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Abstract

We study the stochastic complex Ginzburg‐Landau equation with complex‐valued

space‐time white noise on the three dimensional torus. This nonlinear equation is

so singular that it can only be understood in a renormalized sense. We prove local

well‐posedness of it in the framework of paracontrolled distribution theory. This

article is an announcement of the authors� full paper with the same title.

1 Introduction

In this article, we report local well‐posedness of the stochastic complex Ginzburg‐
Landau equation (CGL) with complex‐valued space‐time white noise  $\xi$ in the three‐

dimensional torus \mathrm{T}^{3}=(\mathrm{R}/\mathrm{Z})^{3}

(P) \left\{\begin{array}{ll}
\partial_{t}u=(\mathrm{i}+ $\mu$)\triangle u+ $\nu$(1-|u|^{2})u+ $\xi$ & \mathrm{o}\mathrm{n} (0, \infty)\times \mathrm{T}^{3},\\
u(0, \cdot)=u_{0}() . & 
\end{array}\right.
Here, \mathrm{i}=\sqrt{-1},  $\mu$ is a positive constant and  $\nu$ is a complex constant. There are

a lot of preceding results on CGL; for example, [Hai02], [\mathrm{B}\mathrm{S}04\mathrm{b}], [\mathrm{B}\mathrm{S}04\mathrm{a}] , [KS04],
[Yan04], [Oda06], [PGII].

First of all, we explain difficulty of this problem. We rewrite (P) as \mathcal{L}^{1}u=

 $\nu$(1-|u|^{2})u+u+_{\mathrm{I}} $\xi$ and consider a stationary solution to the linear equation \mathcal{L}^{1}Z= $\xi$
on (0, \infty)\times \mathrm{T}^{3} , where L^{1}=\partial_{t}-\{(\mathrm{i}+ $\mu$)\triangle-1\} . Then, by setting P_{t}^{1}=e^{t\{(\mathrm{i}+ $\mu$)\triangle-1\}}
and I(u)_{t}=\displaystyle \int_{-\infty}^{t}P_{t-s}^{1}u_{s}ds for distribution‐valued functions u on [0, \infty), we see that

the solution is given by  Z_{\mathrm{t}}=I( $\xi$)_{t} formally and it is not a function but a distribution

with respect to the space variable in dimension three. More precisely, Z_{t} belongs to

C^{-\frac{1}{2}- $\kappa$} for any  $\kappa$>0 , where C^{ $\alpha$} is the Hölder‐Besov space with the Hölder exponent

 $\alpha$\in \mathrm{R} ; see Section 2 for definition. Hence the products Z_{t}^{2}, Z_{t}\overline{Z_{t}}, Z_{t}^{2}\overline{Z_{t}} and so on
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are not defined a priori. Since the irregularity of the solution to (P) comes from the

white noise, it is natural to guess that the space regularity of u_{t} is not better than

that of Z_{t} and that the product |u_{\mathrm{J}}|^{2}u_{t}=u_{t}^{2}\overline{u_{t}} is not defined a priori. Hence, in

order to define a notion of solution to (P), it is necessary to define the product in

some way.

Hairer [Hai14] and Gubinelli‐Imkeller‐Perkowski [GF15] developed great results

in order to overcome such difficulty, respectively. Their works are breakthrough in

the theory of singular stochastic partial differential equation and a lot of results

are shown after the works; for example, [BK16], [FH14], [\mathrm{H}\mathrm{o}\mathrm{s}\mathrm{l}6\mathrm{a}] , [ZZ15], [CC13],
[MW16], [\mathrm{H}\mathrm{o}\mathrm{s}\mathrm{l}6\mathrm{b}] , [GP17], [BB16].

We also use them to obtain local well‐posedness of CGL. In the authors� full paper

[IHN17], they use the both theories and establish the well‐posedness; however, in this

article, we only state the result obtained by the theory of paracontrolled distributions

developed in [GIP15].

