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1 Introduction

In this paper we consider a singular perturbation problem to a semilinear Neumann problem

\left\{\begin{array}{ll}
$\epsilon$^{2} $\Delta$ u-u+u^{\mathrm{p}}=0 & \mathrm{i}\mathrm{n}  $\Omega$,\\
u>0 & \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial u}{\partial $\nu$}=0 & \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right. (1.1)

where  $\Omega$ \subset \mathbb{R}^{N} (N \geq 2) is a boundedn domain, p> 1 and (N-2)p< N+2 are satisfied,
 $\epsilon$> 0 is a constant, and \mathrm{v} is the outer unit normal vector on \partial $\Omega$ . We are interested in the

asymptotic behavior of solutions to (1.1).
Such a singular perturbation problem is originally considered in the stationary Keller‐

Segel model or the shadow system of the Gierer‐Meinhardt model, and (1.1) is obtained as

a reduced problem of those problems. In the case that  $\Omega$ has a smooth boundary, various

researchers investigated (1.1). Lin, Ni and Takagi [16] are pioneers researchers of the problem,
and they proved the existence and some properties of least‐energy solutions to (1.1) for

sufficiently small \text{（. > 0 . Here a least‐energy solution is a solution which attains the least

positive critical value of the associated energy functional with (1.1):

J_{ $\epsilon$}(u)=\displaystyle \frac{1}{2}\int_{\mathrm{t}l}($\epsilon$^{2}|\nabla u|^{2}+u^{2})dx-\frac{1}{p+1}\int_{ $\zeta$ l}u^{p+1}dx foru \in H^{1}( $\Omega$) .

Next Ni and Takagi [18, 19] investigated the asymptotic behavior of a least‐energy solution

as  $\epsilon$\rightarrow 0 . They proved that, by singular perturbation, the point condensation phenomena
of a least‐energy solution occurs, that is, the solution concentrates at its maximum point
 P_{ $\epsilon$}\in\partial $\Omega$ . Furthermore there holds

 H(P_{ $\epsilon$})\displaystyle \rightarrow\max_{\partial $\Omega$}H(\mathrm{P}) as  $\epsilon$\rightarrow 0,

where H(P) is the mean curvature of \partial $\Omega$ at  P \in \partial $\Omega$ . Other many mathematicians also

investigated condensation phenomena; e.g., Byeon [3], del Pino and Felmer [4] (condensation
at a single point), Gui [10], Gui and Wei [11], Gui, Wei and Winter [12] (condensation at many
points). Kabeya and Ni [13] investigated the condensation phenomena of semilinear elliptic
problems with exponential nonlinearity instead of power nonlinearity. On the other hand,
under the Dirichlet boundary condition, condensation phenomena was also investigated by,
e.g., [4], the author [14], Ni and Wei [20].

In precedents results above, we assumed that \partial $\Omega$ is smooth. On the other hand, we

are interested in the case that \partial $\Omega$ has piecewise smoothness, and we know less results on

that case than results on the smooth boundary case. Dipierro [5, 6] invesigated (1.1) with

the piecewise smooth \partial $\Omega$ and (N-2) dimensional subset \partial$\Omega$_{0}\subset\partial $\Omega$ of non‐smooth points.
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Namely they assumed that \partial $\Omega$ has a smooth edge \partial$\Omega$_{0} ,
and H_{0}(P) denotes the opening angle

at P\in\partial$\Omega$_{0} . Then they constructed a solution which concentrates at P\in\partial$\Omega$_{0} where H_{0}(P)
attains its strict local maximum or minimum.

Dipierro�s result implies that condensation phenomena occurs on edges, that is, (N-2)
dimensional subset, and H_{0}(P) plays a similar role to the mean curvature H(P) . On the

other hand, our aim in this paper is to prove that condensation phenomena occurs at the

vertex as well as the edge. Especially we focus our attention on a least‐energy solution u_{ $\epsilon$} to

(1.1), and we show that u_{ $\epsilon$} concentrates at the point having the least angle (the least solid

angle if N = 3 ) less than  $\pi$ (N = 2) or  2 $\pi$ (N = 3) . Moreover we obain the asymptotic
profile of u_{c} as \mathrm{c}\rightarrow 0.

