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We study the stability of stationary solutions for the semilinear parabolic
equation,

u_{t}- $\Delta$ u=f(x, u)
u=0

u(x, 0)=u_{0}(x)

in  $\Omega$\times (0, \infty) ,

on \partial $\Omega$\times (0, \infty) , (1)
in  $\Omega$,

where  $\Omega$ is a bounded smooth domain in \mathbb{R}^{N}.

Definition 1. We call u(x, t) a solution of (1) if it belongs to the following
space and satisfies (1):

C([0, \infty);L^{2}( $\Omega$))\cap C^{1}((0, \infty L^{2}( $\Omega$))\cap C((0, \infty);H^{2}( $\Omega$)\cap H_{0}^{1}( $\Omega$)) .

We suppose the following assumption.

Assumption 2. f(\prime r_{2}, u) is a Hölder continuous function on \overline{ $\Omega$}\times \mathbb{R} which

is odd with respect to u and satisfies |f(x, u)| \leq  C(|u|^{p}+1) for u \in \mathbb{R}

and \prime lJ \in \overline{\mathrm{f}2}
, with some C > 0 , where 1 < p < \infty when  N = 1

,
2 and

1<p<N/(N-2) when N\geq 3 . For each u\neq 0 , the second partial derivative

f_{uu}(x, u) exists and continuous on \overline{ $\Omega$}\times (\mathbb{R}\backslash \{0\}) and there exists  $\gamma$,, u_{0}>0,
$\theta$_{0} \in (0,1) such that |f_{u\mathrm{u}}(x, v)| \leq  L|f_{u}(x, u)|/u+L/u for 0 < u < u_{0} and

 v\in [(1-$\theta$_{0})u, (1+$\theta$_{0})u] . Moreover we assume

\displaystyle \frac{\partial}{\partial $\tau \iota$}(\frac{f( $\tau$,u)}{u}) <0 for u>0.
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Assumption 3. Let $\lambda$_{1} be the first, cigcnvalue of the Laplacian. We assume

that

\displaystyle \lim_{|u|\rightarrow}\sup_{\infty}(\max_{x\in\overline{ $\Omega$}}f(x, u)/u)<$\lambda$_{1}, \lim_{u\rightarrow 0}(\mathrm{m}\mathrm{i}_{\frac{\mathrm{n}}{ $\Omega$}}f_{u}(x, u)) =\infty.
We define

E(u):=\displaystyle \int_{ $\Omega$}(\frac{1}{2}|\nabla u|^{2}-F(x, u))dx, F(x, u):=\int_{0}^{u}f(x, s)ds.
Then E(u) becomes a Lyapunov functional of (1). The stationary problem
is as follows:

- $\Delta$ v=f(x, v) (x\in $\Omega$) , v=0 (x\in\partial $\Omega$) . (2)

Proposition 4. The following results are known. See [2, 3, 4].

(i) There exists a unique positive solution  $\phi$ of (2); moreover  $\phi$ is a mini‐

mizer of  E in H_{0}^{1}( $\Omega$) and all minimizers of E consist only of\pm $\phi$.

(ii) There exists a sequence v_{n} of non‐trivial solutions for (2) such that v_{n}

converges to zero in C^{2}(\overline{ $\Omega$}) as n\rightarrow\infty.

Definition 5. In the following, u(t) means a solution of (1).

(i) A stationary solution v is called stable if for aiiy  $\epsilon$>0 , there exists a

 $\delta$ > 0 such that \Vert u(0)-v\Vert_{H_{0}^{1}( $\Omega$)} <  $\delta$ implies \Vert u(t)-v\Vert_{H_{0}^{1}(\mathrm{J}l)} <  $\epsilon$ for

 t\geq 0.

