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Abstract

The weighted power mean is one of the most famous 2‐parameter
operator mean, and its representing function is  P_{s, $\alpha$}[(1- $\alpha$)+ $\alpha$ x^{s}]^{\frac{1}{ $\theta$}}(s\in
[-1, 1],  $\alpha$ \in [0 , 1 In [6] we constructed a 2‐parameter family of

operator monotone function F_{r,s}(x)(r, s\in[-1,1]) by integration of the

function P_{s. $\alpha$}(x) of  $\alpha$\in[0 , 1 ] . We shall extend its range of parameters
r and s . We also consider operator monotonicity of \exp\{f(x)\} for a

non‐constant continuous function f(x) defined on (0, \infty) .

1 Introduction

Let \mathcal{H} be a Hilbert space and \mathcal{B}(\mathcal{H}) be the set of all bounded linear

operators on \mathcal{H} . We assume that a function is not a constant throughout
this paper. A continuous function f(x) defined on an interval I is called

an operator monotone function, if A \leq  B implies f(A) \leq  f(B) for every

pair A, B \in \mathcal{B}(\mathcal{H}) whose spectra  $\sigma$(A) and  $\sigma$(B) lie in I . We call f(x) \mathrm{a}

Pick function if f(x) has an analytic continuation to the upper half‐plane
\mathbb{C}^{+}=\{z\in \mathbb{C}|\Im z>0\} and f(z) maps from \mathbb{C}^{+} into itself, where \Im z means

the imaginary part of z . It is well known that a Pick function is an operator
monotone function and conversely an operator monotone function is a Pick

function (Löwner�s theorem, cf. [2]).
A map \mathfrak{M} \mathcal{B}(\mathcal{H})_{+}^{2} \rightarrow \mathcal{B}(\mathcal{H})_{+} is called an operator mean [3] if the

operator \mathfrak{M}(A, B) satisfies the following four conditions for A, B\in \mathcal{B}(\mathcal{H})_{+} ;

(1) A\leq C and B\leq D imply \mathfrak{M}(A, B)\leq \mathfrak{M}(C, D) ,

(2) C(\mathfrak{R}\mathrm{t}(A, B))C\leq \mathfrak{M}(CAC, CBC ) for all self‐adjoint C\in \mathcal{B}(\mathcal{H}) ,

(3) A_{n}\searrow A and B_{n}\searrow B imply \mathfrak{M}(A_{n}, B_{n})\searrow \mathfrak{M}(A, B) ,
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(4) EM(I, I)=I.
Next theorem is so important to study operator means;

Theorem K‐A (Kubo‐Ando [3]). For any operator mean \mathfrak{M} there

uniquely exists an operator monotone function f\geq 0 on [0, \infty ) with  f(1)=1
such that

f(x)I=\mathfrak{M}(I, xI) , x\geq 0.

Then the following hold:

(1) The map \mathfrak{M} ) \mapsto f is a one‐to‐one onto affine mapping from the set of
all operator means to the set of all non‐negative operator monotone functions
on [0, \infty) with f(1) = 1 . Moreover, \mathfrak{M} ) \mapsto  f preserves the order, i.e.,
for \mathfrak{M} )\mapsto f, \mathfrak{R} )\mapsto g,

\mathfrak{M}(A, B)\leq \mathfrak{R}(A, B) (A, B\in \mathcal{B}(\mathcal{H})_{+})\Leftrightarrow f(x)\leq g(x) (x\geq 0) .

(2) When A>0, \displaystyle \mathfrak{M}(A, B)=A^{\frac{1}{2}}f(A\frac{-1}{2}BA\frac{-1}{2})A^{\frac{1}{2}}.
The function f(x) is called the representing function of \mathfrak{M} When we

study operator means, we usually consider their representing functions.

The 2‐parameter family of operator monotone functions \{F_{r,s}(x)\}_{r,s\in[-1,1]} ;

F_{r,s}(x):= (\displaystyle \frac{r(x^{r+s}-1)}{(r+s)(x^{r}-1)})^{\frac{1}{8}}
is constructed in [6] by integration the function [(1- $\alpha$)+ $\alpha$ x^{p}]^{\frac{1}{\mathrm{p}}} , which

representing the weighted power mean, of the parameter  $\alpha$ \in [0 ,
1 ] . This

family interpolates many well‐known operator monotone functions and has

monotonicity of r and s , namely, -1 \leq  r_{1} \leq  r_{2} \leq  1, -1 \leq  s_{1} \leq  s_{2} \leq  1

imply F_{r_{1},s_{1}}(x) \leq F_{r_{2},s_{2}}(x) . From this fact, we can easily get the following
inequalities;

