Capelli identities with zero entries

Akihito Wachi (Hokkaido University of Education)

Abstract

In the Capelli identities and several variants of them, the entries of matrices in the identities are usually nonzero except a few cases of alternating matrices. In this paper we introduce Capelli identities in which there are zero entries, and, as an application, we compute b-functions of prehomogeneous vector spaces.

1 Introduction

Let t_{ij} be (independent) variables, and set

$$T = (t_{ij})_{1 \le i, j \le n},$$

$$\frac{\partial}{\partial T} = \left(\frac{\partial}{\partial t_{ij}}\right)_{1 \le i, j \le n}.$$

Then the original Capelli identity is the following equation in the ring of the differential operators with polynomial coefficients [1]:

$$\det({}^{t}T)\det\left(\frac{\partial}{\partial T}\right) = \det\left({}^{t}T\frac{\partial}{\partial T} + \left({}^{n-1}{}^{n-2}\right)\right),\tag{1}$$

where the determinant is defined as $\det(X) = \sum_{\sigma} \operatorname{sgn}(\sigma) X_{\sigma(1)1} X_{\sigma(2)2} \cdots X_{\sigma(n)n}$, which is called the column determinant.

Define a polynomial f and a differential operator $f^*(\partial)$ with constant coefficients by

$$f = \det({}^tT),$$
 $f^*(\partial) = \det\left(\frac{\partial}{\partial T}\right).$

Then the differentiation by $f^*(\partial)$ on f^{s+1} gives a scalar multiple of f^s :

$$f^*(\partial).f^{s+1} = b_f(s)f^s,$$

and $b_f(s) \in \mathbb{C}[s]$ is called the *b*-function of f. In this case it is known that $b_f(s) = (s+1)(s+2)\cdots(s+n)$, and the Capelli identity enables us to compute this *b*-function.

Next we recall a variant of the Capelli identity, where t_{ij} are variables satisfying $t_{ij} = t_{ji}$. There is an analogous identity in this setting. Set

$$T = (t_{ij})_{1 \le i,j \le n},$$

$$\frac{\overline{\partial}}{\partial T} = \left(\frac{\overline{\partial}}{\partial t_{ij}}\right)_{1 < i,j < n},$$

where

$$\frac{\overline{\partial}}{\partial t_{ij}} = \begin{cases} \frac{\partial}{\partial t_{ii}} & (i = j) \\ \frac{1}{2} \frac{\partial}{\partial t_{ij}} & (i \neq j) \end{cases}$$

Then the Capelli identity in this case is as follows [3]:

$$\det({}^{t}T)\det\left(\frac{\overline{\partial}}{\partial T}\right) = \det\left({}^{t}T\frac{\overline{\partial}}{\partial T} + \left(\begin{array}{c} (n-1)/2 & \\ & \ddots & \\ & & \ddots & \\ & & & \end{array}\right)\right). \tag{2}$$

Define a polynomial f and a differential operator $f^*(\partial)$ with constant coefficients by

$$f = \det({}^{t}T),$$
 $f^{*}(\partial) = \det\left(\frac{\overline{\partial}}{\partial T}\right).$ (3)

Then the b-function is given by

$$f^*(\partial).f^{s+1} = b_f(s)f^s,$$
 $b(s) = (s+1)(s+\frac{3}{2})(s+2)\cdots(s+\frac{n+1}{2}).$ (4)

The Capelli identity again enables us to compute the b-function also in this case.

In the above two cases the matrix T has nonzero entries only. In this paper we consider the cases where T has zero entries, and prove the Capelli identities (Theorem 1). We hope the b-functions of $\det(T)$ are computed by using our Capelli identities, but we can not use the Capelli identities to compute all the b-functions at present. We give the b-functions computed by using our Capelli identity or in different ways (Propositions 5, 6, 7).

2 Capelli identities with zero entries

When some entries of T are zero, the Capelli identities (1) and (2) can hold.

Theorem 1. (1) Let the entries of T be (independent) variables or zero, and suppose that T satisfies the following conditions:

- (A) In each row of T zero entries are at the end of the row.
- (B) The number of the zero entries of a row is greater than or equal to that of the previous row.

In other words nonzero entries are placed just as a Young diagram. Then the identity (1) in Introduction holds.