(ii) A stationary solution v is called asymptotically stable if v is stable

and there exists a \tilde{ $\delta$}_{0} > 0 such that if \Vert u(0) - v\Vert_{H_{0}^{1}(\mathrm{t}1)} < \overline{ $\delta$}_{0} then

\displaystyle \lim_{t\rightarrow\infty}\Vert u(t)-v\Vert_{H_{0}^{1}(\mathrm{f}1)}=0.
(iii) A stationary solution v is called exponentially stable if v is stable and

there exist constants C,  $\lambda$, $\delta$_{0}>0 such that \Vert u(0)-v\Vert_{H_{\mathrm{O}}^{1}( $\Omega$)} <$\delta$_{0} implies

\Vert u(t)-v\Vert_{H_{0}^{1}(\mathrm{J}l)} \leq Ce^{- $\lambda$ t} for all t\geq 0.

We state the main results.

Theorem 6. For any u_{0}\in H_{0}^{1}( $\Omega$)_{f} (1) has a bounded global solution u(t) in

H_{0}^{1}( $\Omega$) . The orbit of solution u(t) is relatively compact. The  $\omega$ limit set is a

non‐empty subset of the set of stationary solutions.

Theorem 7. There exists an  $\epsilon$_{0} >0 such that if v is a stationary solution

satisfying \Vert\prime(f\Vert_{\infty} <$\epsilon$_{0} , then it is not asymptotically stable. Furthermore, if\prime(f
is isolated from other stationary solutions, it is unstable. The zero solution

is unstable.
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Theorem 8. The unique positive stationary solution  $\phi$ is exponentially sta‐

ble. Moreover the exponent is the the first eigenvalue of the linearlized op‐

erator - $\Delta$ -f_{u}(\prime J;,  $\phi$) . Denote it by  $\mu$ > 0 . Then there exists a  $\delta$ > 0

such that if u(t) is a solution of (1) satisfying \Vert u(0) - $\phi$\Vert_{H_{0}^{1}} <  $\delta$ , then

\Vert u(t)- $\phi$\Vert_{H_{0}^{1}} \leq Ce^{- $\mu$ i} for t\geq 0 with some C>0.

The exponent  $\mu$ is optimal. Indeed, we have the theorem below.

Theorem 9. Let  u_{0}\in H_{0}^{1}( $\Omega$) satisfy either

u_{0}(x) \geq(1+$\delta$_{0}) $\phi$(x) or 0<u_{0}(x) \leq(1-$\delta$_{0}) $\phi$(x) .

with some $\delta$_{0} \in (0,1) . Then there exists a c > 0 such that a solution u(t)
with the initial data u(0)=u_{0} satisfies

\Vert u(t)- $\phi$||_{H_{0}^{1}} \geq \Vert u(t)- $\phi$\Vert_{2}\geq ce^{- $\mu$ t} for t\geq 0.

Let N= 1,  $\Omega$= (0,1) and f(x, u) \equiv f(u) . Then the stationary problem
is rewritten as

-v''=f(v) (x\in(0,1 v(0)=v(1)=0 . (3)

If a solution v(x) of (3) has exactly k zeros in the interval (0,1) , we call it a

k ‐nodal solution. The next result is known (see [6] and [7]).

Proposition 10. Let N = 1,  $\Omega$ = (0,1) and \displaystyle \int(\prime x;, u) \equiv \displaystyle \int(\prime n) . Then for
each  k\geq  1

, there exists a unique (k-1) ‐nodal solution v_{k} of (3) satisfying
v'(0) >0 . The set of all solutions for (3) consists of\pm v_{k} with k\in \mathbb{N} and the

zero solution.

Let v_{k} be a stationary solution as above. Then we have the next result.

Theorem 11. The positive stationary solution v_{1} and the negative stationary
solution -v_{1} are exponentially stable with the exact exponent  $\mu$ and all the

other stationary solutions are unstable.

When  f(x, u) = |u|^{p-1}u , the results above were obtained in a joint work

with Professor Akagi [1]. Theorems in this paper are extensions of those

results to more general functions f(x, u) . From now on, we put f(x, u) =

|u|^{p-1}u with 0<p<1 for simplicity. We prove the stability only of positive
stationary solution.

