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Capelli identities with zero entries

Akihito Wachi (Hokkaido University of Education)

Abstract
In the Capelli identities and several variants of them, the entries of matrices in the
identities are usually nonzero except a few cases of alternating matrices. In this paper
we introduce Capelli identities in which there are zero entries, and, as an application,
we compute b-functions of prehomogeneous vector spaces.

1 Introduction

Let ¢;; be (independent) variables, and set

;] 0
T = (tij)1<ijsn, aT ~ <3t'j>1< <n
03 <i,j<n

Then the original Capelli identity is the following equation in the ring of the differential
operators with polynomial coefficients [1]:

n—1
det(*T") det (a%,) = det (‘Ta% + ( " )) ; 6))
0

where the determinant is defined as det(X) = }°_sgn(0)Xo(1)1Xo@2)2 * * Xo(n)n, Which is
called the column determinant.
Define a polynomial f and a differential operator f*(9) with constant coeflicients by

f = det(*T), F*(8) = det (BiT) .

Then the differentiation by f*(8) on f**! gives a scalar multiple of f°:

F10).£+ =bg(s)f*,

and by(s) € C[s] is called the b-function of f. In this case it is known that bs(s) = (s+1)(s+
2)---(s+n), and the Capelli identity enables us to compute this 4-function.
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Next we recall a variant of the Capelli identity, where ¢;; are variables satisfying ¢;; = ;.
There is an analogous identity in this setting. Set

F;] 9
T = (tij)1<ij<ns > =\ 5 )
( J)1$ J< T (3tij> 1<ii<n
where
0 .
8ty 1o . .
35t; (i # J)
Then the Capelli identity in this case is as follows [3]:
= = (n—1)/2
0 0 -
t Y\ tp 9_ (n~2)/2
det(*T") det (BT) det(T3T+ < ._.0)> . 2
Define & polynomial f and a differential operator f*(8) with constant coefficients by
]
— t * — -
f=det(*T), f*(8) = det (6T) . 3)
Then the b-function is given by
" o " 3 n+1
F1(8)-£°1 = bs(s) f°, b(s) = (s + (s +5)(s+2) - (s + ——). @)

The Capelli identity again enables us to compute the b-function also in this case.

In the above two cases the matrix T has nonzero entries only. In this paper we consider
the cases where T has zero entries, and prove the Capelli identities (Theorem 1). We hope
the b-functions of det(T") are computed by using our Capelli identities, but we can not use the
Capelli identities to compute all the b-functions at present. We give the b-functions computed
by using our Capelli identity or in different ways (Propositions 5, 6, 7).

2 Capelli identities with zero entries

When some entries of T" are zero, the Capelli identities (1) and (2) can hold.

Theorem 1. (1) Let the entries of T be (independent) variables or zero, and suppose that
T satisfies the following conditions:

(A) In each row of T zero entries are at the end of the row.

(B) The number of the zero entries of a row is greater than or equal to that of the previous
row.



In other words nonzero entries are placed just as a Young diagram. Then the identity (1) in
Introduction holds.

(2) Let the entries of T' be symmetric variables (t;; = t;;) or zero, that is, T is a symmetric
matrix containing zero entries. Suppose also that T is of the following form:

T= (3_;52 7(;2), (Tyispxp, Toispx g, and p+q =n),

where T7 and T have no zero entries. Then the identity (2) in Introduction holds.

2.1 Proof of Theorem 1 (1)

We denote 8/0t;; by 9;; for short.

Let A; be the number of nonzero entries of the sth row of T', and therefore \y > \p > --- >
An. Note that the partition (A1, Ag, ..., As) corresponds to the Young diagram mentioned in
the theorem. We interpret t;; and 0;; are zero when j > );. We define the ‘characteristic
function’ corresponding to the nonzero entries of T"

=4t (7<N)
70 G>N)

We use the exterior calculus for the proof. Let ey, es,...,e, be the standard basis of C,
and consider the algebra A := A C"®c W, which is the tensor product of the exterior algebra
A C™ and the Weyl algebra W generated by t;; and 9;;. In denoting elements of A we write
such as ejeqgt120s3 instead of e; A ez ® t19993 for short.