In order to investigate the behavior of least‐energy solutions by our method, we are

required to use the regularity properties of the solutions. Hence we only assume the case

N = 2
, 3. If we assume higher dimensional case N \geq  4

, then it is difficult to show the

regularity of solutions.

In arguments below we consider more general problems. Namely let  $\Omega$\subset \mathbb{R}^{N} (N=2,3)
be a Lipschitz domain. In arguments below we consider the following problem

\left\{\begin{array}{ll}
$\epsilon$^{2} $\Delta$ u-u+f(u)=0 & \mathrm{i}\mathrm{n}  $\Omega$,\\
u>0 & \mathrm{i}\mathrm{n}  $\Omega$,\\
\frac{\partial u}{\partial $\nu$}=0 & \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right. (1.2)

where  $\epsilon$ >0 , and  $\nu$ is the outer unit normal vector on \partial $\Omega$ . Hcrc  f(t) satisfics the following
conditions:

(fi) f(t)\in C^{1,l}(\mathbb{R}) with 0<l<1, f(t)>0(t>0) and f(t)\equiv 0(t\leq 0) ;

(fii) \displaystyle \lim_{t\rightarrow 0}f(t)/t=0 and f(t)/t is increasing for t>0 ;

(fiii) f(t)=O(t^{p}) as  t\rightarrow\infty with  p> 1 and (N-2)p<N+2 ;

(fiv) there exists a constant  $\theta$\in(0,1/2) such that F(t) \leq $\theta$ tf(t) for t\geq 0.

Since  $\Omega$ is not smooth in our problem, we discuss about a weak solution  u \in  H^{1}( $\Omega$) to

(1.2), which satisfies

\displaystyle \int_{ $\Omega$}(\nabla u\nabla $\varphi$+u $\varphi$-f(u) $\varphi$)dx=0 for any  $\varphi$\in H^{1}( $\Omega$) .

Moreover we focus our attention on a least‐energy solution to (1.2), which attains the least

positive critical value of

J_{(}(u)=\displaystyle \frac{1}{2}\int_{l}($\epsilon$^{2}|\nabla u|^{2}+u^{2})dx-\int_{ $\Omega$}F(u)dx for u\in H^{1}( $\Omega$) (1.3)

with F(t)=\displaystyle \int_{0}^{t}f(s)ds.
In our arguments we will show the asymptotic profile of a solution to (1.2), and then

some kind of solution w=w_{0} to the following entire space problem plays an important role,
that is,

\left\{\begin{array}{ll}
 $\Delta$ w-w+f(w)=0 & \mathrm{i}\mathrm{n} \mathbb{R}^{N},\\
w>0 & \mathrm{i}\mathrm{n} \mathbb{R}^{N},\\
w(z)\rightarrow 0 & \mathrm{a}\mathrm{s} |z|\rightarrow\infty,\\
w(0)=\max_{z\in \mathrm{N}^{N}}w(z) . & 
\end{array}\right. (1.4)
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The solution w_{0} is characterized by the energy functional

I(w)=\displaystyle \frac{1}{2}\int_{1\mathrm{R}^{N}}(|\nabla w|^{2}+w^{2})dz-\int_{\mathbb{R}^{N}}F(w)dz for w\in H^{1}(\mathbb{R}^{N}) .

and the following proposition:

Proposition 1.1 Under conditions (\mathrm{f}\mathrm{i})-(\mathrm{f}\mathrm{i}\mathrm{v}) , there exists a solution w_{0} to (1.4) such that

(a) w_{0}>0 in \mathbb{R}^{N} and w_{0}\in C^{2}(\mathbb{R}^{N})\cap H^{1}(\mathbb{R}^{N}) ;

(b) for any solutions w\in H^{1}(\mathbb{R}^{N}) to (1.4), there holds 0<I(w_{0}) \leq I(w) ;

(c) w_{0}(z)=w_{0}(r) with r=|z| and wÓ(r) <0 for r>0 ;

(d) w_{0}(r) , wÓ(r) \leq Cr^{-\frac{N-1}{2}}e^{-r} for r>0 with some constant C>0.