(2) Let the entries of T be symmetric variables $(t_{ij} = t_{ji})$ or zero, that is, T is a symmetric matrix containing zero entries. Suppose also that T is of the following form:

$$T = \begin{pmatrix} T_1 & T_2 \\ {}^tT_2 & 0 \end{pmatrix}, \quad (T_1 \text{ is } p \times p, T_2 \text{ is } p \times q, \text{ and } p+q=n),$$

where T_1 and T_2 have no zero entries. Then the identity (2) in Introduction holds.

2.1 Proof of Theorem 1 (1)

We denote $\partial/\partial t_{ij}$ by ∂_{ij} for short.

Let λ_i be the number of nonzero entries of the *i*th row of T, and therefore $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Note that the partition $(\lambda_1, \lambda_2, \ldots, \lambda_n)$ corresponds to the Young diagram mentioned in the theorem. We interpret t_{ij} and ∂_{ij} are zero when $j > \lambda_i$. We define the 'characteristic function' corresponding to the nonzero entries of T:

$$\epsilon_{(i,j)} = \begin{cases} 1 & (j \le \lambda_i) \\ 0 & (j > \lambda_i) \end{cases}$$

We use the exterior calculus for the proof. Let e_1, e_2, \ldots, e_n be the standard basis of \mathbb{C}^n , and consider the algebra $A := \bigwedge \mathbb{C}^n \otimes_{\mathbb{C}} W$, which is the tensor product of the exterior algebra $\bigwedge \mathbb{C}^n$ and the Weyl algebra W generated by t_{ij} and ∂_{ij} . In denoting elements of A we write such as $e_1e_2t_{12}\partial_{23}$ instead of $e_1 \wedge e_2 \otimes t_{12}\partial_{23}$ for short.

Define some elements of A. Set

$$\eta_k = \sum_{i=1}^n e_i t_{ki} \quad (1 \le k \le n), \qquad \qquad \zeta_j = \sum_{i=1}^n e_i \left({}^t T \frac{\partial}{\partial T} \right)_{ij} \quad (1 \le j \le n),$$

where $({}^tT \cdot \partial/\partial T)_{ij}$ means the (i,j)-entry of the matrix. We can write ζ_j in other forms as

$$\zeta_j = \sum_{i,k=1}^n e_i t_{ki} \partial_{kj} = \sum_{k=1}^n \eta_k \partial_{kj}.$$

For a complex number u define $\zeta_j(u) = \zeta_j + ue_j$ $(1 \le j \le n)$, and we can write $\zeta_j(u)$ in another form as

$$\zeta_j(u) = \zeta_j + ue_j = \sum_{i=1}^n e_i \left({}^t T \frac{\partial}{\partial T} + u \mathbf{1}_n \right)_{ij},$$

where 1_n denotes the identity matrix of size n.

Lemma 2. For $l, j, k \in \{1, 2, ..., n\}$ and $u \in \mathbb{C}$ we have the following, where δ_{lk} denotes the Kronecker delta.

- $(1) \partial_{lj}\eta_k = \eta_k \partial_{lj} + \delta_{lk} \epsilon_{(l,j)} e_j$
- (2) $\zeta_i(u)\eta_k = -\eta_k(\zeta_i(u) \epsilon_{(k,i)}e_i)$

Proof. (1)
$$\partial_{lj}\eta_k = \partial_{lj} \sum_{i=1}^n e_i t_{ki}$$

$$= \sum_{i=1}^n e_i \epsilon_{(l,j)} \epsilon_{(k,i)} (t_{ki} \partial_{lj} + \delta_{lk} \delta_{ji})$$

$$= \eta_k \partial_{lj} + \delta_{lk} e_j \epsilon_{(l,j)} \epsilon_{(k,j)}$$

$$= \eta_k \partial_{lj} + \delta_{lk} \epsilon_{(l,j)} e_j.$$

(2) We have

$$\zeta_{j}\eta_{k} = \sum_{l=1}^{n} \eta_{l}\partial_{lj}\eta_{k}$$

$$\stackrel{(1)}{=} \sum_{l=1}^{n} \eta_{l}(\eta_{k}\partial_{lj} + \delta_{lk}\epsilon_{(l,j)}e_{j})$$

$$= -\eta_{k}\zeta_{j} + \eta_{k}\epsilon_{(k,j)}e_{j}$$

$$= -\eta_{k}(\zeta_{j} - \epsilon_{(k,j)}e_{j}).$$

Then the desired equation is obtained by adding $ue_i\eta_k = -\eta_k ue_i$ to both sides.

