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Abstract

The weighted power mean is one of the most famous 2-parameter
operator mean, and its representing function is P, o[(1—a)+az®]* (s €
[-1,1], @ € [0,1]). In [6] we constructed a 2-parameter family of
operator monotone function F. ;(z) (r, s € {—1, 1]) by integration of the
function P, o(z) of € [0,1]. We shall extend its range of parameters
r and s. We also consider operator monotonicity of exp{f(z)} for a
non-constant continuous function f(z) defined on (0, co).

1 Introduction

Let H be a Hilbert space and B(H) be the set of all bounded linear
operators on H. We assume that a function is not a constant throughout
this paper. A continuous function f(x) defined on an interval I is called
an operator monotone function, if A < B implies f(A4) < f(B) for every
pair A, B € B(H) whose spectra o(A) and o(B) lie in I. We call f(z) a
Pick function if f(x) has an analytic continuation to the upper half-plane
C* ={2€ C |3z > 0} and f(2) maps from C* into itself, where 3z means
the imaginary part of z. It is well known that a Pick function is an operator
monotone function and conversely an operator monotone function is a Pick
function (Léwner’s theorem, cf. [2]).

A map M(-,-): B(H)2 — B(H);+ is called an operator mean [3] if the
operator 9M(A, B) satisfies the following four conditions for A, B € B(H)+;

(1) A < C and B < D imply 9(4, B) < M(C, D),
(2) C(M(A, B))C < M(CAC,CBC) for all self-adjoint C € B(H),
(3) An . 4 and By, N, B imply M(4n, Bn) \ M(4, B),
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(4) m(1,I)=1.
Next theorem is so important to study operator means;

Theorem K-A (Kubo-Ando [3]). For any operator mean 9M(-,-), there
uniquely exists an operator monotone function f > 0 on [0,00) with f(1) =1
such that

fl)I =m(I,zI), =z>0.

Then the following hold:

(1) The map M(-,-) > f is a one-to-one onto affine mapping from the set of
all operator means to the set of all non-negative operator monotone functions
on [0,00) with f(1) = 1. Moreover, M(-,-) + f preserves the order, i.e.,
fOT m(, ) = f7 m(a ) =g,

M(A,B) <N(A,B) (A,BeB(H)+) <> f(z) <g(z) (z20).
(2) When A>0, 9M(A,B)= A3 f(AZ BA7)A3.

The function f(z) is called the representing function of 9M(-,-). When we
study operator means, we usually consider their representing functions.
The 2-parameter family of operator monotone functions { Fy. s() }r se[-1,1;

(@t —1) \*
r(z"™t® — s
F.q () = ————
)= (=)
1

is constructed in [6] by integration the function [(1 — &) + azP]?, which
representing the weighted power mean, of the parameter a € [0,1]. This
family interpolates many well-known operator monotone functions and has
monotonicity of r and s, namely, —1 < 7r; <1 <1, -1<s5 <5 <1
imply Fr, s, (z) < Fy, s, (z). From this fact, we can easily get the following
inequalities;

2z zlogzx

< <
z+1~ -1 =T= log x

D=

z—1 zlogx z+1
< < -1} < .
_eXp(x—l )* 2

Moreover, {Frs(%)}rse[-1,) interpolates some famous 1-parameter family
of operator monotone functions. By connecting ranges of parameter for the

cases s = 1 and s = —1, we obtain a 1-parameter family {PD;(z)},¢[—1,2)
of operator monotone functions such that
(r—=1)(z"-1)
= (-1 <7r<2).
PD,(z) s (-1<r<2)



This family is called the power difference mean and the optimality of its
range of the parameter —~1 < r < 2 is well known. F s(z) := Py(z);

Puz) = (:1:32_ 1)% (C1<s<1)

is the representing function of the power mean, and its range of parameter
—1<s<1lisoptimal. If r=1 and s =p— 1, then Fj ,_1(x) := Sp(z);

P -1

Syle) = (&‘—”)— 0<p<2)

Sp(x) is well known as the representing function of the Stolarsky mean, and
is operator monotone if and only if —2 < p < 2 ([5]). But we cannot prove
operator monotonicity of Sp(z) for —2 < p < 0 by the same way, because s =
p—1€ [~1,1]. So we think that the range of parameter of {Fy. s(z) }, s¢[-1,1]
such that F,s(z) is operator monotone is not optimal. In Section 2, we
consider the range of parameter of { ;. ;(z)} in which the function is operator
monotone, and try to extend it by using operator monotonicity of Sp(z) and
F, s(z) for p € [-2,2] and 7, s € [—1,1], respectively.