The existence of w_{0} to (1.4) satisfying (a) and \langle \mathrm{b} ) is proved by Berestycki, Gallouët, Kavian

[1] (N=2) or Berestycki, Lions [2] (N=3) . Moreover, by Gidas, Ni and Nirenberg�s result

(cf., Theorem 2 in [8])) it is known that w_{0} satisfies (c) and (d). The solution w_{0} found in

Proposition 1.1 is said to be a ground state solution to (1.4). Through arguments in this

paper, we also assume the next condition:

(fv) a ground state solution w_{0} to (1.4) is unique.

Since w_{0} is radially symmetric, (fv) is equivalent to the uniqueness of the following ODE

\left\{\begin{array}{ll}
w''+\frac{N-1}{r}w'+f(w)=0 & \mathrm{f}\mathrm{o}\mathrm{r} r>0,\\
w>0 & \mathrm{f}\mathrm{o}\mathrm{r} r>0,\\
w(r)\rightarrow 0 & \mathrm{a}\mathrm{s} r\rightarrow\infty.
\end{array}\right. (1.5)

For example a solution to (1.5) is unique if f(t) =t^{p} holds with p> 1 and (N-2)p<N+2
(e.g., Kwong [15]). Concerning more general cases, e.g., Pucci and Serrin [22].

Next we introduce some notations and assume the geometrical condition of the Lipschitz
domain  $\Omega$ . Let  x_{0} \in \partial $\Omega$ . In some neighborhood of  x_{0} , the boundary \partial $\Omega$ is expressed by a

graph. If the graph is of class  C^{2, $\gamma$} , then x_{0} is said to be a smooth point. On the other hand,
if not, then x_{0} is said to be a non‐smooth point. For two kinds of points, we assume the

following geometrical condition:

If  x_{0}\in\partial $\Omega$ is a smooth point, then some neighborhood of  x_{0} only consists

of smooth points. On the other hand, if x_{0} \in\partial $\Omega$ is a non‐smooth point,
then there exists  R_{*}>0 such that the intersection  B_{R}.(x_{0})\cap $\Omega$ is expressed
by

 B_{R_{*}}(x_{0})\cap $\Omega$=\{x\in \mathbb{R}^{N} |x-x_{0}=r $\sigma$, 0<r<R_{*},  $\sigma$\in \mathcal{S}(x_{0})\},
(BD)

where S(x_{0}) \subset \mathrm{S}^{N-1} is a Lipschitz domain. Moreover, for any x_{1}, x_{2} \in

 B_{R_{*}}(x_{0})\cap \mathrm{f}l ,
it holds that

ax_{1}+bx_{2}\in\{x\in \mathbb{R}^{N} |x-x_{0}=r $\sigma$, 0<r<\infty,  $\sigma$\in S(x_{0})\}

for any a, b>0

Condition (BD) implies that a neighborhood of any non‐smooth point is convex cone. For

example polyhedra satisfy the condition (BD).
Under (f\mathrm{i})-(f\mathrm{v}) and (BD), we obtain the following theorem. Here, for a set \mathcal{U} \subset \mathbb{R}^{k}

(k\leq N) , the Hausdorff measure of \mathcal{U} is denoted by \mathcal{H}_{k}(\mathcal{U}) .
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Theorem 1.1 Let  $\Omega$ be a bounded Lipschitz domain. Assume  N = 2, 3_{;} (f\mathrm{i})-(f\mathrm{v}) , (BD)
and the existence of a non‐smooth point  P_{0}\in\partial $\Omega$ such that

\displaystyle \mathcal{H}_{N-1}(\mathcal{S}(P_{0}))=\min_{P\in\partial $\Omega$}\mathcal{H}_{N-1}(S(P))<\frac{1}{2}\mathcal{H}_{N-1}(\mathrm{S}^{N-1}) . (1.6)