2 Notation

Before starting our discussion, we introduce notations. We denote by \mathcal{D} the space

of all smooth functions on \mathrm{T}^{3} and by D' its dual. For every  $\alpha$\in \mathrm{R} , we denote by C^{ $\alpha$}

the Hölder‐Besov space, which is defined by the completion of the space of smooth

functions on \mathrm{T}^{3} under the Hölder‐Besov norm \Vert\cdot\Vert_{C^{ $\alpha$}} . To define the norm, we use the

Littlewood‐Paley block \{\triangle_{rn}=\mathcal{F}^{-1}$\rho$_{m}\mathcal{F}\}_{m=-1}^{\infty} , where \mathcal{F} and \mathcal{F}^{-1} are the Fourier

transformation and its inverse, respectively, and \{$\rho$_{m}\}_{m=-1}^{\infty} is the dyadic partition.
of unity. The norm is defined by

\displaystyle \Vert f\Vert_{C^{ $\alpha$}}=\sup_{m\geq-1}2^{m $\alpha$}\Vert\triangle_{m}f\Vert_{L\infty}.
We denote by C_{T}C^{ $\alpha$} the space of all C^{ $\alpha$} ‐valued continuous functions on [0, T] for

every T> O. We define C_{T}^{ $\delta$}C^{ $\alpha$} by the space of all  $\delta$‐Hölder continuous functions

from [0, T] to C^{ $\alpha$} and set \mathcal{L}_{T}^{ $\alpha,\ \delta$}=C_{T}C^{ $\alpha$}\cap C_{T}^{ $\delta$}C^{ $\alpha$-2 $\delta$}.
Next we introduce the notion of paradifferential calculus. For every f\in C^{ $\alpha$} and

g\in C^{ $\beta$} , we define the resonance fg and the paraproduct They give the

decomposition fg=f\cdot $\Theta$ g+fg+f\oplus g . The paraproduct f $\Theta$ g can be defined

for any  $\alpha$,  $\beta$\in \mathrm{R} , but the resonance fg can be defined for  $\alpha$+ $\beta$>0 . Hence, in

order define products fg, it is necessary that  $\alpha$+ $\beta$>0 holds.

For more information about the Hölder‐Besov spaces and the paradifferential

calculus, we consult [BCDII].
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3 Main result

In this section, we state our main result and give a sketch of the proof.

We define a solution to (P) as a limit of solutions to renormalized equations. To

introduce the renormalized equations, we explain how to mollify the white noise.

Roughly speaking, we define smeared noise $\xi$^{ $\epsilon$} for a parameter 0< $\epsilon$<1 by cutting
off high frequency part of the Fourier transform of  $\xi$ . Let  $\chi$ be a smooth function

defined on \mathrm{R}^{3} such that (1) supp  $\chi$\subset B(0,1) , where B(x, r) denotes the open ball

of radius r>0 and center. x\in \mathrm{R}^{3} , (2)  $\chi$(0)=1 . We set $\chi$^{ $\epsilon$}(k)= $\chi$( $\epsilon$ k) for every

k\in \mathrm{Z}^{3} . Define \mathrm{e}_{k}(x)=e^{-2 $\pi$ \mathrm{i}k\cdot x} for every k\in \mathrm{Z}^{3} and x\in \mathrm{T}^{3} . Here, the dot

denotes the usual inner product. We define $\xi$^{ $\epsilon$} by

$\xi$^{ $\epsilon$}=\displaystyle \sum_{k\in \mathrm{Z}^{3}}$\chi$^{ $\epsilon$}(k)\hat{ $\xi$}(k)\mathrm{e}_{k}.
Here, \{\hat{ $\xi$}(k)\}_{k\in \mathrm{Z}^{3}} denotes the Fourier transform of  $\xi$ and it has the same law with

independent copies of complex valued white noise on R. We see that  $\xi$^{ $\epsilon$}\rightarrow $\xi$ in

an appropriate topology. For such smeared noise  $\xi$^{ $\epsilon$} , we consider the renormalized

