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We study the stability of stationary solutions for the semilinear parabolic
equation,

w—Au= f(z,u) in Q x (0,00),
u=0 on 99 x (0,00), (1)
w(z,0) =up(z) in £,

where Q is a bounded smooth domain in RY.

Definition 1. We call u(z,t) a solution of (1) if it belongs to the following
space and satisfies (1):

C([0,00); LA(Q)) N CH((0,00); L)) N C((0, 00); H2() N HA()).
We suppose the following assumption.

Assumption 2. f(x,u) is a Holder continuous function on @ x R which
is odd with respect to u and satisfies |f(z,u)] < C(lulf +1) for u € R
and © € Q, with some C > 0, where 1 < p < oo when N = 1,2 and
1 <p< N/(N-2)when N > 3. For each u # 0, the second partial derivative
fuu(®,u) exists and continuous on € x (R \ {0}) and there exists 7, ug > 0,
6o € (0,1) such that |fuu(z,v)| < L|fu(z,u)|/u+ L/u for 0 < u < uy and
v € [(1 = 6p)u, (1 + 6p)u]. Moreover we assume

—8— (f(x, u)) <0 foru>0.
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Assumption 3. Let A; be the first cigenvalue of the Laplacian. We assume
that

limsup(max f(z,u)/u) < A1, lim (mig fu(x,u)) = 00.
lul—+o0 €D u—=0 \ 20

We define |
E(u) := /Q (%Wul2 - F(x,u)) dz, F(z,u):= /Ou f(z, s)ds.

Then E(u) becomes a Lyapunov functional of (1). The stationary problem
is as follows:

—Av = f(z,v) (z€Q), v=0 (z€dN). (2)
Proposition 4. The following results are known. See [2, 8, 4].

(i) There exists a unique positive solution ¢ of (2); moreover ¢ is a mini-
mizer of E in H}(Q) and all minimizers of E consist only of +¢.

(ii) There ezists a sequence v, of non-trivial solutions for (2) such that vy,
converges to zero in C%(S) as n — oco.

Definition 5. In the following, () means a solution of (1).

(i) A stationary solution v is called stable if for any ¢ > 0, there exists a
6 > 0 such that [[u(0) — vz < ¢ implies [[u(t) — v| gy < € for
t>0.

(ii) A stationary solution v is called asymptotically stable if v is stable
and there exists a do > 0 such that if [[u(0) — v|[g@) < do then
limyyo0 f[u(t) — vl g2 @) = 0

(iif) A stationary solution v is called exponentially stable if v is stable and
there exist constants C, A, 8 > 0 such that ||u(0) —v||g1(q) < do implies
“U(t) - U”H&(Q) S Ce"\t for all ¢ Z 0.

We state the main results.

Theorem 6. For any ug € H}(Q), (1) has a bounded global solution u(t) in
H} (). The orbit of solution u(t) is relatively compact. The w limit set is a
non-empty subset of the set of stationary solutions.

Theorem 7. There exists an €9 > 0 such that if v is a stationary solution
satisfying ||v]|co < €0, then it is not asymptotically stable. Furthermore, if v
is isolated from other stationary solutions, it is unstable. The zero solution
1s unstable.
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Theorem 8. The unique positive stationary solution ¢ is exponentially sta-
ble. Moreover the exponent is the the first eigenvalue of the linearlized op-
erator —A — [,(x,9). Denote it by u > 0. Then there exists a 6 > 0
such that if u(t) is a solution of (1) satisfying |u(0) — ¢llgy < 9, then
[u(t) = llag < Ce™ fort > 0 with some C > 0.

The exponent u is optimal. Indeed, we have the theorem below.

Theorem 9. Let ug € H(Q2) satisfy either
up(x) > (14 d0)d(z) or 0 < up(z) < (1—do)d(x).

with some &g € (0,1). Then there exists a ¢ > 0 such that a solution u(t)
with the initial data u(0) = ug satisfies

[u(®) — ¢llmy = lut) — @ll2 > ce™  fort > 0.

Let N =1, Q= (0,1) and f(z,u) = f(u). Then the stationary problem
is rewritten as

—v"'=f() (z€(0,1), v(0)=v(1)=0 3)

If a solution v(z) of (3) has exactly k zeros in the interval (0, 1), we call it a
k-nodal solution. The next result is known (see [6] and [7]).