Then the following statements hold:

(i) For sufficiently small  $\epsilon$>0_{f} there exists a least‐energy solution u_{ $\epsilon$}\in H^{2}( $\Omega$) . Moreover

u_{ $\epsilon$} \in C^{2}( $\Omega$)\cap C^{0, $\alpha$}(\overline{ $\Omega$}) to (1.1) with some 0< $\alpha$<1 . Moreover u_{ $\xi$}>0 in  $\Omega$ and it holds

that

 J_{ $\epsilon$}(u_{ $\epsilon$})=$\epsilon$^{N}\displaystyle \{\frac{\mathcal{H}_{N-1}(\mathcal{S}(P_{0}))}{\mathcal{H}_{N-1}(\mathbb{S}^{N-1})}I(w_{0})+o(1)\}  $\epsilon$\rightarrow 0 . (1.7)

(ii) Take sufficiently small R > 0 , and let x_{ $\epsilon$} be a maximum point of u_{ $\epsilon$} . Then, for any

$\epsilon$_{j} \rightarrow  0 (j \rightarrow \infty) , there exists a subsequence \{$\epsilon$_{j_{k}}\} and a point P_{1} \in \partial $\Omega$ such that

\mathcal{H}_{N-1}(\mathcal{S}(P_{1}))=\mathcal{H}_{N-1}(\mathcal{S}(P_{0})) and x_{$\epsilon$_{j_{k}}} \rightarrow P_{1} as  k\rightarrow\infty . Moreover it holds that

\displaystyle \frac{1}{2}\int_{B_{R}(P_{1})\cap $\Omega$}($\epsilon$^{2}|\nabla u_{ $\epsilon$}|^{2}+u_{ $\epsilon$}^{2}j_{k}) dx-\int_{B_{R}(P_{1})\cap $\zeta$ l}F(u_{$\epsilon$_{j_{k}}}) dx (1.8)

=J_{$\epsilon$_{j_{k}}}(u_{$\epsilon$_{j_{k}}})+o($\epsilon$_{j_{k}}^{N}) (k\rightarrow\infty)
and, for any R_{0}>0,

\displaystyle \Vert u_{$\epsilon$_{j_{k}}}(x)-w_{0}(\frac{x-P_{1}}{$\epsilon$_{j_{k}}R_{0}})\Vert_{C^{0, $\alpha$}(B_{j_{k}^{R}0}(P_{1})\cap $\Omega$)} \rightarrow 0 (k\rightarrow\infty) . (1.9)

For a least‐energy solution v_{ $\epsilon$} concentrating at a smooth point, it is known (cf. [18]) that

v_{ $\epsilon$} satisfies

J_{ $\epsilon$}(v_{ $\epsilon$})=$\epsilon$^{2}\displaystyle \{\frac{1}{2}I(w_{0})+o(1)\} as  $\epsilon$\rightarrow 0 . (1.10)

Hence the condition (1.6) guarantees that u_{ $\epsilon$} condenses at non‐smooth point (compare (1.7)
with (1.10) ). On the other hand, if \mathcal{H}_{N-1}(\mathcal{S}(P_{0})) > 2^{-1}\mathcal{H}_{N-1}(\mathrm{S}^{N-1}) for any non‐smooth

point P_{0} , then u_{ $\epsilon$} does not concentrates at a non‐smooth point (the condensation phenomena
of u_{(} occurs at a smooth point on \partial $\Omega$ ). Moreover (1.8) implies t,hat thc energy condcnsation

occurs, and (1.9) implies that the asymptotic profile of  u_{ $\epsilon$} is characterized by the ground
state solution w_{0} to (1.4).