\displaystyle \frac{2x}{x+1}\leq\frac{x\log x}{x-1}\leq x^{\frac{1}{2}}\leq\frac{x-1}{\log x}\leq\exp(\frac{x\log x}{x-1}-1) \leq\frac{x+1}{2}.
Moreover, \{F_{r,s}(x)\}_{r,s\in[-1,1]} interpolates some famous 1‐parameter family
of operator monotone functions. By connecting ranges of parameter for the

cases s= 1 and s=-1 , we obtain a 1‐parameter family \{PD_{r}(x)\}_{r\in[-1,2]}
of operator monotone functions such that

PD_{r}(x)=\displaystyle \frac{(r-1)(x^{r}-1)}{r(x^{r-1}-1)} (-1\leq r\leq 2) .
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This family is called the power difference mean and the optimality of its

range of the parameter -1\leq r\leq 2 is well known. F_{s,s}(x) :=P_{s}(x) ;

P_{s}(x)= (\displaystyle \frac{x^{s}+1}{2})^{\frac{1}{\^{o}}} (-1\leq s\leq 1)
is the representing function of the power mean, and its range of parameter
-1\leq s\leq 1 is optimal. If r=1 and s=p-1 , then F_{1,p-1}(x) :=S_{p}(x) ;

S_{p}(x)= (\displaystyle \frac{p(x-1)}{x^{p}-1})^{\frac{1}{1-\mathrm{p}}} (0\leq p\leq 2) .

S_{p}(x) is well known as the representing function of the Stolarsky mean, and

is operator monotone if and only if -2\leq p\leq 2 ([5]). But we cannot prove

operator monotonicity of S_{p}(x) for -2\leq p<0 by the same way, because s=

p-1\in[-1, 1] . So we think that the range of parameter of \{F_{r,s}(x)\}_{r,s\in[-1,1]}
such that F_{r,s}(x) is operator monotone is not optimal. In Section 2, we

consider the range of parameter of \{F_{r,s}(x)\} in which the function is operator
monotone, and try to extend it by using operator monotonicity of S_{p}(x) and

F_{r,s}(x) for p\in[-2, 2] and r, s\in[-1, 1] , respectively.
On the other hand, we have operator monotonicity of the following func‐

tion from \{S_{p}(x)\}_{p\in[-2,2]} ;

S_{1}(x) :=\displaystyle \lim_{p\rightarrow 1}S_{p}(x)=\exp(\frac{x\log x}{x-1}-1) .

(This function is known as the representing function of the identric mean.)
The exponential function \exp(x) is well known as a function which is not

operator monotone, in contrast with its inverse function \log x is so. But there

exists a function f(x) such that \exp\{f(x)\} is an operator monotone function

besides constant, like S_{1}(x) . In general, it is so difficult to check operator
monotonicity of \exp\{f(x)\} because \exp\{f(x)\} is a composite function of

the non‐operator monotone function \exp(x) with f(x) . In Section 3, we

give a characterization of f(x) such that \exp\{f(x)\} is operator monotone.

Thanks to this result, it has become easy to check operator monotonicity of

\exp\{f(x)\} by simple computation, and by applying this result we get some

examples of functions f(x) such that \exp\{f(x)\} is operator monotone.

2 2‐parameter Stolarsky mean
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First of this section, we replace symbols r, s with symbols p,  $\alpha$-p as the

following;

F_{r,s}(x)= (\displaystyle \frac{r(x^{r+s}-1)}{(r+s)(x^{r}-1)})^{\frac{1}{s}} \displaystyle \frac{p(x^{ $\alpha$}-1)}{ $\alpha$(x^{p}-1)})^{\frac{1}{a-\mathrm{p}}}
Here we denote by S_{p, $\alpha$}(x) the above function. From operator monotonicity
of \{F_{r,s}(x)\}_{r,s\in[-1,1]} , we can find the fact that S_{p, $\alpha$}(x) is operator monotone

if

p\in[-1, 1\mathrm{J} and p-1\leq $\alpha$\leq p+1.