Define some elements of A. Set

n n a )
nk=zeitlci (1<k<n), Cj=zei (tTﬁlj (1<j<n),

i=1 i=1

where (*T'- 8/8T);; means the (i, j)-entry of the matrix. We can write (; in other forms as

n n
G= Z eitriOy; = z"]kakj‘
i,k=1 k=1

For a complex number u define (;(u) = ¢; + ue; (1 < j < n), and we can write (;(u) in
another form as

n
0
Cj(u) = Cj + ue; = ; €; (tTﬁ + Uln)ij ’
where 1,, denotes the identity matrix of size n.

Lemma 2. For l,j,k € {1,2,...,n} and u € C we have the following, where Jj; denotes the
Kronecker delta.

(1) Bk = Mk0yj + Oike5p€;

(@) Gluym = —m(¢(u) — egyes)
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Proof. (1) Oy, = Oy Zeitki

i=1

=) ei€q )€ tkidls + ki)

i=1
= Nk0lj + O1ke;j€q,5)€k.)

%) Woh = k05 + die )85
e nave

n
Gk =D _ mOymk
1=1

1)
@ > " (i + deqes)
=1

= —MkGj + Mk€(k,j)€;
= —m(G — €k.g)€)-

Then the desired equation is obtained by adding ue;n, = ~mnxue; to both sides. ]

We start the proof of Theorem 1 (1), that is, we prove

det(T) det [ 2- ) = det 72 + s
6T - 8T -.- o H

where the (4, j)-entry t;; of T' and the (7, j)-entry 9;; of 8/8T are zero if and only if j > A;.
It is clear that

n-1
G(n—1)¢a(n —2) -6 (0) = ereg - - e det (tT‘aQT‘ + ( " o))

from the definition of (column) determinant. Next we compute the left-hand side of the
above equation in another way. By using Lemma 2 (2) we have

G(n —1)¢(n —2) - Ga(0)
=G -1DGn=2)6ua(D) - D MBiun

=1

=(=D"Y - (G —1) = eguner) - (Gaa(1) = €gunnyena)  Bone (5)

In=1

Suppose that 3, , # 0 in the above expression. Then €;, ») = 1, and therefore every ¢, ;)
(5 < n) is equal to one by the definition of ¢(;; (recall ‘Young diagram’). Thus we may



assume that every ¢(, ;) in the expression is equal to one, and we have

(RHS of (5))
=)D G =2) -+ 6an1(0) - B

In=1
=)™ G =22 D M Ohneint Ol (6)
n=1 ln—1=1

We can move 7;,_, to the left in this expression with parameters of (; (1 < j < n —2)
decreasing by one as 7, moved. Similarly we repeat this operation, and obtain

(RHS of (6)) = (—1)("'1)" Z MMy M On,10L2  Otyn

Hyeigdn=1

=) M@)o Notm) * Do) 100@,2" * * Dotnyn

0ESy
= Z Sgn(")ﬁlﬁz e aa'(l),lao'(2),2 T acr('n),'n
0ESn
= ejey- -+ epdet(*T) det 9
1€2 n oT .

Thus we have proved the assertion.

2.2 Proof of Theorem 1 (2)
We denote 8/8t;; by 8;;, and 8/0t;; by 0;; for short.

We define the ‘characteristic function’ corresponding to the nonzero entries of T

1 (i<porj<p)
€Gg) = : :
0 (¢>pandj>p)
We interpret ¢;; and 8;; (and ;) to be zero when € ;) = 0.
We use the exterior calculus again. We set A = A C*®c W as in the proof of Theorem 1

(1). Note that n=p +¢.
Define some elements of A. Set

" u 0 .
ﬂk=;€itm‘ (1<k<n), G= e (tTﬁ)ﬁ (1<j<n).