2 Properties of positive solutions on infinite cones

Let N\geq 2 . Before investigating properties of solutions to (1.2), we consider some Neumann

problem defined in an infinite cone. We define an infinite cone by

\mathcal{F}_{\infty} :=\{z\in \mathbb{R}^{N} | z=r $\sigma$, r>0_{:} $\sigma$\in S\},

where S \subset \mathrm{S}^{N-1} is a Lipschitz domain. In Section 3 we usually fix the origin at 0 . If w

defined in \mathcal{F}_{\infty} satisfies w(z) =w(|z|) in \mathcal{F}_{\infty} , then, by the analogy from \mathbb{R}^{N}, w is also said

to be radially symmetric.
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Let N\geq 2 , and we state some results on the following problem

\left\{\begin{array}{ll}
 $\Delta$ w-w+f(w)=0 & \mathrm{i}\mathrm{n} \mathcal{F}_{\infty},\\
w>0 & \mathrm{i}\mathrm{n} \mathcal{F}_{\infty},\\
\frac{\partial w}{\partial $\nu$}=0 & \mathrm{o}\mathrm{n} \partial \mathcal{F}_{\infty},\\
w(z)\rightarrow 0 & \mathrm{a}\mathrm{s} |z|\rightarrow\infty.
\end{array}\right. (2.1)

For w\in H^{1}(\mathcal{F}_{\infty}) , we also define the following fimctionals

T_{\mathcal{F}}(w)=\displaystyle \frac{1}{2}\int_{\mathcal{F}_{\infty}}|\nabla w|^{2}dz,
V_{\mathcal{F}}(w)=\displaystyle \int_{\mathcal{F}_{\infty}}\{-\frac{1}{2}w^{2}+F(w)\} dz,

and then the energy functional of (2.1) is defined by

I_{\mathcal{F}}(w)=T_{\mathcal{F}}(w)-V_{\mathcal{F}}(w) . (2.2)

A critical point  w\in  H^{1}(\overline{f}_{\infty}) is also a weak solution to (2.1). If w\in H^{1}(\mathcal{F}_{\infty}) satisfies

I_{\mathcal{F}}(w)\leq I_{\mathcal{F}}(v)

for ariy solution v to (2.2), then w is said to be a ground state solution to (2.1). Moreover

let

\mathcal{F}_{R} :=\{z\in \mathbb{R}^{N} | z=r $\sigma$, 0<r<R,  $\sigma$\in S\} for R>0,

and we define the additional condition:

a solution w \in  H^{1}(\mathcal{F}_{\infty}) to (2.1) satisfies w \in  W^{2,q}(\mathcal{F}_{R})\cap L^{\infty}(\mathcal{F}_{\infty}) for

q>\displaystyle \min\{N/2, 2\} , and w(z_{0})=\displaystyle \max_{z\in\overline{\mathcal{F}_{\infty}}}w(z) for some z_{0}\in\overline{\mathcal{F}_{\infty}}. (R)

Recall Proposition 1.1 and (fv). Our aim in this section is to prove the following lemma:

Lemma 2.1 Assume (f\mathrm{i})-(f\mathrm{v}) , (BD), (R) and \mathcal{H}_{N-1}(\mathcal{S}) <2^{-1}\mathcal{H}_{N-1}(\mathrm{S}^{N-1}) . Ifw\in H^{1}(\mathcal{F}_{\infty})
is a ground state solution to (2.1) satisfying (R), then w(z)\equiv w_{0}(z)|_{\mathcal{F}_{\infty}} in \mathcal{F}_{\infty} , and it holds

that

I_{\mathcal{F}}(w)=\displaystyle \frac{\mathcal{H}_{N-1}(\mathcal{S})}{\mathcal{H}_{N-1}(\mathrm{S}^{N-1})}I(w_{0}) . (2.3)

Lemma 2.1 is required to show Theorem 1.1. If we only consider a solution w \in  H^{1}(\mathcal{F}_{\infty})
which is radially symmetric, then the uniqueness of w easily follows:

Lemma 2.2 Assume (f\mathrm{i})-(f\mathrm{v}) . If a ground state solution w\in H^{1}(\mathcal{F}_{\infty}) is radially symmet‐
ric, then w(r)\equiv w_{0}(r) for |z|=r>0 and w satisfies (2.3).