On the other hand, we have operator monotonicity of the following func-
tion from {S,(2)}pel-2:21

$1(2) = lim S,(2) = exp (“'; o8 - 1) .

(This function is known as the representing function of the identric mean.)
The exponential function exp(z) is well known as a function which is not
operator monotone, in contrast with its inverse function log x is so. But there
exists a function f(z) such that exp{f(z)} is an operator monotone function
besides constant, like Si(z). In general, it is so difficult to check operator
monotonicity of exp{f(z)} because exp{f(z)} is a composite function of
the non-operator monotone function exp(z) with f(z). In Section 3, we
give a characterization of f(x) such that exp{f(z)} is operator monotone.
Thanks to this result, it has become easy to check operator monotonicity of
exp{f(z)} by simple computation, and by applying this result we get some
examples of functions f(z) such that exp{f(z)} is operator monotone.

2 2-parameter Stolarsky mean
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First of this section, we replace symbols r, s with symbols p, o — p as the
following;;

rote= () == (=)™

Here we denote by Sp () the above function. From operator monotonicity
of {Fys(%)}r,se[-1,1], We can find the fact that S, o(z) is operator monotone
if

pe[-1,1]]andp—-1<a<p+1.

a

In [4], they showed that the following function
a(zP —1)

h et i

P,a(m) p(.’L‘a _ 1)

is operator monotone if and only if
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() € {(p,a) eER*| 0 <p—a <1,p>—1,and & < 1}U([0, 1]x[~1,0])\{(0,0)}.

Also, if (p,a) € {(p,a) eR}0<p<1,-1<a<0and a < p— 1}, then

1 1
-, 11.
p—a€[2’]

From these results and Lowner-Heinz inequality, we can find that Spo(z) =

1, .
hpo(x)?== is operator monotone if

(p,e) € {(p,a) eR*}0<p<1,-1<a<0and a <p-1}.



iV § p

Trivial part.
There is a case where Sy o(z) is operator monotone regardless of the
value of p or a. If @« = —p, then

1

[N

Hence, we find that operator monotonicity of Sp o () always holds if & = —p.
o
2
=2 0 2 P
-2
a=-p
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Extension from operator monotonicity of {Sy(z)}pe[-2,2-

From Lowner’s theorem and operator monotonicity of the 1-parameter
family {Sp(2)}pe[-2,2) 2 € C* implies Sp(2) € C* for all p € [—2, 2], namely,
the argument of Sy(2) has the following property

o<un(B) (- () -

(z € Ct, -2 <p <2). So we get

0<arg(p( ))( pr (-2<p<1),

2P —1
0<arg(p(z—_ﬁ) <(p-Dm (1<p<2),

respectively. By these inequalities we obtain

(iii‘::B)
a;p e (p(z_ )+arg (az(z—j))}

{( -)r+(l—-pr}=m

for the case —2<p<l,l1<a<?2.
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On the other hand,
1
P 1)\ ™
p(@) p(z—1)
is operator monotone for —2 < p < 2 too. So we have

z(2P — 1)
arg(m) <7 (z€Ct, -2<p<2)

and we can show the case —1 < p < 2, —2 < a < —1 similarly, because

o (B = e o () e (3}

0<

1+p

Moreover, since Sp o(x) is symmetric for p, o, we can extend the range
of parameter symmetrically from the above results. Namely, we have

(=2<p<l,1<a<?2) — (-2<a<l, 1<p<2),
(-1<p<?2 —2<a<-1) — (-1<a<2, -2<p<-1),
(p,a) € {(p,a) eER}0<p<1,-1<a<0and a<p—1}
— (p,a) € {(pa)eR*0<a<1,-1<p<0andp<a-—1}.
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Theorem 1. Let

Spaa) = (B2 = 2> 0)

a(zP — 1)
Then Spa(x) is operator monotone if (p,a) € A C R?, where

A= ([~2,1] x [-1,2)) U ([-1,2] x [-2,1]) U {(p,a) € R? | & = —p}.