In [4], they showed that the following function

h_{p, $\alpha$}(x)=\displaystyle \frac{ $\alpha$(x^{p}-1)}{p(x^{ $\alpha$}-1)}
is operator monotone if and only if

(p,  $\alpha$)\in { (p,  $\alpha$)\in \mathbb{R}^{2} |0<p- $\alpha$\leq 1,p\geq-1 ,
and  $\alpha$\leq 1 } \cup ( [0,1] × [−1, 0] ) \backslash \{(0,0

Also, if (p,  $\alpha$)\in { (p,  $\alpha$) \in \mathbb{R}^{2}|0\leq p\leq 1, -1\leq $\alpha$\leq 0 and  $\alpha$\leq p-1 }, then

\displaystyle \frac{1}{p- $\alpha$}\in [\frac{1}{2}, 1]
From these results and Löwner‐Heinz inequality, we can find that S_{p, $\alpha$}(x)=
h_{p, $\alpha$}(x)^{\frac{1}{p- $\alpha$}} is operator monotone if

(p,  $\alpha$)\in { (p,  $\alpha$)\in \mathbb{R}^{2}|0\leq p\leq 1, -1\leq $\alpha$\leq 0 and  $\alpha$\leq p-1 }.
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Trivial part.
There is a case where S_{p, $\alpha$}(x) is operator monotone regardless of the

value of p or  $\alpha$ . If  $\alpha$=-p , then

S_{p,-p}(x)= (\displaystyle \frac{p(x^{-p}-1)}{(-p)(x^{p}-1)})^{\frac{1}{-2\mathrm{p}}} = (\frac{1}{x^{p}})^{\frac{1}{-2p}} =x^{\frac{1}{2}}.
Hence, we find that operator monotonicity of S_{p, $\alpha$}(x) always holds if  $\alpha$=-p.
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Extension from operator monotonicity of \{S_{p}(x)\}_{p\in[-2,2]}.
From Löwner�s theorem and operator monotonicity of the 1‐parameter

family \{S_{p}(x)\}_{\mathrm{p}\in[-2,2]}, z\in \mathbb{C}^{+} implies S_{\mathrm{p}}(z)\in \mathbb{C}^{+} for all  p\in [-2, 2] , namely,
the argument of S_{\mathrm{p}}(z) has the following property

 0<\displaystyle \arg(\frac{p(z-1)}{z^{\mathrm{p}}-1})^{\frac{1}{1-\mathrm{p}}} (=\frac{1}{1-p}\arg(\frac{p(z-1)}{z^{p}-1})) < $\pi$
(z\in \mathbb{C}^{+}, -2\leq p\leq 2) . So we get

0<\displaystyle \arg(\frac{p(z-1)}{z^{p}-1}) < (1-p) $\pi$ (-2\leq p<1) ,

0<\displaystyle \arg(\frac{z^{p}-1}{p(z-1)}) < (p-1) $\pi$ (1<p\leq 2) ,

respectively. By these inequalities we obtain

0<\displaystyle \arg(\frac{p(z^{ $\alpha$}-1)}{ $\alpha$(z^{p}-1)})^{\frac{1}{ $\alpha$-\mathrm{p}}}
=\displaystyle \frac{1}{ $\alpha$-p}\{\mathrm{a}x\mathrm{g}(\frac{p(z-1)}{z^{p}-1}) +\arg(\frac{z^{ $\alpha$}-1}{ $\alpha$(z-1)})\}
< \displaystyle \frac{1}{ $\alpha$-p}\{( $\alpha$-1) $\pi$+(1-p) $\pi$\}= $\pi$

for the case -2\leq p<1, 1< $\alpha$\leq 2.
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On the other hand,

S_{-p}(x^{-1})^{-1}= (\displaystyle \frac{x(x^{p}-1)}{p(x-1)})^{\frac{1}{1+p}}
is operator monotone for -2\leq p\leq 2 too. So we have

0< \displaystyle \frac{1}{1+p}\arg(\frac{z(z^{p}-1)}{p(z-1)}) < $\pi$(z\in \mathbb{C}^{+}, -2\leq p\leq 2)
and we can show the case -1<p\leq 2, -2\leq $\alpha$<-1 similarly, because

\displaystyle \arg(\frac{p(z^{ $\alpha$}-1)}{ $\alpha$(z^{p}-1)})^{\frac{1}{ $\alpha$-p}} =\displaystyle \frac{1}{p- $\alpha$}\{\arg(\frac{z(z^{p}-1)}{p(z-1)}) +\arg(\frac{ $\alpha$(z-1)}{z(z^{ $\alpha$}-1)})\}.