Lemma 12. F_{J}(u) is a Lyapunov functional.
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Proof. For a solution u(t,) of (1), a direct computation shows

\displaystyle \frac{d}{dt}$\Gamma$_{/}\mathrm{i}( $\tau \iota$(t)) = \int_{ $\Omega$}(\nabla?l,\nabla u_{t}-|? $\iota$|^{p-1}u $\tau$ r_{t})dx
= \displaystyle \int_{ $\Omega$}((- $\Delta$ u-|u|^{p-1}u)u_{t})d_{7j=-}\int_{ $\Omega$}|u_{t}|^{2}dx\leq 0.

Therefore E is a Lyapunov functional. \square 

Lemma 13. The unique positive stationary solution  $\phi$ is isolated from other

stationary solutions.

Proof. Suppose on the contrary that there exists a sequence \{u_{n}\} of sta‐

tionary solutions which converges to  $\phi$ in  H_{0}^{1}( $\Omega$) . Then the elliptic regularity
theorem shows that this convergence is valid in the strong topology in C^{2}(\overline{ $\Omega$}) .

Sirice the outward normal derivative \partial $\phi$/\partial $\nu$ is negative on \partial $\Omega$
,

it holds that

\partial u_{n}/\partial \mathrm{v} < 0 also for n large. Therefore u_{n} > 0 in  $\Omega$ for  n large. This

contradicts the uniqueness of the positive stationary solution. \square 

We shall show the asymptotic stability of the unique positive stationary
solution  $\phi$.

Proof of asymptotic stability. Let  $\phi$ be the unique positive stationary solu‐

tion. Choose -\wedge 0>0 so small that there are no stationary solutions in B( $\phi,\ \epsilon$_{0})
except for  $\phi$ , where

 B( $\phi,\ \epsilon$_{0}):=\{v\in H_{0}^{1}( $\Omega$): \Vert v- $\phi$\Vert_{H_{0}^{1}} <$\epsilon$_{0}\}.
Define d := \displaystyle \inf_{H_{0}^{1}}E(u) . Then E(u) = d if and only if u = \pm $\phi$ . Give

\overline{\succ}\in(0, $\epsilon$_{0}) arbitrarily. We shall show

d_{ $\epsilon$} :=\displaystyle \inf\{E(v) : v\in H_{0}^{1}( $\Omega$), \Vert v- $\phi$\Vert_{H_{0}^{1}}= $\epsilon$\}>d.

Suppose that this claim is false, i.e., d_{ $\epsilon$} = d . Then there exists a sequence

v_{n} \in  H_{0}^{1}( $\Omega$) such that \Vert v_{n}- $\phi$\Vert_{H_{0}^{1}} =  $\epsilon$ and  E(v_{n}) \rightarrow  d_{ $\epsilon$} = d . Since v_{n} is

bounded in II_{0}^{1}( $\ddagger$ 2) , it has a convergent subsequcncc (denoted by  $\tau$ � again)
to a weak limit  v\in H_{0}^{1}( $\Omega$) . This convergence is valid in the strong topology
in I^{p+1}( $\Omega$) . Accordingly, we have

\displaystyle \frac{1}{2}\Vert\nabla v_{n}\Vert_{2}^{2}=E(v_{n})+\frac{1}{p+1}\Vert v_{n}\Vert_{p+1}^{p+1}
\displaystyle \rightarrow d+\frac{1}{p+1}\Vert v\Vert_{p+1}^{p+1} \leq E(v)+\frac{1}{p+1}\Vert v\Vert_{p+1}^{p+1}=\frac{1}{2}\Vert \mathrm{V}v\Vert_{2}^{2}.
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Hence, \displaystyle \lim\sup_{n\rightarrow\infty}\Vert\nabla_{l}\prime)_{n}\Vert_{2} \leq \Vert\nabla v\Vert_{2} . The weak convergence shows that