We start the proof of Theorem 1 (1), that is, we prove

$$\det({}^tT)\det\left(\frac{\partial}{\partial T}\right) = \det\left({}^tT\frac{\partial}{\partial T} + \left({}^{n-1}{}^{n-2} \cdot \cdot \cdot \cdot {}_0\right)\right),$$

where the (i,j)-entry t_{ij} of T and the (i,j)-entry ∂_{ij} of $\partial/\partial T$ are zero if and only if $j > \lambda_i$. It is clear that

$$\zeta_1(n-1)\zeta_2(n-2)\cdots\zeta_n(0) = e_1e_2\cdots e_n \det \left({}^tT\frac{\partial}{\partial T} + \left({}^{n-1}{}^{n-2}\right)_{0}\right)$$

from the definition of (column) determinant. Next we compute the left-hand side of the above equation in another way. By using Lemma 2 (2) we have

$$\zeta_{1}(n-1)\zeta_{2}(n-2)\cdots\zeta_{n}(0)
= \zeta_{1}(n-1)\zeta_{2}(n-2)\cdots\zeta_{n-1}(1)\cdot\sum_{l_{n}=1}^{n}\eta_{l_{n}}\partial_{l_{n},n}
= (-1)^{n-1}\sum_{l_{n}=1}^{n}\eta_{l_{n}}\cdot(\zeta_{1}(n-1)-\epsilon_{(l_{n},1)}e_{1})\cdots(\zeta_{n-1}(1)-\epsilon_{(l_{n},n-1)}e_{n-1})\cdot\partial_{l_{n},n}.$$
(5)

Suppose that $\partial_{l_n,n} \neq 0$ in the above expression. Then $\epsilon_{(l_n,n)} = 1$, and therefore every $\epsilon_{(l_n,j)}$ $(j \leq n)$ is equal to one by the definition of $\epsilon_{(i,j)}$ (recall 'Young diagram'). Thus we may

assume that every $\epsilon_{(l_n,j)}$ in the expression is equal to one, and we have

(RHS of (5))

$$= (-1)^{n-1} \sum_{l_n=1}^{n} \eta_{l_n} \cdot \zeta_1(n-2) \cdots \zeta_{n-1}(0) \cdot \partial_{l_n,n}$$

$$= (-1)^{n-1} \sum_{l_n=1}^{n} \eta_{l_n} \cdot \zeta_1(n-2) \cdots \zeta_{n-2}(1) \cdot \sum_{l_{n-1}=1}^{n} \eta_{l_{n-1}} \partial_{l_{n-1},n-1} \cdot \partial_{l_n,n}$$
(6)

We can move $\eta_{l_{n-1}}$ to the left in this expression with parameters of ζ_j $(1 \leq j \leq n-2)$ decreasing by one as η_{l_n} moved. Similarly we repeat this operation, and obtain

$$(\text{RHS of } (6)) = (-1)^{(n-1)n} \sum_{l_1, \dots, l_n = 1}^n \eta_{l_1} \eta_{l_2} \cdots \eta_{l_n} \cdot \partial_{l_1, 1} \partial_{l_2, 2} \cdots \partial_{l_n, n}$$

$$= \sum_{\sigma \in S_n} \eta_{\sigma(1)} \eta_{\sigma(2)} \cdots \eta_{\sigma(n)} \cdot \partial_{\sigma(1), 1} \partial_{\sigma(2), 2} \cdots \partial_{\sigma(n), n}$$

$$= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \eta_1 \eta_2 \cdots \eta_n \cdot \partial_{\sigma(1), 1} \partial_{\sigma(2), 2} \cdots \partial_{\sigma(n), n}$$

$$= e_1 e_2 \cdots e_n \det({}^t T) \det\left(\frac{\partial}{\partial T}\right).$$

Thus we have proved the assertion.

2.2 Proof of Theorem 1 (2)

We denote $\partial/\partial t_{ij}$ by ∂_{ij} , and $\overline{\partial}/\partial t_{ij}$ by $\overline{\partial}_{ij}$ for short.