We can write ¢; in another form as
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For a complex number u define {;(u) = {; + ue; (1 < j < n), and we can write (;(u) in
another form as

= F)
Cj(u) = CJ' + ue; = ;ei (tTﬁ + uln) ; .
Lemma 3. For k,j,l € {1,2,...,n} and u € C we have the following.
(1) Okjm = mOkj + €(rg) (G + Onex)

(2) Gu)m = —m($(w) — eqgyes) + 05 X €(k.g)MER

Proof. (1) Begm = Y _ it

i=1

= Z €(k.g)€(1,0) €3 (8105 + Oralji + OkiGjn)
i=1

= ks + €(rg)€)€i0k + €k R i

= MOk;j + €j)(Ome; + Siex).

(2) We have
n pa—
Gm= Y, mrim
k=1
O,
= Z M (Oks + €k.5) (Or€s + Gjex))
k=1
n
= —mG; + meq,e; + Z k€ (i j)Sj1k-
k=1
Then the desired equation is obtained by adding ue;jmy = —mue; to both sides. O

The next lemma is easy to show, and we omit the proof.

Lemma 4. We have

n
Z Nk = 0.
k=1

We start the proof of Theorem 1 (2), that is, we prove

. ] w8 ("
det(*T) det (51;> =det<Ta—T+ ( _..O>).

It is clear that

5 (n—1)/2 /2
Gn—1)¢(n —2) - (a(0) = erez - - - en det (tTEﬁ, + ( =2/ . )) .
o



Next we compute the left-hand side of the above equation in another way. We have
Gn —1)¢a(n —2) - (0)
=G -D)GM-2)6u1(1) - Y MBian: ©

=1

Here we need some preparation. For s > j it follows from Lemma 3 (2) that

Gi(w) Zm - (some factors) - 9y,
1=1

= Z(_')'][(Cj(u) — €1.5)€5) + 0 Z E(k,j)'r)kek) - (some factors) - Oj,.
=1 k=1

Suppose that 8;, # 0 in the above expression. Then €u5) = 1 by j < s, and therefore
Gi(u) — €q,5)e; becomes (;(u — 1). For the part of §; Y ;_; €x,5)7kex we have only to consider
the case where 0;, # 0 thanks to the factor &;. Then at least one of j and s is less than or
equal to p, and it turns out that j < p by j < s. When j < p, every e, (k=1,2,...,n)is
equal to one, and it follows from Lemma 4 that this part is zero. To summarize we have

G{u) Zm - (some factors) - ;s = — ngj(u — 1) - (some factors) - Oj,.
1=1 =1

Thanks to the preparation in the previous paragraph the computation goes similarly to
the proof of Theorem 1 (1), and finally we have

(RHS of (7)) = ejes - - - €, det(*T") det (%) :

Thus we have proved the assertion.

3 b-Functions

We can compute the b-functions of the prehomogeneous vector spaces corresponding to our
Capelli identities.

We first consider the following prehomogeneous vector space, which corresponds to the
Capelli identity of Theorem 1 (1). Define ny, ng,. .., n,, as the multiplicities of the partition
A= (A1, A2,...,A,). In other words the numbers of nonzero entries in the first n; rows of T'
are equal, those in the next ny rows are equal, and so on. Similarly define nf,n,...,n/, as
the multiplicities of the conjugate of the partition A. In other words the numbers of nonzero
entries in the first n; columns of T" are equal, those in the next n, columns are equal, and so
on.
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Define complex Lie groups P, P', G, and a vector space V by

( (P Py -+ Pim )
0 Py -+ Py
P=c| . 7 | €GL(C) | Pi€ GLy(C) (i=12,...,m) ¢,
(\0 -+ 0 P )
Py Py -+ P )
0 Py -+ Py
P = . ) . € GL,(C) | P; € GLy(C) (i=1,2,...,m) »,
(N0 - 0 Pum ‘
G=PxP,
( ‘/11 e ‘/l,m—-l Vim
Vo o Vame
V=< ?1 ) Z,m, ' € Mat,,(C) | V;; € Mat(n;, n}; C)
(\Vi 0 0

Namely, t;; in Theorem 1 (1) is the linear coordinate system on a vector space of this form.
Then G acts on V by (g,h).A = gA’h ((9,h) € G and A € V), and (G,V) is a preho-
mogeneous vector space. f = det(T) is a relative invariant (if f is a nonzero polynomial)
corresponding to the character det g - det h. We can compute the b-function of f only in a
limited case where m = 2 and no =nb = 1.