\displaystyle \lim\inf_{n\rightarrow\infty}\Vert\nabla v_{n}\Vert_{2} \geq \Vert\nabla v\Vert_{2} . Therefore \Vert\nabla v_{n}\Vert_{2} converges to \Vert\nabla v\Vert_{2} , and

hence \prime $\iota$)_{n} strongly converges to? '
. Thus \Vert\prime\{) - $\phi$\Vert_{H_{0}^{1}} = $\epsilon$ and  $\Gamma$\prec,(\prime n) =d . This

is a contradiction. Consequently, d_{ $\epsilon$}>d.
Since d < d_{ $\epsilon$} , we can choose  $\delta$ \in (0,  $\epsilon$) so small that E(u_{0}) < d_{ $\epsilon$} for

u_{0} \in  B( $\phi$,  $\delta$) . Let u_{0} \in  B( $\phi$,  $\delta$) and let u(t) be a solution of (1) satisfying
u(0)=u_{0} . We shall show that

u(t) \in B( $\phi$,  $\epsilon$) for all t>0 . (4)

If this would be proved, then  $\phi$ is stable. Suppose that the assertion above

is false. Then there exists a  t_{0} > 0 such that u(t_{0}) \in \partial B( $\phi$, e) . Then

$\Gamma$_{J}\mathrm{i}(\prime \mathrm{n}(l_{0}))\geq \mathrm{d}_{ $\xi$ j} . Since F_{J} is a Lyapunov functional,

d_{ $\epsilon$}\leq E(u(t_{0})) \leq E(u_{0})<d_{ $\epsilon$}.

A contradiction occurs. Hence (4) is true and  $\phi$ is stable.

Since the orbit is relatively compact,  u(t) converges to a stationary so‐

lution along a subsequence. Since  $\phi$ is the unique stationary solution in

 B( $\phi$ , ,  u(t) itself (without a subsequence) converges to  $\phi$ . Therefore  $\phi$ is

asymptotically stable. \square 

Since 0 <p< 1,  $\phi$(x)^{p-1} has a singularity on \partial $\Omega$ . However we have the

next result (see [5]).
Lemma 14. The linearlized operator - $\Delta$-p$\phi$^{\mathrm{p}-1} is self‐adjoint and has a

compact resolvent in L^{2}( $\Omega$) .

By the lemma above, - $\Delta$-p$\phi$^{\mathrm{p}-1} has discrete eigenvalues in \mathbb{R} . Since  $\phi$ is

a positive solution of (2) with  f(x, u)\equiv |u|^{p-1}u , it \mathrm{b}^{:}\mathrm{d}_{ $\iota$}tisfics ( - $\Delta$-ji^{p-1}) $\phi$=0.
Therefore the first eigenvalue of - $\Delta-\phi$^{p-1} is zero. Since -(\wp^{-1} < -p$\phi$^{\mathrm{p}-1},
we have the result below.

Lemma 15. The first eigcnvalue of- $\Delta$-pji^{p-1} is positive.

Let  $\mu$ and  $\psi$(x) be the first eigenvalue and the eigenfunction of - $\Delta$-

p$\phi$^{\mathrm{p}-1} , that is,

(- $\Delta$-p$\phi$^{\mathrm{p}-1}) $\psi$= $\mu \psi$,  $\psi$>0 in  $\Omega$,  $\psi$=0 on \partial $\Omega$.