3 Operator monotonicity of exp{f(z)}

First of this section we give a characterization of a continuous function f(z)
on (0, 00) such that exp{f(z)} is an operator monotone function. It is clear
that exp{log z} = z is operator monotone. The principal branch of Logz is
defined as

Logz := logr + 10 (z := re®®,0 < 6 < 27).

It is an analytic continuation of the real logarithmic function to C. Moreover
it is a Pick function, namely an operator monotone function, and satisfies
SLogz = 6. In the following we think about the case f(z) is not the loga-
rithmic function:

Theorem 2. Let f(x) be a continuous function on (0,00). If f(x) is not a
constant or log (az) (a > 0), then the following are equivalent:

(1) exp{f(z)} is an operator monotone function,

(2) f(z) is an operator monotone function, and there exists an analytic

continuation satisfying
0<v(r,8) <0,

where ’
f(re®) = u(r,8) +iv(r,0) 0O <r, 0<6<m).

Remark 1. In [1] Hansen proved a necessary and sufficient condition for
exp{F(logz)} to be an operator monotone function, that is, F admits an
analytic continuation to S = {z € C | 0 < Sz < 7w} and F(z) maps from S
into itself. A condition of Theorem 2 is more rigid than this statement.

Proof. (2) = (1) Clear.

(1) = (2).

Since exp{f(x)} is operator monotone, log{exp{f(z)}} = f(z) is operator
monotone, too. Also exp{f(z)} is a Pick function, so there exists an analytic
continuation to the upper half plane C* and z € C* implies exp{f(2)} €
Ct. Forz = s+it € Ct (s € R, 0 < t), let f(2) = f(s+it) = p(s,t)+iq(s,t).
Then g(s,t) > 0 since f(z) is a Pick function. Using Euler’s formula, we
obtain

exp{f(2)} = exp{p(s, )} (cos{q(s, )} + isin{q(s,1)})-

So we have Sexp{f(z)} = exp{p(s,t)} sin{q(s,?)}, and hence 0 < sin{q(s,?)}.

Also, ¢(s,t) belongs to C1, so ¢(s,t) is continuous on its domain. From
these facts, we can find that 2n7 < ¢(s,t) < (2n + 1)7 holds for the unique
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n € NU {0}.Moreover %1_136 f(s+1t) = f(s) € R, namely, ¢(s,t) = 0 (t — 0)
holds. This implies n = 0 and

0 < g(s,t) <.

Here by putting z = ¢ (0 <7, 0 < 8 < 7), f(2) = f(re®®) = u(r,8) +
w(r, 8) again, we have
0 <v(r,0) <m.

On the other hand, from the operator monotonicity of exp{f(z)} and the
assumption of Theorem 2, z[exp{f(z)}]~! is a positive operator monotone
function on (0, 00), too. So we get

zlexp{f(2)}] ™ = exp{Logz — f(2)}
= exp{(logr — u(r,8)) + (6 — v(r,0))}
= exp{logr — u(r, 6)}(cos{0 — v(r,8)} + isin{f — v(r,6)}).
From the above,
2mr < 0 —v(r,0) < 2m+ )7

holds for the unique m € Z. Moreover, 0 < v(r,8) < w and 0 < § < 7 are
required from the assumption and the above argument, and hence

- < —v(r,0) <8 —v(r,0) << m.
From these facts, v(r,8) must satisfy 0 < 6 — v(r,0) < 7(x*), so we get
0<wv(r,f) <8
by the left side inequality of (xx). O

By using Theorem 2, we can check numerically that exp{f(z)} is oper-
ator monotone or not if the imaginary part of f(z) can be expressed con-
cretely. Now we apply Theorem 2 and give some examples by “only” using
simple computation.

Example 1 (Harmonic, geometric and logarithmic means).
z-1
log z

2z
z+1’

H(z) = G(z) = 27 and L(z) =
are operator monotone functions on [0,00), but exp{H (z)}, exp{G(z)} and
exp{L(x)} are not operator monotone. Actually, by putting z = re?® (0 <
r,0 < 0 < 7), we have

2rsin @
r2 4+ 1+ 2rcos@

vi(r,0) == SH(z) = , vg(r,0) = SG(z) =r3 sin—g
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and
(rlogr)sinf — §(rcosf — 1)

(log7)? + 62

vr(r,0) :=SL(z) =

6
exp{H (z)} is not an operator monotone function by Theorem 2. We can also
exp{5}+1
obtain vg (27r2, E) =7> -721 and vr, (exp{g} , g) = X—p{j-r}—-i-— > -;»r-, s0
exp{G(z)} and exp{L(x)} are not operator monotone too.