Moreover, since S_{p, $\alpha$}(x) is symmetric for p,  $\alpha$ , we can extend the range
of parameter symmetrically from the above results. Namely, we have

(-2\leq p<1, 1< $\alpha$\leq 2) \rightarrow (-2\leq $\alpha$<1, 1<p\leq 2) ,

(-1<p\leq 2, -2\leq $\alpha$<-1) \rightarrow (-1< $\alpha$\leq 2, -2\leq p<-1) ,

(p,  $\alpha$)\in { (p,  $\alpha$)\in \mathbb{R}^{2}|0\leq p\leq 1, -1\leq $\alpha$\leq 0 and  $\alpha$\leq p-1 }
\rightarrow (p,  $\alpha$)\in { (p,  $\alpha$)\in \mathbb{R}^{2}|0\leq $\alpha$\leq 1, -1\leq p\leq 0 and p\leq $\alpha$-1 }.
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Theorem 1. Let

S_{p, $\alpha$}(x)= (\displaystyle \frac{p(x^{ $\alpha$}-1)}{ $\alpha$(x^{p}-1)})^{\frac{1}{ $\alpha$-p}} (x>0) .

Then S_{p, $\alpha$}(x) is operator monotone if (p,  $\alpha$)\in A\subset \mathbb{R}^{2} , where

\mathcal{A}= ([-2, 1] \times [-1,2])\cup([-1,2] \times [-2,1])\cup\{(p,  $\alpha$)\in \mathbb{R}^{2} |  $\alpha$=-p\}.

64



3 Operator monotonicity of \exp\{f(x)\}
First of this section we give a characterization of a continuous function f(x)
on (0, \infty) such that \exp\{f(x)\} is an operator monotone function. It is clear

that \exp\{\log x\}=x is operator monotone. The principal branch of {\rm Log} z is

defined as

{\rm Log} z :=\log r+i $\theta$ (z :=re^{i $\theta$}, 0< $\theta$<2 $\pi$) .

It is an analytic continuation of the real logarithmic function to \mathbb{C} . Moreover

it is a Pick function, namely an operator monotone function, and satisfies

\Im{\rm Log} z= $\theta$ . In the following we think about the case  f(x) is not the loga‐
rithmic function:

Theorem 2. Let f(x) be a continuous function on (0, \infty) . If f(x) is not a

constant or \log( $\alpha$ x) ( $\alpha$>0) , then the following are equivalent:
(1) \exp\{f(x)\} is an operator monotone function,
(2) f(x) is an operator monotone function, and there exists an analytic
continuation satisfying

0<v(r,  $\theta$)< $\theta$,

where

f(re^{i $\theta$})=u(r,  $\theta$)+iv(r,  $\theta$) (0<r, 0< $\theta$< $\pi$) .

Remark 1. In l1l Hansen proved a necessary and sufficient condition for
\exp\{F(\log x)\} to be an operator monotone function, that is, F admits an

analytic continuation to \mathrm{S}=\{z\in \mathbb{C} | 0<\Im z< $\pi$\} and F(z) maps from \mathrm{S}

into itself. A condition of Theorem 2 is more rigid than this statement.

Proof. (2) \vec{\underline{-},}(1) Clear.

(1) \Rightarrow(2) .

Since \exp\{f(x)\} is operator monotone, \log\{\exp\{f(x)\}\}=f(x) is operator
monotone, too. Also \exp\{f(x)\} is a Pick function, so there exists an analytic
continuation to the upper half plane \mathbb{C}^{+} and z \in \mathbb{C}^{+} implies \exp\{f(z)\} \in

\mathbb{C}^{+} . For z=s+it\in \mathbb{C}^{+} (s\in \mathbb{R}, 0<t) , let f(z)=f(s+it)=p(s, t)+iq(s, t) .

Then q(s, t) > 0 since f(x) is a Pick function. Using Euler�s formula, we

obtain

\exp\{f(z)\}=\exp\{p(s, t)\}(\cos\{q(s,t)\}+i\sin\{q(s, t

So we have \Im\exp\{f(z)\}=\exp\{p(s, t)\}\sin\{q(s,t and hence 0<\sin\{q(s,t
Also, q(s, t) belongs to C^{1} , so q(s, t) is continuous on its domain. From

these facts, we can find that  2n $\pi$<q(s, t)<(2n+1) $\pi$ holds for the unique
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 n\in \mathbb{N}\cup\{0\} .Moreover tl\rightarrow 0\mathrm{i}\mathrm{m}f(s+it)=f(s)\in \mathbb{R} , namely, q(s, t)\rightarrow 0(t\rightarrow 0)
holds. This implies n=0 and

0<q(s, t)< $\pi$.