Moreover, we assume that \Vert\nabla $\psi$\Vert_{2}=1 . Since  $\phi$,  $\psi$>0(x\in $\Omega$) ,  $\phi$,  $\psi$\in C^{2}(\overline{ $\Omega$}) ,

\partial $\phi$/ \partial $\nu$ $ \partial $\psi$/\partial $\nu$<0(x\in\partial $\Omega$) , there exists a c_{0}>0 such that c_{0}\leq $\phi$(x)/ $\psi$(x)
for  x\in $\Omega$ . For  c\in \mathbb{R} , we define

U(x, t;c) := $\phi$(x)+ce^{- $\mu$ t} $\psi$(x) . (5)

The next three lemmas are proved in our paper [5].
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Lemma 16. For-\mathrm{c}_{0}<c<\infty, U(x, t;c) is a positive supersolution of (1).

Let $\lambda$_{1} be the first, cigenvalue of - $\Delta$ and let  $\phi$_{1} be the corresponding
eigenfunction, \mathrm{i}. \mathrm{e}.,

- $\Delta \phi$_{1}=$\lambda$_{1}$\phi$_{1}, $\phi$_{1} >0 (x\in $\zeta$\}) , $\phi$_{1}=0 (x\in\partial $\ddagger$ l) .

Define  $\xi$(t) := $\mu$(e^{ $\mu$ t}+1)^{-1} . For  $\epsilon$>0 small, we define

V(x, t; $\epsilon$) := $\phi$(x)-$\epsilon$^{2} $\xi$(t) $\psi$(x)+$\epsilon$^{3}e^{-2 $\mu$ t}$\phi$_{1}(x) . (6)

Lemma 17. For  $\epsilon$>0 small, V(\prime J_{\lrcorner}^{\cdot}, l;6) is a positive subsolution of (1).

Using the supersolution U(x, t;c) defined by (5) and the subsolution

V(x, t; $\epsilon$) given by (6), we can obtain the next lemma.

Lemma 18. Let u(x, t) be a solution of (1) with its initial data u(0) close

to  $\phi$ . Let  t_{0}>0 . Then there exists a constant C>0 such that

\displaystyle \Vert\frac{u(\cdot,t)}{ $\phi$}-1\Vert_{L^{\infty}( $\ddagger$?)} \leq Ce^{- $\mu$ t} for t\geq t_{0}.

For  1<q<\infty ,
we define  Au :=- $\Delta$ u with its domain D(A) ,

D(A):=W^{2,q}( $\Omega$)\cap W_{0}^{1,q}( $\zeta$ l) .

Then the fractional power A^{ $\alpha$} with  $\alpha$>0 is well‐defined. Denote its definition

domain by X( $\alpha$, q) , i.e.,

X( $\alpha$, q) :=\{u\in L^{q}( $\Omega$) : A^{Cy}u\in L^{q}( $\Omega$)\},

This is a Banach space equipped with the norm,

\Vert u\Vert_{X( $\alpha$,q)} :=\Vert A^{ $\alpha$}u\Vert_{q} for u\in X( $\alpha$, q) .

We shall prove Theorem 9 only and we refer to our paper [5] for proofs of

other theorems.

Proof of Theorem 9. Let u(x, t) be a solution of (1) such that \Vert u(0)- $\phi$\Vert_{H_{0}^{1}}
is small enough. We have only to prove

\Vert u(t)- $\phi$\Vert_{C^{1}} \leq Ce^{- $\mu$ t} for t\geq T,

with T>0 large. Fix T> 0 so large that u(x, T) > 0 in  $\Omega$ . Rewritc it as

 u_{0}(x) . Then u_{0}\in X( $\alpha$, q) . We have

u_{t}- $\Delta$ u=u^{p}, - $\Delta \phi$=$\phi$^{p}.
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We define

\uparrow)(\prime J/, l):=u(\prime $\gamma$;, - $\phi$(\prime r_{\text{ノ}}), t)0:=u_{0}- $\phi$, q(\prime $\gamma$ j, t,):=u(\prime 1J, l)^{p}- $\phi$(:|;)^{p}.

Then it follows that

v_{t}- $\Delta$ v=g(x, t) , v|_{\partial $\Omega$}=0, v 0)=v_{0}.