Proposition 10. Let N = 1, Q@ = (0,1) and [(x,u) = [(u). Then for
each k > 1, there exists a unique (k — 1)-nodal solution vy, of (3) satisfying
v'(0) > 0. The set of all solutions for (3) consists of +vy, with k € N and the
zero solution.

Let vy be a stationary solution as above. Then we have the next result.

Theorem 11. The positive stationary solution vy and the negative stationary
solution —vy are exponentially stable with the ezact exponent p and all the
other stationary solutions are unstable.

When f(z,u) = |u[P~1u, the results above were obtained in a joint work
with Professor Akagi [1]. Theorems in this paper are extensions of those
results to more general functions f(z,u). From now on, we put f(z,u) =
|ulP~*u with 0 < p < 1 for simplicity. We prove the stability only of positive
stationary solution.

Lemma 12. F(u) is a Lyapunov functional.

103



Proof. For a solution u(t) of (1), a direct computation shows
d -1
—FBE(u(t)) = (VuVu, — |ulP~ ) de
dt Q

= / (—Au — [uff 'u)u) dz = ——/ |ug|2dz < 0.
Q Q

Therefore E is a Lyapunov functional. a

Lemma 13. The unique positive stationary solution ¢ is isolated from other
stationary solutions.

Proof. Suppose on the contrary that there exists a sequence {uw,} of sta-
tionary solutions which converges to ¢ in H}(£2). Then the elliptic regularity
theorem shows that this convergence is valid in the strong topology in C? (ﬁ)
Since the outward normal derivative d¢/0v is negative on 92, it holds that
Ou,/0v < 0 also for n large. Therefore u, > 0 in § for n large. This
contradicts the uniqueness of the positive stationary solution. O

We shall show the asymptotic stability of the unique positive stationary
solution ¢.

Proof of asymptotic stability. Let ¢ be the unique positive stationary solu-
tion. Choose £9 > 0 so small that there are no stationary solutions in B(¢, g9)
except for ¢, where

B(¢,¢0) :={v € Hy(Q) : v — ¢llmy < eo}-

Define d := infyy E(u). Then E(u) = d if and only if u = £¢. Give
¢ € (0,9) arbitrarily. We shall show

de == inf{E(v) : v € Hy(), |lv—¢llgy =€} > d.

Suppose that this claim is false, i.e., d. = d. Then there exists a sequence
v, € Hp(Q) such that |lv, — @llg; = € and E(v,) = d. = d. Since v, is
bounded in I7}(£2), it has a convergent subsequence (denoted by vy, again)
to a weak limit v € H3(Q). This convergence is valid in the strong topology
in LP*1(Q2). Accordingly, we have

1 2 1 +1
-2-1|an||2 = E(vn) + ml@n”?ﬂ
1
p+1

1 1
1 1
—d+ lvlPi: < E(v) + m”vniL = §||VU||§~
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Hence, limsup,_, [|Vuull2 < |[Vv]l2. The weak convergence shows that
liminf, e |Vusll2 > ||[Vu|l2. Therefore |[Vv,|l2 converges to ||Vv||2, and
hence v, strongly converges to v. Thus [|v — ¢|[g1 = € and F(v) = d. This
is a contradiction. Consequently, d. > d.

Since d < d., we can choose § € (0,¢) so small that E(up) < d. for
up € B(¢,0). Let ug € B(¢,6) and let u(t) be a solution of (1) satisfying
u(0) = ug. We shall show that

u(t) € B(¢,e) forallt > 0. 4)

If this would be proved, then ¢ is stable. Suppose that the assertion above
is false. Then there exists a to > 0 such that u(ty) € 0B(¢,e). Then
F(u(lg)) > d.. Since F is a Lyapunov functional,

de < E(u(ty)) < E(up) < de.

A contradiction occurs. Hence (4) is true and ¢ is stable.

Since the orbit is relatively compact, u(t) converges to a stationary so-
lution along a subsequence. Since ¢ is the unique stationary solution in
B(d, ), u(t) itself (without a subsequence) converges to ¢. Therefore ¢ is
asymptotically stable. O

Since 0 < p < 1, ¢(z)P~! has a singularity on 6. However we have the
next result (see [5]).

Lemma 14. The linearlized operator —A — pd?~! is self-adjoint and has a
compact resolvent in L*(Q2).