Proof. Since w \in  H^{1}(\mathcal{F}_{\infty}) is radially symmetric, w is naturally extended as a radial

function W defined on \mathbb{R}^{N}
, that is, W(z) := w(|z|) for z \in \mathbb{R}^{N} . Then W \in  H^{1}(\mathbb{R}^{N}) is a

weak solution to (1.4), and it is known that  W\in  C^{2}(\mathbb{R}^{N}) (cf. Lemma 1 of [2]). Hence W

satisfies Proposition 1. 1(\mathrm{a}) . Moreover it is also known that a solution W\in C^{2}(\mathbb{R}^{N})\cap H^{1}(\mathbb{R}^{N})
satisfies Proposition 1.1 (c) and (d) (cf. Theorem 2 in [8]).

Finally we show I(W)=I(w_{0}) . If I(W) >I(w_{0}) , then, since w_{0}|_{\mathcal{F}_{\infty}} is a solution to (2.1),
it holds that I_{\mathcal{F}}(w) > I_{\mathcal{F}}(w_{0}|_{\mathcal{F}_{\infty}}) . Since w is a ground state solution, it is a contradiction.
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Hence I(W) = I(w_{0}) . Therefore, from (fv), it follows that w(r) \equiv  w_{0}(r) for |z| = r > 0,
and w satisfies (2.3). \blacksquare

Hence it suffices to sliow that any ground state solution is radially symin etric under

assumptions in Lemma 2.1. We requires the following minimizing problem

\displaystyle \inf\{T_{\mathcal{F}}(w) |w\in \mathcal{M}\} , (2.4)

where

\mathcal{M} := { w\in H^{1}(\mathcal{F}_{\infty}) |V_{\mathcal{F}}(w)=1 (N\geq 3) or V_{\mathcal{F}}(w)=0(N=2) }
For the minimizing problem (2.4), the next lemma holds:

Lemma 2.3 If w be a ground state solution to (2.1) satisfying (R), then w_{ $\rho$}(z)=w(z/ $\rho$) is

a minimizer to (2.4), where  $\rho$ is defined by

 $\rho$(w):=(V_{\mathcal{F}}(w))^{-\frac{1}{N}}
Conversely a minimizer satisfying (R) is also a ground state solution up to scale transfor‐
mation.

From Lemma 2.3 the following corollary immediately follows:

Corollary 2.1 A ground state solution to (2.1) satisfying (R) is unique if and only if a

minimizer to (2.4) satisfying (R) is unique.

Moreover, from Lemmas 2.2 and 2.3, the next statements immediately follows:

Corollary 2.2 If any minimizer to (2.4) satisfying (R) is radially symmetric, then a mini‐

mizer to (2.4) is unique.

From Corollaries 2.1 and 2.2, it suffices to show that any minimizer to (2.4) is radially
symmetric. For this purpose we introduce some kind of rearrangement of w \in H^{1}(\mathcal{F}_{\infty}) on

\mathcal{F}_{\infty} in arguments below. Our rearrangement is similar to the  $\alpha$‐symmetrization, which is

studied by Lions et al. [17] and Pacella et al. [21] in detail.

Let  w\in H^{1}(\mathcal{F}_{\infty}) . Then a distribution function  $\mu$(t) of w(x) is defined by

 $\mu$(t)=\mathcal{H}_{N}(\{x\in \mathcal{F}_{\infty} | |w(z)|>t\}) for t\geq 0.

By l/,(t) wc dcfinc thc decreasing rcarraiigciiicnt

w^{*}(s)=\displaystyle \inf\{t\geq 0| $\mu$(t)<s\}.

We define the rearrangement Cw(z) of w(z) by

\displaystyle \mathcal{C}w(x)=w^{*}(\frac{\mathcal{H}_{N-1}(S)}{N}|z|^{N}) for z\in \mathcal{F}_{\infty}.

