We use the discretizing method for this simulation.
5.1 Reflection of interface at the boundary

Before the stochastic case, we consider the deterministic case (b = 0). We change the time as
@(t) := u(ct). The initial value takes value —1 on z = —1 and takes 1 on z # —1. Now we
simulate the case that a = 103, b =0, ¢ = 104 and N = 150.
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We can see that the interface almost stops immediately although we take very long time scale.
Actually, this moves, however, the speed of interface is extremely- slow. This is the super slow
motion. On the other hand, the motion of interface becomes totally different if we take b = 2.

T i —— . PR ot 1008 ——

el £ o o 1 i as v o5

Wt=0 (2) t = 1000

In this case, the solution becomes singular, and the interface pertilrbs randomly and fast.
We can observe a reflected Brownian motion as an interface motion. Moreover, we can expect
that we can take the value v to be smaller than 14—9 which is lower bound of v in Theorem 4.1,
Section 4.

5.2 Annihilation of interfaces

We ‘also ‘consider the annihilation of interface. First, we simulate the deterministic case. We set

the initial value ug(z) := sin 2122,

Ery T p— T e 10 ——

as o8

a8 = 45,
8 o s 1 v 08 ° g

(1St:0 (2jt=10

The annihilation occurs symmetrically because of the boundary conditions and the definition
of the reaction term f. Next we consider the stochastic case. We set the initial value up(z) :=



—sin Hzﬂ We change the initial value because the annihilation occurs too fast if we take

up(z) := sin 212

I 15 -
B Ty p— e —
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1) t=0 (2) t =50

The interfaces move like the independent Brownian motions, and the annihilation randomly
oceurs.
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