We define the 'characteristic function' corresponding to the nonzero entries of T:

$$\epsilon_{(i,j)} = egin{cases} 1 & (i \leq p \text{ or } j \leq p) \\ 0 & (i > p \text{ and } j > p) \end{cases}$$

We interpret t_{ij} and ∂_{ij} (and $\overline{\partial}_{ij}$) to be zero when $\epsilon_{(i,j)} = 0$.

We use the exterior calculus again. We set $A = \bigwedge \mathbb{C}^n \otimes_{\mathbb{C}} W$ as in the proof of Theorem 1 (1). Note that n = p + q.

Define some elements of A. Set

$$\eta_k = \sum_{i=1}^n e_i t_{ki} \quad (1 \le k \le n), \qquad \qquad \zeta_j = \sum_{i=1}^n e_i \left({}^t T \frac{\overline{\partial}}{\partial T} \right)_{ij} \quad (1 \le j \le n).$$

We can write ζ_j in another form as

$$\zeta_j = \sum_{k=1}^n \eta_k \overline{\partial}_{kj}.$$

For a complex number u define $\zeta_j(u) = \zeta_j + ue_j$ $(1 \leq j \leq n)$, and we can write $\zeta_j(u)$ in another form as

$$\zeta_j(u) = \zeta_j + ue_j = \sum_{i=1}^n e_i \left({}^tT \frac{\overline{\partial}}{\partial T} + u \mathbf{1}_n \right)_{ij}.$$

Lemma 3. For $k, j, l \in \{1, 2, \dots, n\}$ and $u \in \mathbb{C}$ we have the following.

(1) $\overline{\partial}_{kj}\eta_l = \eta_l \overline{\partial}_{kj} + \epsilon_{(k,j)}(\delta_{kl}e_j + \delta_{jl}e_k)$ (2) $\zeta_j(u)\eta_l = -\eta_l(\zeta_j(u) - \epsilon_{(l,j)}e_j) + \delta_{lj} \sum_{k=1}^n \epsilon_{(k,j)}\eta_k e_k$

Proof. (1)
$$\overline{\partial}_{kj}\eta_{l} = \overline{\partial}_{kj} \sum_{i=1}^{n} e_{i}t_{li}$$

$$= \sum_{i=1}^{n} \epsilon_{(k,j)}\epsilon_{(l,i)}e_{i}(t_{li}\overline{\partial}_{kj} + \delta_{kl}\delta_{ji} + \delta_{ki}\delta_{jl})$$

$$= \eta_{k}\overline{\partial}_{kj} + \epsilon_{(k,j)}\epsilon_{(l,j)}e_{j}\delta_{kl} + \epsilon_{(k,j)}\epsilon_{(l,k)}e_{k}\delta_{jl}$$

$$= \eta_{l}\overline{\partial}_{kj} + \epsilon_{(k,j)}(\delta_{kl}e_{j} + \delta_{il}e_{k}).$$

(2) We have

$$\zeta_{j}\eta_{l} = \sum_{k=1}^{n} \eta_{k}\overline{\partial}_{kj}\eta_{l}$$

$$\stackrel{(1)}{=} \sum_{k=1}^{n} \eta_{k}(\eta_{l}\overline{\partial}_{kj} + \epsilon_{(k,j)}(\delta_{kl}e_{j} + \delta_{jl}e_{k}))$$

$$= -\eta_{l}\zeta_{j} + \eta_{l}\epsilon_{(l,j)}e_{j} + \sum_{k=1}^{n} \eta_{k}\epsilon_{(k,j)}\delta_{jl}e_{k}.$$

Then the desired equation is obtained by adding $ue_j\eta_l = -\eta_l ue_j$ to both sides.

The next lemma is easy to show, and we omit the proof.