Proposition 5. If m = 2 and ny = n, = 1 in the above setting, then the b-function by(s) of
f = det(T) is given by

be(8) = (s+1)(s+2) - (s+m—1)- (s +m)?
Proof. We can compute the b-function by direct computation using our Capelli identity. O

We next consider the following prehomogeneous vector space, which corresponds to the
Capelli identity of Theorem 1 (2). Let p > ¢ be positive integers. Define a Lie group G and
a vector space V as

G = GL,(C) x GL,(C),

Vi W
V= {(tvlfz 52) & Sym,,.,(C)
=~ Sym,(C) ® Mat(p, g; C), 8

where Sym,,(C) denotes the set of symmetric matrices of size p x p. Namely, ¢;; in Theo-
rem 1 (2) is the linear coordinate system on a vector space of this form. Then G acts on V

by

Vi € Symp(C),Vm € Ma’t(pa g C)}

(9,h).A = (9 h) A t(g h) (9:h) €G, AeV),
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and (G, V) is a prehomogeneous vector space.
There are two basic invariants for this prehomogeneous vector space:

fi=det(T")  (T' = (tj)icij<p)s

f2 = det(T) (9)

The basic invariants f; and f; correspond to the character det g> and det g2 - det h?, respec-
tively. The b-function of f; is equal to (s + 1)(s +3/2)--- (s + (p+ 1)/2) as seen in (4). We
want to compute the b-function of fo by using our Capelli identity, but we have not succeeded
at this point. Sato-Sugiyama [2] have computed the b-function as

+1 P
bi(s) = (s + E52) @ (s + )@, (10)

where 2(@) = z(z - 1/2)---(z - (¢ — 1)/2).

4 b-Function of several variables

In this section we focus on the prehomogeneous vector space (G, V) defined by (8), which is
corresponding to Theorem 1 (2). We retain the notation there.

For a prehomogeneous vector space with more than one basic invariant, we can consider
b-functions of several variables. In the case we are focusing the b-function bg, 4,(s1, 32) of two
variables is defined as

RO £ 575 = bay gy (51, 82) 1 £,

where ff(9) and f3(8) are defined similarly in the case of (3). It is easy to see that by o(s1, 52)
and bo,1(s1, s2) determines all by, 4,(s1,52), and therefore our goal is to compute b1 o(s1, 52)
and bg1(81,52), which are achieved in Proposition 6 and Proposition 7, respectively. The
definition of by1 (0, s) reads as f3(9).f3! = by1(0, s) f3, and this means that b1(0, s) = by, (s)
(see (10)).

We can compute by o(s1, s2) by using the ordinary Capelli identity (1) and representation
theory.

Proposition 6. byo(s1, s2) = (s1 + L) (@D)(s; + 5, + BEL) (-0
Proof. The b-function by o(s1, 82) is defined as
F10)-F £32 = bio(s1, 82) £ f32.

and hence we can use the ordinary Capelli identity for f;:

0 9 072 2)/2
det(tTl) det (5,171) = det (tTlg'T—l + ( =)/ . )) ’ (11)
o
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where T" = (t;j)1<i,j<p is the same as in (9). Thus we need to consider the action of the
subgroup GL,(C) of G = GL,(C) x GL,(C) on the subspace Sym,(C) of V' =~ Sym,(C) ®
Mat(p, ¢; C), and compute the weight of f'*!f52 with respect to this action. Note that
monomials of f5 do not have the equal weight.