Here by putting z=re^{i $\theta$} (0 <r, 0<  $\theta$< $\pi$) , f(z) =f(re^{i $\theta$}) =u(r,  $\theta$)+
iv(r,  $\theta$) again, we have

0<v(r,  $\theta$)< $\pi$.
On the other hand, from the operator monotonicity of \exp\{f(x)\} and the

assumption of Theorem 2, x[\exp\{f(x)\}]^{-1} is a positive operator monotone

function on (0, \infty) , too. So we get

z[\exp\{f(z)\}]^{-1}=\exp\{{\rm Log} z-f(z)\}
=\exp\{(\log r-u(r,  $\theta$))+i( $\theta$-v(r,  $\theta$

=\exp\{\log r-u(r,  $\theta$)\}(\cos\{ $\theta$-v(r,  $\theta$)\}+i\sin\{ $\theta$-v(r,  $\theta$
From the above,

 2m $\pi$< $\theta$-v(r,  $\theta$)<(2m+1) $\pi$
holds for the unique  m\in \mathbb{Z} . Moreover, 0<v(r,  $\theta$) < $\pi$ and  0<  $\theta$< $\pi$ are

required from the assumption and the above argument, and hence

- $\pi$<-v(r,  $\theta$)< $\theta$-v(r,  $\theta$)< $\theta$< $\pi$.

From these facts, v(r,  $\theta$) must satisfy 0< $\theta$-v(r,  $\theta$)< $\pi$(**) , so we get

 0<v(r,  $\theta$)< $\theta$

by the left side inequality of (**) . \square 

By using Theorem 2, we can check numerically that \exp\{f(x)\} is oper‐

ator monotone or not if the imaginary part of f(z) can be expressed con‐

cretely. Now we apply Theorem 2 and give some examples by �only� using
simple computation.

Example 1 (Harmonic, geometric and logarithmic means).

H(x)=\displaystyle \frac{2x}{x+1}, G(x)=x^{\frac{1}{2}} and L(x)=\displaystyle \frac{x-1}{\log x}
are operator monotone functions on [0, \infty), but \exp\{H(x)\}, \exp\{G(x)\} and

\exp\{L(x)\} are not operator monotone. Actually, by putting z=re^{i $\theta$} (0<
r, 0< $\theta$< $\pi$) , we have

vH(r,  $\theta$) :=\displaystyle \Im H(z)=\frac{2r\sin $\theta$}{r^{2}+1+2r\cos $\theta$}, vG(r,  $\theta$) :=\displaystyle \Im G(z)=r^{\frac{1}{2}}\sin\frac{ $\theta$}{2}
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and

v_{L}(r,  $\theta$):=\displaystyle \Im L(z)=\frac{(r\log r)\sin $\theta$- $\theta$(r\cos $\theta$-1)}{(\log r)^{2}+$\theta$^{2}}.
When r=1,  $\theta$=\displaystyle \frac{5}{6} $\pi$ , we get  v_{H}(1, \displaystyle \frac{5}{6} $\pi$) =2+\displaystyle \sqrt{3}>\frac{5}{6} $\pi$ , hence we can find

\exp\{H(x)\} is not an operator monotone function by Theorem 2. We can also

obtain vG(2$\pi$^{2}, \displaystyle \frac{ $\pi$}{2}) = $\pi$>\displaystyle \frac{ $\pi$}{2} and v_{L}(\displaystyle \exp\{\frac{ $\pi$}{2}\}, \frac{ $\pi$}{2}) =\displaystyle \frac{\exp\{\frac{ $\pi$}{2}\}+1}{ $\pi$} > \displaystyle \frac{ $\pi$}{2} , so

\exp\{G(x)\} and \exp\{L(x)\} are not operator monotone too.

Example 2 (Dual of Logarithmic mean).

DL(x)=\displaystyle \frac{x\log x}{x-1}
is an operator monotone function on [0, \infty ) and \exp\{DL(x)\} is operator
monotone, too. In the following we verify that DL(x) satisfies the condition

of Theorem 2:

By putting z=re^{i $\theta$} (0<r, 0< $\theta$< $\pi$) , we have

v_{DL}(r,  $\theta$) :=\displaystyle \Im DL(z)=\frac{r}{r^{2}+1-2r\cos $\theta$} {  $\theta$(r-\cos $\theta$)-(\log r) sine}.