Lemma 4. We have

$$\sum_{k=1}^{n} \eta_k e_k = 0.$$

We start the proof of Theorem 1 (2), that is, we prove

$$\det({}^{t}T)\det\left(\frac{\overline{\partial}}{\partial T}\right) = \det\left({}^{t}T\frac{\overline{\partial}}{\partial T} + \left({}^{(n-1)/2}{}^{(n-2)/2} \right) \right).$$

It is clear that

$$\zeta_1(n-1)\zeta_2(n-2)\cdots\zeta_n(0) = e_1e_2\cdots e_n \det \left({}^tT\frac{\overline{\partial}}{\partial T} + \left(\begin{matrix} (n-1)/2 & (n-2)/2 \\ & \ddots & \\ & & \end{matrix}\right)\right).$$

Next we compute the left-hand side of the above equation in another way. We have

$$\zeta_1(n-1)\zeta_2(n-2)\cdots\zeta_n(0)$$

$$=\zeta_1(n-1)\zeta_2(n-2)\cdots\zeta_{n-1}(1)\cdot\sum_{l_n=1}^n\eta_{l_n}\overline{\partial}_{l_n,n}.$$
(7)

Here we need some preparation. For s > j it follows from Lemma 3 (2) that

$$\zeta_{j}(u) \sum_{l=1}^{n} \eta_{l} \cdot (\text{some factors}) \cdot \overline{\partial}_{ls}$$

$$= \sum_{l=1}^{n} \left(-\eta_{l}(\zeta_{j}(u) - \epsilon_{(l,j)}e_{j}) + \delta_{lj} \sum_{l=1}^{n} \epsilon_{(k,j)}\eta_{k}e_{k} \right) \cdot (\text{some factors}) \cdot \overline{\partial}_{ls}.$$

Suppose that $\overline{\partial}_{l,s} \neq 0$ in the above expression. Then $\epsilon_{(l,j)} = 1$ by j < s, and therefore $\zeta_j(u) - \epsilon_{(l,j)}e_j$ becomes $\zeta_j(u-1)$. For the part of $\delta_{lj} \sum_{k=1}^n \epsilon_{(k,j)} \eta_k e_k$ we have only to consider the case where $\overline{\partial}_{js} \neq 0$ thanks to the factor δ_{lj} . Then at least one of j and s is less than or equal to p, and it turns out that $j \leq p$ by j < s. When $j \leq p$, every $\epsilon_{(k,j)}$ $(k = 1, 2, \ldots, n)$ is equal to one, and it follows from Lemma 4 that this part is zero. To summarize we have

$$\zeta_j(u) \sum_{l=1}^n \eta_l \cdot (\text{some factors}) \cdot \overline{\partial}_{ls} = -\sum_{l=1}^n \eta_l \zeta_j(u-1) \cdot (\text{some factors}) \cdot \overline{\partial}_{ls}.$$

Thanks to the preparation in the previous paragraph the computation goes similarly to the proof of Theorem 1 (1), and finally we have

(RHS of (7)) =
$$e_1 e_2 \cdots e_n \det({}^t T) \det \left(\frac{\overline{\partial}}{\partial T} \right)$$
.

Thus we have proved the assertion.

3 b-Functions

We can compute the b-functions of the prehomogeneous vector spaces corresponding to our Capelli identities.

We first consider the following prehomogeneous vector space, which corresponds to the Capelli identity of Theorem 1 (1). Define n_1, n_2, \ldots, n_m as the multiplicities of the partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)$. In other words the numbers of nonzero entries in the first n_1 rows of T are equal, those in the next n_2 rows are equal, and so on. Similarly define n'_1, n'_2, \ldots, n'_m as the multiplicities of the conjugate of the partition λ . In other words the numbers of nonzero entries in the first n_1 columns of T are equal, those in the next n_2 columns are equal, and so on.

Define complex Lie groups P, P', G, and a vector space V by

$$P = \left\{ \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1m} \\ 0 & P_{22} & \cdots & P_{2m} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & P_{mm} \end{pmatrix} \in GL_n(\mathbb{C}) \middle| P_{ii} \in GL_{n_i}(\mathbb{C}) (i = 1, 2, \dots, m) \right\},$$

$$P' = \left\{ \begin{pmatrix} P_{11} & P_{12} & \cdots & P_{1m} \\ 0 & P_{22} & \cdots & P_{2m} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & P_{mm} \end{pmatrix} \in GL_n(\mathbb{C}) \middle| P_{ii} \in GL_{n'_i}(\mathbb{C}) (i = 1, 2, \dots, m) \right\},$$

$$G = P \times P',$$

$$V = \left\{ \begin{pmatrix} V_{11} & \cdots & V_{1,m-1} & V_{1m} \\ V_{21} & \cdots & V_{2,m-1} & 0 \\ \vdots & \ddots & \ddots & \vdots \\ V_{m1} & 0 & \cdots & 0 \end{pmatrix} \in Mat_n(\mathbb{C}) \middle| V_{ij} \in Mat(n_i, n'_j; \mathbb{C}) \right\}.$$