equation

(P�) \left\{\begin{array}{ll}
\partial_{t}u^{ $\epsilon$}=(\mathrm{i}+ $\mu$)\triangle u^{ $\epsilon$}+ $\nu$(1-|u^{ $\epsilon$}|^{2})u^{ $\epsilon$}+ $\nu$ \mathrm{c}^{ $\epsilon$}u^{ $\epsilon$}+$\xi$^{ $\epsilon$}, & \mathrm{o}\mathrm{n} (0, \infty)\times \mathrm{T}^{3},\\
u(0, \cdot)=u_{0} & 
\end{array}\right.
Here \mathrm{c}^{ $\epsilon$} is a complex constant defined by \mathrm{c}^{ $\epsilon$}=2(\mathrm{c}_{1}^{ $\epsilon$}-\overline{ $\nu$}\overline{\mathrm{c}_{2,1}^{ $\epsilon$}}-2 $\nu$ \mathrm{c}_{2,2}^{ $\epsilon$}) , where \mathrm{c}_{1}^{ $\epsilon$}, \overline{\mathrm{c}_{2,1}^{ $\epsilon$}}
and \mathrm{c}_{2,2}^{ $\epsilon$} are complex constants specified later. We note that |\mathrm{c}^{ $\epsilon$}|\rightarrow\infty as  $\epsilon$\downarrow 0 . We

can make sense of a solution to (P) as the limit of solutions to (P�). The next is our

main result:

Theorem 1. Let u_{0}\in C^{-\frac{2}{3}+$\kappa$'} for 0< $\kappa$\ll 1 . Consider (P�). There exist a unique

process u^{ $\epsilon$} and a random time T_{*}^{ $\epsilon$} such that

u^{ $\epsilon$} solves (P�) on [0, T_{*}^{ $\epsilon$} ) \times \mathrm{T}^{3},

T_{*}^{ $\epsilon$} converges to some a.s. positive random time T_{*} in probability,

u^{ $\epsilon$} converges to some process u defined on [0, T_{*} ) \times \mathrm{T}^{3} in the sense that

\displaystyle \sup_{0\leq s\leq T_{*}/2}\Vert u_{s}^{ $\epsilon$}-u_{s}\Vert_{c^{-\frac{2}{3}+$\kappa$'}}\rightarrow 0 as  $\epsilon$\rightarrow 0 in probability. Furthermore, u

is independent of the choice of $\xi$^{ $\epsilon$}.

The proof of this theorem consists of a deterministic part and a probabilistic

part. In the next subsections, we explain them and show the theorem.

3.1 Deterministic part

In the deterministic part, we construct the solution map of (P) from the space

\mathcal{X}_{T_{*}}^{ $\kappa$} of driving vectors to the space \mathcal{D}_{T_{*}}^{ $\kappa,\kappa$'} of solutions, where T_{*} is a life time of a

204



solution and  $\kappa$, $\kappa$' are positive small parameters, and show that the solution map is

continuous. In this part, we rely on a method introduced in [MW16]. To be precise,

for every 0< $\kappa$< $\kappa$<1/18 and T>0 , we call a vector of space‐time distributions

X=(x^{1}, x^{\mathrm{V}}, x^{\mathrm{t}},x^{\mathrm{Y}}, x^{=}, x^{\mathrm{Y}}, x$\Psi$_{X}\displaystyle \int i, x $\psi$,x^{::,\int\dot{\prime},4^{j},$\Psi$_{X}^{=}\#^{1}}\mathrm{Y}_{XXX},\cdot)
\in C_{T}C^{-\frac{1}{2}- $\kappa$}\times(C_{T}C^{-1- $\kappa$})^{2}\times(C_{T}C^{1- $\kappa$})^{2}\times \mathcal{L}^{\frac{1}{T2}- $\kappa$,\frac{1}{4}-\frac{1}{2} $\kappa$}\times(C_{T}C^{- $\kappa$})^{6}\times(C_{T}C^{-\frac{1}{2}- $\kappa$})^{2}

which satisfies \mathcal{L}^{1}x\mathrm{Y}=X^{\mathrm{V}} and \mathcal{L}^{1}X^{1_{1}}|\cdot=X^{\mathfrak{i}} a driving vector of (P). We denote

by \mathcal{X}_{$\tau$^{ $\kappa$}} the set of all driving vectors. The definition of \mathcal{D}_{T}^{ $\kappa,\kappa$'} is a little complicated.