Whenr =1,0 = —2—7!‘, we get vy (1, §‘ir) =2+4+v3> -2—7r, hence we can find

Example 2 (Dual of Logarithmic mean).

zlogzx
DL(z) = $_g1

is an operator monotone function on [0,00) and exp{DL(x)} is operator
monotone, too. In the following we verify that DL(x) satisfies the condition
of Theorem 2:

By putting z = re® (0 < r,0 < 0 < 7), we have

T -
r241-2r COSQ{Q(T — cosf) — (logr)sinf}.

0 < vpr(r,0) is clear since DL(x) is operator monotone. So we only show
UDL('I", 9) <80.

Proof of vpr(r,0) <0;

vpL(r,0) < 0 is equivalent to r{fcosf — (logr)sinf} < 6. By using the
following inequalities

fcosf <sinf<f (0<b<m), r(l-logr)<1(0<r7),

vpr(r,0) := SDL(2) =

we obtain
r{6cos @ - (logr)sinf} < r{sinf — (logr)sinf}
=r(1—logr)sinf
<sinf < 6.
Example 3.
B logz

IL(z) = —L(z)™! = —

is a negative operator monotone function on (0,00) and exp{IL(x)} is op-

erator monotone, too.

By putting z = re® (0 < 7,0 < 8 < 7), we have

(rlogr)sin® — 6(rcosé — 1)
r2+1—2rcosf '

vrp(r,0) := SIL(z) =
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We can show 0 < vrr(r,6) < 8 as Example 2.

logz 2z zlogzx 1| z—1

/(@) z—1|z+1 ] z—1 v logz
Operator monotonicity of f(x) O O O Ol O
Operator monotonicity of exp{f(z)} O X O X X

Results of Example 2 and Example 3 are extended as the following;

Theorem 3. Let
zPlogx

P —1"

exp{DLy(z)} is an operator monotone function if and only if p € [-1,1] \
{0}.

Proof. Firstly we show that DL,(z) satisfies the condition of Theorem 2 for

the case p € (0, 1]:
By putting z = re®? (0 < 7,0 < § < 7), we have

DLy(z) =

v(r,0) = SDLy(2) = — 1 —7:7'1’ ) {6(rP—cos(ph))—(log ) sin(pf) } .

(1) Proof of v(r,8) < 6,
v(r,0) < 0 is equivalent to rP60 cos(pf) — (rP log r) sin(pf) < 6.

rP0 cos(ph) — (r? log r) sin(ph) < 7P (%) sin(pf) — (rP log ) sin(ph)

= sin(pf) (1-17) (r? — rPlogr?)

< sin(pf) (%) < (p0) (%) ~ 0.

DLy(z) = %DL(m”)

(2) Proof of 0 < v(r, 8);

is operator monotone for p € (0,1], so 0 < v(r, 6).
From (1) and (2), exp{DLy(z)} is operator monotone if p € (0, 1]

Next, when p € [—1,0),

_ 2PLogz _ z7P2PLogz _ Logz
DLy(z) = -1 zP(zP—1) 1- 20




and

7Pl log r) sin(|p|6) — 0(7'|P| cos(|p|6) — 1)
r2lpl 41 — 2rlPl cos(|p|@)

v(r,0) := SDL,(re®) = (

We can show 0 < v(r,0) < 6 by the same technique. So we have that
exp{DLy(z)} is operator monotone if p € [-1,1] \ {0}.

Next we assume p > 1. Then

v(r,0) < 6 <= (U(p,,0) =)r* (COS(W) — (log T)Sin§p0)> <1

2
Take @ as % < 6 < min {71', —g—}, then sin(pf) < 0 and
rl_l}glol(p, r,6) = oco.

Therefore exp{DLy(z)} is not operator monotone if 1 < p from Theorem 2.
We can also show the case p < —1 similarly. ]
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