Namely, t_{ij} in Theorem 1 (1) is the linear coordinate system on a vector space of this form. Then G acts on V by $(g,h).A = gA^th$ $((g,h) \in G$ and $A \in V)$, and (G,V) is a prehomogeneous vector space. $f = \det(T)$ is a relative invariant (if f is a nonzero polynomial) corresponding to the character $\det g \cdot \det h$. We can compute the b-function of f only in a limited case where m = 2 and $n_2 = n'_2 = 1$.

Proposition 5. If m = 2 and $n_2 = n'_2 = 1$ in the above setting, then the b-function $b_f(s)$ of $f = \det(T)$ is given by

$$b_f(s) = (s+1)(s+2)\cdots(s+n_1-1)\cdot(s+n_1)^2.$$

Proof. We can compute the b-function by direct computation using our Capelli identity. \Box

We next consider the following prehomogeneous vector space, which corresponds to the Capelli identity of Theorem 1 (2). Let $p \ge q$ be positive integers. Define a Lie group G and a vector space V as

$$G = GL_{p}(\mathbb{C}) \times GL_{q}(\mathbb{C}),$$

$$V = \left\{ \begin{pmatrix} V_{11} & V_{12} \\ tV_{12} & 0 \end{pmatrix} \in \operatorname{Sym}_{p+q}(\mathbb{C}) \mid V_{11} \in \operatorname{Sym}_{p}(\mathbb{C}), V_{12} \in \operatorname{Mat}(p, q; \mathbb{C}) \right\}$$

$$\simeq \operatorname{Sym}_{p}(\mathbb{C}) \oplus \operatorname{Mat}(p, q; \mathbb{C}),$$
(8)

where $\operatorname{Sym}_p(\mathbb{C})$ denotes the set of symmetric matrices of size $p \times p$. Namely, t_{ij} in Theorem 1 (2) is the linear coordinate system on a vector space of this form. Then G acts on V by

$$(g,h).A = \begin{pmatrix} g \\ h \end{pmatrix} A \begin{pmatrix} g \\ h \end{pmatrix} \qquad ((g,h) \in G, \ A \in V),$$

and (G, V) is a prehomogeneous vector space.

There are two basic invariants for this prehomogeneous vector space:

$$f_1 = \det(T')$$
 $(T' = (t_{ij})_{1 \le i, j \le p}),$ $f_2 = \det(T).$ (9)

The basic invariants f_1 and f_2 correspond to the character $\det g^2$ and $\det g^2 \cdot \det h^2$, respectively. The *b*-function of f_1 is equal to $(s+1)(s+3/2)\cdots(s+(p+1)/2)$ as seen in (4). We want to compute the *b*-function of f_2 by using our Capelli identity, but we have not succeeded at this point. Sato-Sugiyama [2] have computed the *b*-function as

$$b_{f_2}(s) = \left(s + \frac{p+1}{2}\right)^{((p))} \left(s + \frac{p}{2}\right)^{((q))},\tag{10}$$

where $x^{(q)} = x(x - 1/2) \cdots (x - (q - 1)/2)$.

4 b-Function of several variables

In this section we focus on the prehomogeneous vector space (G, V) defined by (8), which is corresponding to Theorem 1 (2). We retain the notation there.

For a prehomogeneous vector space with more than one basic invariant, we can consider b-functions of several variables. In the case we are focusing the b-function $b_{d_1,d_2}(s_1,s_2)$ of two variables is defined as

$$f_1^*(\partial)^{d_1} f_2^*(\partial)^{d_2} \cdot f_1^{s_1+d_1} f_2^{s_2+d_2} = b_{d_1,d_2}(s_1,s_2) f_1^{s_1} f_2^{s_2},$$

where $f_1^*(\partial)$ and $f_2^*(\partial)$ are defined similarly in the case of (3). It is easy to see that $b_{1,0}(s_1, s_2)$ and $b_{0,1}(s_1, s_2)$ determines all $b_{d_1,d_2}(s_1, s_2)$, and therefore our goal is to compute $b_{1,0}(s_1, s_2)$ and $b_{0,1}(s_1, s_2)$, which are achieved in Proposition 6 and Proposition 7, respectively. The definition of $b_{0,1}(0,s)$ reads as $f_2^*(\partial).f_2^{s+1} = b_{0,1}(0,s)f_2^s$, and this means that $b_{0,1}(0,s) = b_{f_2}(s)$ (see (10)).