We take the Cartan subalgebra b of the Lie algebra g, of GL,(C) as the diagonal matrices.
Let ¢; (¢ = 1,2,...,p) be the linear coordinate system on h. Then the weight of t;; is equal
to g +¢; (i <p, j <p), and zero (otherwise). It is clear that the weight of f; is equal to
2(e1+€2+ - -+¢p). The monomials of f; which have the highest weight among the monomials
of fa come from the product of the following three determinants

det (tij ) 1<i<p—q,, det (tij )p—q<i5p‘ , det (tij )p<i5p+q, )
1<s<p—q p<j<p+q P—q<j<p
up to sign. Therefore the highest weight among the monomials of f, is equal to 2(e; + €2 +
-+~ €p—g). Finally it follows that the highest weight of the monomials of f$*!f2? is equal
to

2at+eat+ - +eg)(1+)+2a+eat - +eyg) -2
=2s1+s2+ 1)+ +epg) +2(51+ Dlep-gir + - + Epig)-

In computing f7(0).£1 f32, since the result is a scalar multiple of £! f52, we have only
to know the scalar multiple by computing the differentiation on a monomial of the highest
weight. We use (11) for this computation, and only the diagonal entries on the right-hand
side of (11) have the contribution. The (%,%)-entry of the determinant has the same action
as the action of ej; + (p — 7)/2, where e;; is the unit matrix of h. Thus we can compute the
desired b-function as follows.

)£ 13
= [T AR @)1 5

= (o +sn+14E )(31+52+1+%—)"'(31+32+1+%)X
_1 _2 0
(81+1+q2 )(31+1+’q-5—')"'(31+1+§)Xff1+1f;2-
This shows the proposition. O

By using the explicit form of bg1(0, s) and by 0(s1, $2) we obtain the remaining b-function
bo,1(s1,82) of two variables.

Proposition 7. by(s1,82) = (s2 + g)((q))(32 + gJ,g—l)((q))(sl + 83+ Eg—l)(@‘q»

Proof. The b-function by (s1, s2) is defined as

F3(0)-F31 £571 = b1 (1, 82) £ f52.



We differentiate f7* f3*! by f3(0)* f3(9) in two different ways. First one is to differentiate
by f#(0)** and f3(0) in turn, and the other is to differentiate in reverse order. These two
ways are illustrated as follows:

91 psgtl  Dro(s1—Ls2+1) g g ngoqq  br0(s1-2,82+1) b1,0(0,82+1) 10 pgot1
2 —+ s — SRR S (0 /5
bo,1(s1,82) 4 bo,1(0,32) 4
f31f52 f81—1f82 .. 3 0 £32
7 ? 1
172 b1,0(s1—1,82) L 2 b1,0(s1—2,82) b1,0(0,52) 2

Horizontal arrows mean the differentiation by f;(8), two vertical arrows mean that by f5(9),
and b-functions beside arrows are the scalar multiples which arise by the differentiations.
Since the above diagram is commutative, we obtain the equation

b1,0(81 — 1,80+ 1)b1’0($1 - 2,8+ 1) . -bl,O(O, So + 1) . bo,l(o, 82)
= bo,1(51,52) - bro(s1 — 1,82)b1,0(s1 — 2,82) - - - b10(0, 82).

In this equation b-functions except bg1(s1,$2) are already known by Proposition 7 and
b,1(0, 8) = by, (s). Therefore we have

bo,1(s1, 52)

s bio(t, s2+ 1)

T35 buo(t, s2)

sl (t+s2+1+ %)((P—q))(t + 9.'%‘1)((91))

e PN 1 Py,
= (o) e+ 3) g (t+ 52 & )G 7 4 L)@

= bo,1(0, 82) -

81—-1

P Ly 4 By@). i (t+ 53+ BE2)(t + 53 + 2£2)
2 2 =0 (t+52+g;—3)(t+52+9;_2)
g+1

=(5+

+1
= (sa+ g)((q)>(52 + Y@ (s, 4 5, + 2 =)o,

This is the desired b-function. O
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