Because we transform (P) to a system of two equations for (v, w) so that u=

X^{1}-\mathrm{v}X\mathrm{Y}+v+w solves (P). The space \mathcal{D}_{T}^{ $\kappa,\kappa$'} is where (v, w) lives.

We explain the meanings of the graphical symbols [, V, :, \mathrm{Y},\ldots . They are just

coordinates mathematically; however, the dot and the line are icons for the white

noise and the operation  I , respectively. Hence, 1 represents I( $\xi$)=Z . Moreover,!

and 4 are icons for the complex conjugate of Z and the product Z\overline{Z} , respectively. So

means I(Z^{2}\overline{Z}) . Finally,  $\Phi$ at the bottom denotes the resonance term; \mathrm{Y}^{1} represents

I(Z^{2}\overline{Z})Z.

3.2 Probabilistic part

In the probabilistic part, we construct a driving vector X^{ $\epsilon$} from the smeared noise

$\xi$^{ $\epsilon$} with a parameter 0< $\epsilon$<1 and show convergence of X^{ $\epsilon$} as  $\epsilon$\downarrow 0 . More

precisely, we, set X^{ $\epsilon$,1}=Z^{ $\epsilon$}=I($\xi$^{ $\epsilon$}) , X^{ $\epsilon$} =\overline{Z^{ $\epsilon$}} and X^{ $\epsilon$,\mathrm{V}}=(Z^{ $\epsilon$})^{2} ; however, since

\mathrm{c}_{1}^{ $\epsilon$}=E[Z_{t}^{ $\epsilon$}\overline{Z_{t}^{ $\epsilon$}}] diverges as  $\epsilon$\downarrow 0 , we need to consider renormalization and set X^{ $\epsilon$,\mathrm{t}^{:}}=

Z^{ $\epsilon$}\overline{Z^{ $\epsilon$}}-\mathrm{c}_{1}^{ $\epsilon$} . In order to define X^{ $\epsilon,\ \tau$} for \mathrm{V}^{\cdot},  $\psi$, \mathrm{b} $\Psi$ and \#^{r}\mathrm{r} , it is necessary to consider

renormalization. The other renorInalization constants are \displaystyle \mathrm{c}_{2,1}^{ $\epsilon$}=\frac{1}{2}E[X_{(t,x)}^{ $\epsilon$}\mathrm{Y}X_{(t^{:_{:}}x)}^{ $\epsilon$}]
and \mathrm{c}_{2,2}^{ $\epsilon$}=E[X_{(t,x)}^{ $\epsilon$}X_{(t,x)}^{ $\epsilon$,\}}]\cdot . Note that the constants \mathrm{c}_{1}^{ $\epsilon$}, \mathrm{c}_{2,1}^{ $\epsilon$} and \mathrm{c}_{2,2}^{ $\epsilon$} look dependent

on (t, x) but they are not. To show convergence of X^{ $\epsilon$} , we express \triangle_{rn}X^{ $\tau$} by

complex Itô‐Wiener integrals and estimate their kernels. This method is established

in [GP17]. For definition and properties of complex Itô‐Wiener integrals, see [Itô52].

3.3 Comments on our main result

Fkom the deterministic part and the probabilistic part, we can show our main the‐

orem. In fact, we see that u^{ $\epsilon$} is given by substitution X^{ $\epsilon$} into the solution map.

From the continuity of the solution map and convergence of \{X^{ $\epsilon$}\}_{0< $\epsilon$<1} , we see that

\{u^{ $\epsilon$}\}_{0< $\epsilon$<1} convergence to some process u , where u is given by substitution X into

the solution map.
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