We can compute $b_{1,0}(s_1, s_2)$ by using the ordinary Capelli identity (1) and representation theory.

Proposition 6.
$$b_{1,0}(s_1, s_2) = (s_1 + \frac{q+1}{2})^{((q))}(s_1 + s_2 + \frac{p+1}{2})^{((p-q))}$$

Proof. The b-function $b_{1,0}(s_1, s_2)$ is defined as

$$f_1^*(\partial).f_1^{s_1+1}f_2^{s_2} = b_{1,0}(s_1, s_2)f_1^{s_1}f_2^{s_2}.$$

and hence we can use the ordinary Capelli identity for f_1 :

$$\det({}^{t}T')\det\left(\frac{\overline{\partial}}{\partial T'}\right) = \det\left({}^{t}T'\frac{\overline{\partial}}{\partial T'} + \left({}^{(p-1)/2}{}^{(p-2)/2}\right)\right),\tag{11}$$

where $T'=(t_{ij})_{1\leq i,j\leq p}$ is the same as in (9). Thus we need to consider the action of the subgroup $GL_p(\mathbb{C})$ of $G=GL_p(\mathbb{C})\times GL_q(\mathbb{C})$ on the subspace $\operatorname{Sym}_p(\mathbb{C})$ of $V\simeq \operatorname{Sym}_p(\mathbb{C})\oplus \operatorname{Mat}(p,q;\mathbb{C})$, and compute the weight of $f_1^{s_1+1}f_2^{s_2}$ with respect to this action. Note that monomials of f_2 do not have the equal weight.

We take the Cartan subalgebra \mathfrak{h} of the Lie algebra \mathfrak{gl}_p of $GL_p(\mathbb{C})$ as the diagonal matrices. Let ϵ_i $(i=1,2,\ldots,p)$ be the linear coordinate system on \mathfrak{h} . Then the weight of t_{ij} is equal to $\epsilon_i + \epsilon_j$ $(i \leq p, j \leq p)$, and zero (otherwise). It is clear that the weight of f_1 is equal to $2(\epsilon_1 + \epsilon_2 + \cdots + \epsilon_p)$. The monomials of f_2 which have the highest weight among the monomials of f_2 come from the product of the following three determinants

$$\det(t_{ij})_{\substack{1\leq i\leq p-q,\\1\leq j\leq p-q}} \quad \det(t_{ij})_{\substack{p-q< i\leq p,\\p-q< j\leq p+q}} \quad \det(t_{ij})_{\substack{p< i\leq p+q,\\p-q< j\leq p}}$$

up to sign. Therefore the highest weight among the monomials of f_2 is equal to $2(\epsilon_1 + \epsilon_2 + \cdots + \epsilon_{p-q})$. Finally it follows that the highest weight of the monomials of $f_1^{s_1+1}f_2^{s_2}$ is equal to

$$\begin{aligned} 2(\epsilon_1+\epsilon_2+\cdots+\epsilon_p)\cdot(s_1+1) + 2(\epsilon_1+\epsilon_2+\cdots+\epsilon_{p-q})\cdot s_2 \\ &= 2(s_1+s_2+1)(\epsilon_1+\cdots+\epsilon_{p-q}) + 2(s_1+1)(\epsilon_{p-q+1}+\cdots+\epsilon_{p+q}). \end{aligned}$$

In computing $f_1^*(\partial).f_1^{s_1+1}f_2^{s_2}$, since the result is a scalar multiple of $f_1^{s_1}f_2^{s_2}$, we have only to know the scalar multiple by computing the differentiation on a monomial of the highest weight. We use (11) for this computation, and only the diagonal entries on the right-hand side of (11) have the contribution. The (i,i)-entry of the determinant has the same action as the action of $e_{ii} + (p-i)/2$, where e_{ii} is the unit matrix of \mathfrak{h} . Thus we can compute the desired b-function as follows.

$$\begin{split} f_1^*(\partial).f_1^{s_1+1}f_2^{s_2} \\ &= f_1^{-1}(f_1f_1^*(\partial)).f_1^{s_1+1}f_2^{s_2} \\ &= f_1^{-1}\cdot(s_1+s_2+1+\frac{p-1}{2})(s_1+s_2+1+\frac{p-2}{2})\cdots(s_1+s_2+1+\frac{q}{2})\times \\ &(s_1+1+\frac{q-1}{2})(s_1+1+\frac{q-2}{2})\cdots(s_1+1+\frac{0}{2})\times f_1^{s_1+1}f_2^{s_2}. \end{split}$$

This shows the proposition.