This is rewritten as

v(t)=e^{-tA}v_{0}+\displaystyle \int_{0}^{t}e^{-(t-s)A}g(s)ds in L^{q}( $\Omega$) , (7)

Recall that $\lambda$_{1} and  $\mu$ are the first eigenvalues of - $\Delta$ and - $\Delta$-p$\phi$^{p-1} , re‐

spectively. Hence $\lambda$_{1} > $\mu$ . Fix  $\lambda$ satisfying  $\mu$ <  $\lambda$ < $\lambda$_{1} . Then it is known

that

\Vert A^{\mathrm{t}y}e^{-tA}v\Vert_{q}\leq C_{ $\alpha$,q}t^{-c $\iota$}e^{- $\lambda$ l}\Vert v\Vert_{q} for v\in L^{q}( $\Omega$) .

Applying A^{ $\alpha$} to both sides of (7), we obtain

A^{ $\alpha$}v(t)=e^{-tA}A^{ $\alpha$}v_{0}+\displaystyle \int_{0}^{t}A^{ $\alpha$}e^{-(t-\mathrm{s})A}g(s)ds in L^{q}( $\Omega$) .

Taking the L^{q} norm, we get

\Vert v(t)\Vert_{X( $\alpha$,q)} \displaystyle \leq e^{- $\lambda$ t}\Vert v_{0}\Vert_{X( $\alpha$,q)}+C_{ $\alpha$,q}\int_{0}^{t}(t-s)^{- $\alpha$}e^{- $\lambda$(t-s)}\Vert g(s)\Vert_{q}ds.
Let us estimate \Vert g(s)\Vert_{q} . Using the inequality 0\leq(t^{p}-s^{p})/(t-s) \leq s^{p-1} for

t, s>0 ,
we find

|g(x, s)|= |\displaystyle \frac{u^{p}-( $\mu$)}{u- $\phi$}(u- $\phi$)| \leq$\phi$^{p-1}|u- $\phi$|.
Hence

\Vert g(s)\Vert_{\infty}\leq \Vert$\phi$^{p}((u/ $\phi$)-1)\Vert_{\infty}\leq Ce^{- $\mu$}fj

Employing this inequality, we get

\displaystyle \Vert v(t)\Vert_{X( $\alpha$,q)}\leq e^{- $\lambda$ l}\Vert v_{0}\Vert_{X( $\alpha$,q)}+C_{ $\alpha$,q}\int_{0}^{t}(t-s)^{-\mathrm{e}x}e^{- $\lambda$(t-s)}e^{- $\mu$ s}ds.
Putting  $\tau$=f-\mathrm{s} and using  $\lambda$>l^{i} , we obtain

\displaystyle \int_{0}^{t}(t-s)^{-cx}e^{- $\lambda$(t-s)}e^{- $\mu$ s}ds\leq Ce^{- $\mu$ t}\int_{0}^{\infty}$\tau$^{-a}e^{-( $\lambda$- $\mu$) $\tau$}d $\tau$.
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Therefore

\Vert v(t)\Vert_{X( $\alpha$,q)} \leq e^{- $\lambda$ t}\Vert v_{0}\Vert_{X( $\alpha$,q)}+\tilde{C}_{ $\alpha$,q}e^{- $\mu$ t}
Give  $\theta$\in (0,1) . Choose  $\alpha$\in (0,1) close to 1 and take q large enough. Then

the embedding X( $\alpha$, q)\mapsto C^{1, $\theta$}(\overline{ $\Omega$}) holds.

\Vert\prime $\iota$(t)\Vert_{C^{1}} \leq Ce^{- $\lambda$ t}\Vert v_{0}\Vert_{X( $\alpha$,q)}+Ce- $\mu$ t

Since  $\lambda$> $\mu$ , we have

\Vert u(t)- $\phi$\Vert_{C^{1}} =\Vert v(t)\Vert_{C^{1}} \leq Ce^{-/ $\iota$ t,}

The proof is complete. \square 
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