By the lemma above, —A —p¢?~! has discrete eigenvalues in R. Since ¢ is
a positive solution of (2) with f(z,u) = |ulP~1u, it satisfics (~A—¢?~1)¢p = 0.
Therefore the first eigenvalue of —A — @#P~! is zero. Since —¢P~! < —pgP~1,
we have the result below.

Lemma 15. The first cigenvalue of —A — pdP~1 is positive.

Let p and 9(z) be the first eigenvalue and the eigenfunction of —A —
p@P~L, that is,

(=A —pP Vp =, >0 inQ, =0 on 0.

Moreover, we assume that | V|| = 1. Since ¢, > 0 (z € ), ¢, € C?(Q),
0¢/0v. 0Y/ov < 0 (x € O9), there exists a ¢y > 0 such that ¢y < ¢(z)/¥(x)
for z € Q. For ¢ € R, we define

U(z,t;c) == ¢(x) + ce (). (5)

The next three lemmas are proved in our paper [5].
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Lemma 16. For —cy < ¢ < oo, U(x, t;¢) is a positive supersolution of (1).

Let A; be the first cigenvalue of —A and let ¢; be the corresponding
eigenfunction, i.e.,

—Apr =M, 91 >0 (zeQ), $p1=0 (ze€d0).
Define £(t) := u(e# + 1)71. For £ > 0 small, we define
V(z,tie) = ¢(x) — *(t)¢(z) + e’ g (). (6)
Lemma 17. For e > 0 small, V(x,(;¢€) is a positive subsolution of (1).

Using the supersolution U(z,t;c) defined by (5) and the subsolution
V(z,t;e) given by (6), we can obtain the next lemma.

Lemma 18. Let u(z,t) be a solution of (1) with its initial data u(0) close
to ¢. Let tg > 0. Then there exists a constant C > 0 such that

For 1 < g < 00, we define Au := —Awu with its domain D(A),

D(A) := W22(Q) N W,4(R).

< Ce ™  fort>t.
Loo(2)

Then the fractional power A* with o > 0 is well-defined. Denote its definition
domain by X(«,q), i.e.,

X(a,q) ={ue LYQ): A%uve LIYN)},
This is a Banach space equipped with the norm,
[l X (aq) = [|A%ully for u € X(a,q).

We shall prove Theorem 9 only and we refer to our paper [5] for proofs of
other theorems.

Proof of Theorem 9. Let u(z,t) be a solution of (1) such that [[u(0) — | g3
is small enough. We have only to prove

() = Bller < Ce ™ fort > T

with T' > 0 large. Fix T > 0 so large that u(z,T) > 0 in Q. Rewrite it as
uo(z). Then uy € X(a, q). We have

ug— Au=uP, —A¢=¢".
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We define
v, t) = ulr,l) — ¢(x), wvo:=wup—¢d, g(x,l):=u(x, )P —¢(x)P.
Then it follows that
v — Av=g(z,t), vjegn=0, v(-,0)=1p.

This is rewritten as
t
v(t) = e~y +/ e =4g(s)ds in LY(RQ), (7)
0

Recall that \; and p are the first eigenvalues of —A and —A — pg?~1, re-
spectively. Hence A\; > u. Fix A satisfying u < A < A;. Then it is known
that

A% ||, < Cu gt~ ||vll, for v € LURQ).

Applying A* to both sides of (7), we obtain
t
A%(t) = e A A%y + / A% t=94g(5)ds  in LI(R).
0

Taking the L? norm, we get

t
[v®lx(@a) < e llvollx(e + Cag /O (t = 5)" e g(s) ]l ds.

Let us estimate ||g(s)||,- Using the inequality 0 < (7 — sP)/(t —s) < sP~! for
t,s > 0, we find

96091 = [ 2=2 = 0)] < hu o),

Hence

1g(s)loo < [P ((u/d) — 1)|loo < Ce™.
Employing this inequality, we get

t
”v(t)”X(a,q) < G_MH'UOHX(a,q) + Ca,q/ (t— 3)—0[6_/\“_5)6_“5‘15'
0

Putting 7 =t -- s and using A > u, we obtain

t
0 : 0



Therefore 3
[v(®)llx (@) < € *llvollx(ag) + Cage ™.

Give 6 € (0,1). Choose « € (0,1) close to 1 and take ¢ large enough. Then
the embedding X (a, q) — C?(2) holds.

lo(®)ller < Ce™juollx(ag) + Ce™.
Since A > u, we have
lu(®) = gllcx = lo(t)ller < Ce.

The proof is complete. O
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