If we assume (BD) and \mathcal{H}_{N-1}(\mathcal{S}) <2^{-1}\mathcal{H}_{N-1}(\mathrm{S}^{N-1}) , then it holds that

\displaystyle \int_{\mathcal{F}_{\infty}}|w|^{q}dx=\int_{\mathcal{F}_{\infty}}|\mathcal{C}w|^{q}dz for any q>0.

and

\displaystyle \int_{\mathcal{F}_{\infty}}|\nabla w|^{2}dx\geq\int_{\mathcal{F}_{\infty}}|\nabla Cw|^{2}dz.
Moreover we can prove the following lemma:
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Lemma 2.4 Assume (f\mathrm{i})-(f\mathrm{v}) , (BD), (R), and \mathcal{H}_{N-1}(\mathcal{S}) <2^{-1}\mathcal{H}_{N-1}(\mathrm{S}^{N-1}) If w\in H^{1}(\mathcal{F}_{\infty})
is a minimizer to (2.4), then w is radially symmetr $\iota$ c.

The idea of the proof of Lemma 2.4 follows Friedman and McLeod [7]. By using preliminaries
above, we can prove Lemma 2.1.

3 Proof of Theorem 1.1

In this section we state Theorem 1.1 and some lemmas in order to prove Theorem 1.1. In

our argument we require the result on the unique solvability of Neumann problems defined

on \mathcal{F}_{R} . Name we require the following result:

Lemma 3.1 We fix R_{0}>0 . Let the Neumann problem

\left\{\begin{array}{ll}
 $\Delta$ u- $\lambda$ u=g & \mathrm{i}\mathrm{n} \mathcal{F}_{R},\\
\frac{\partial u}{\partial $\nu$}=0 & \mathrm{o}\mathrm{n} \partial \mathcal{F}_{R}
\end{array}\right. (3.1)

where g\in L^{2}(\mathcal{F}_{R}) and  $\lambda$>0 . Then, for R\geq R_{0)} the Neumann problem (3.1) has a unique
solution u\in H^{2}(\mathcal{F}_{R}) satisfying

\Vert u\Vert_{H^{2}(\mathcal{F}_{R})} \leq C\Vert g\Vert_{L^{2}(\mathcal{F}_{R})},

where C>0 only depends on  $\lambda$ and  R_{0}.

This result is proved by the result on the unique solvability of the Neumann problem defined

in non‐smooth domains (Grisvard [9]). By Lemma 3.1 the following lemma holds:

Lemma 3.2 Suppose the same assumptions as in Theorem 1.1. Then, for sufficiently small

 $\epsilon$ >0 , there exists a non‐trevial critical point u_{ $\epsilon$} \in H^{1}( $\Omega$) to (1.3). Moreover, u_{ $\epsilon$} \in  H^{2}( $\Omega$) ,

u_{ $\epsilon$}\in C^{2}( $\Omega$)\cap C^{0, $\alpha$}(\overline{ $\Omega$}) with some 0< $\alpha$<1_{f} and u_{ $\epsilon$}>0 in  $\Omega$.

The idea of Lemma 3.2 follows Lin, Ni Takagi [16] and Ni, Takagi [18]. Moreover the following
inequalities are also obtained:

Lemma 3.3 For u_{ $\epsilon$} found in Lemma 3.2, there holds

\Vert u_{ $\epsilon$}\Vert_{L^{\infty}( $\Omega$)}<C_{1}

and

\displaystyle \int_{ $\ddagger \iota$}u_{(}^{q}dx\leq C_{2}(q)$\epsilon$^{N} for q\geq 1,

where C_{1} and C_{2}(q) are positive constant such that those are independent of  $\epsilon$.

For the least‐energy solution u_{ $\epsilon$} found in Lemma 3.2, the next lemma holds:

Lemma 3.4 Assume the same assumptions as in Lemma 3.2. Then it holds that

J_{ $\epsilon$}(u_{ $\epsilon$})=$\epsilon$^{N}\displaystyle \{\frac{\mathcal{H}_{N-1}(S(P_{0}))}{\mathcal{H}_{N-1}(\mathrm{S}^{N-1})}I(w_{0})+o(1)\} as \mathrm{c}\rightarrow 0.

The idea of the proof of Lemma 3.4 follows the arguments in Ni and Takagi [18]. By using
Lemma 3.4 and some results shown in the proof of Lemma 3.4, we can prove Theorem 1.1.
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