By using the explicit form of $b_{0,1}(0,s)$ and $b_{1,0}(s_1,s_2)$ we obtain the remaining b-function $b_{0,1}(s_1,s_2)$ of two variables.

Proposition 7.
$$b_{0,1}(s_1,s_2) = (s_2 + \frac{p}{2})^{((q))}(s_2 + \frac{q+1}{2})^{((q))}(s_1 + s_2 + \frac{p+1}{2})^{((p-q))}$$

Proof. The b-function $b_{0,1}(s_1, s_2)$ is defined as

$$f_2^*(\partial).f_1^{s_1}f_2^{s_2+1} = b_{0,1}(s_1, s_2)f_1^{s_1}f_2^{s_2}.$$

We differentiate $f_1^{s_1}f_2^{s_2+1}$ by $f_1^*(\partial)^{s_1}f_2^*(\partial)$ in two different ways. First one is to differentiate by $f_1^*(\partial)^{s_1}$ and $f_2^*(\partial)$ in turn, and the other is to differentiate in reverse order. These two ways are illustrated as follows:

Horizontal arrows mean the differentiation by $f_1^*(\partial)$, two vertical arrows mean that by $f_2^*(\partial)$, and b-functions beside arrows are the scalar multiples which arise by the differentiations. Since the above diagram is commutative, we obtain the equation

$$b_{1,0}(s_1-1,s_2+1)b_{1,0}(s_1-2,s_2+1)\cdots b_{1,0}(0,s_2+1)\cdot b_{0,1}(0,s_2) = b_{0,1}(s_1,s_2)\cdot b_{1,0}(s_1-1,s_2)b_{1,0}(s_1-2,s_2)\cdots b_{1,0}(0,s_2).$$

In this equation b-functions except $b_{0,1}(s_1, s_2)$ are already known by Proposition 7 and $b_{0,1}(0,s) = b_{f_2}(s)$. Therefore we have

$$\begin{split} b_{0,1}(s_1,s_2) &= b_{0,1}(0,s_2) \cdot \frac{\prod_{t=0}^{s_1-1} b_{1,0}(t,s_2+1)}{\prod_{t=0}^{s_1-1} b_{1,0}(t,s_2)} \\ &= (s + \frac{p+1}{2})^{((p))} (s + \frac{p}{2})^{((q))} \cdot \prod_{t=0}^{s_1-1} \frac{(t+s_2+1+\frac{p+1}{2})^{((p-q))}(t+\frac{q+1}{2})^{((q))}}{(t+s_2+\frac{p+1}{2})^{((p-q))}(t+\frac{q+1}{2})^{((q))}} \\ &= (s + \frac{p+1}{2})^{((p))} (s + \frac{p}{2})^{((q))} \cdot \prod_{t=0}^{s_1-1} \frac{(t+s_2+\frac{p+1}{2})(t+s_2+\frac{p+2}{2})}{(t+s_2+\frac{q+3}{2})(t+s_2+\frac{q+2}{2})} \\ &= (s_2 + \frac{p}{2})^{((q))} (s_2 + \frac{q+1}{2})^{((q))} (s_1 + s_2 + \frac{p+1}{2})^{((p-q))}. \end{split}$$

This is the desired b-function.

References

- [1] Alfredo Capelli. Sur les Opérations dans la théorie des formes algébriques. *Math. Ann.*, 37(1):1–37, 1890.
- [2] Fumihiro Sato and Kazunari Sugiyama. Multiplicity one property and the decomposition of b-functions. Internat. J. Math., 17(2):195-229, 2006.
- [3] H. W. Turnbull. Symmetric determinants and the Cayley and Capelli operators. *Proc. Edinburgh Math. Soc.* (2), 8:76–86, 1948.