0<v_{DL}(r,  $\theta$) is clear since DL(x) is operator monotone. So we only show

v_{DL}(r,  $\theta$)< $\theta$.
Proof of  v_{DL}(r,  $\theta$)< $\theta$ ;

 vDL(r,  $\theta$) <  $\theta$ is equivalent to  r\{ $\theta$\cos $\theta$- (\log r)\sin $\theta$\} <  $\theta$ . By using the

following inequalities

 $\theta$\cos $\theta$\leq\sin $\theta$< $\theta$ (0< $\theta$< $\pi$) , r(1-\log r)\leq 1 (0<r) ,

we obtain

r\{ $\theta$\cos $\theta$-(\log r)\sin $\theta$\}\leq r\{\sin $\theta$-(\log r)\sin $\theta$\}
=r(1-\log r)\sin $\theta$
\leq\sin $\theta$< $\theta$.

Example 3.

IL (x):=-L(x)^{-1}=-\displaystyle \frac{\log x}{x-1}
is a negative operator monotone function on (0, \infty) and \exp\{IL(x)\} is op‐
erator monotone, too.

By putting z=re^{i $\theta$} (0<r, 0< $\theta$< $\pi$) , we have

v_{IL}(r,  $\theta$):=\displaystyle \Im IL(z)=\frac{(r\log r)\sin $\theta$- $\theta$(r\cos $\theta$-1)}{r^{2}+1-2r\cos $\theta$}.
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We can show  0<vIL(r,  $\theta$)< $\theta$ as Example 2.

Results of Example 2 and Example 3 are extended as the following;

Theorem 3. Let

 DL_{p}(x)=\displaystyle \frac{x^{p}\log x}{x^{p}-1}.
\exp\{DL_{p}(x)\} is an operator monotone function if and only if  p\in [-1, 1]\backslash 
\{0\}.

Proof. Firstly we show that DL_{p}(x) satisfies the condition of Theorem 2 for

the case p\in(0,1 ]:
By putting z=re^{i $\theta$} (0<r, 0< $\theta$< $\pi$) , we have

v(r,  $\theta$) :=\displaystyle \Im DL_{p}(z)=\frac{r^{p}}{r^{2p}+1-2r^{p}\cos(p $\theta$)}\{ $\theta$(r^{p}-\cos(p $\theta$))-(\log r)\sin(p $\theta$)\}.
(1) Proof of  v(r,  $\theta$)< $\theta$ ;

 v(r,  $\theta$)< $\theta$ is equivalent to  r^{p} $\theta$\cos(p $\theta$)-(r^{p}\log r)\sin(p $\theta$)< $\theta$.

r^{p} $\theta$\displaystyle \cos(p $\theta$)-(r^{\mathrm{p}}\log r)\sin(p $\theta$)\leq r^{p}(\frac{1}{p})\sin(p $\theta$)-(r^{p}\log r)\sin(p $\theta$)
=\displaystyle \sin(p $\theta$)(\frac{1}{p})(r^{p}-r^{p}\log r^{p})
\displaystyle \leq\sin(p $\theta$)(\frac{1}{p}) <(p $\theta$)(\frac{1}{p}) = $\theta$.

(2) Proof of 0<v(r,  $\theta$) ;

DL_{p}(x)=\displaystyle \frac{1}{p}DL(x^{p})
is operator monotone for p\in(0,1], so 0<v(r,  $\theta$) .

From (1) and (2), \exp\{DL_{p}(x)\} is operator monotone if p\in(0,1 ]

Next, when p\in[-1, 0),

DL_{p}(z)=\displaystyle \frac{z^{p}{\rm Log} z}{z^{p}-1}=\frac{z^{-p}z^{p}{\rm Log} z}{z^{-p}(z^{p}-1)}=\frac{{\rm Log} z}{1-z^{|p|}}

68



and

 $\nu$(r,  $\theta$):=\displaystyle \Im DL_{p}(re^{i $\theta$})=\frac{(r^{|p|}\log r)\sin(|p| $\theta$)- $\theta$(r^{|p|}\cos(|p| $\theta$)-1)}{r^{2|p|}+1-2r^{|p|}\cos(|p| $\theta$)}.
We can show 0 < \mathrm{v}(r,  $\theta$) <  $\theta$ by the same technique. So we have that

\exp\{DL_{p}(x)\} is operator monotone if p\in[-1, 1]\backslash \{0\}.

Next we assume p>1 . Then

v(r,  $\theta$)< $\theta$\displaystyle \Leftrightarrow(l(p,r,  $\theta$)=)r^{p}(\cos(p $\theta$)-(\log r)\frac{\sin(p $\theta$)}{ $\theta$}) <1.
Take  $\theta$ as \displaystyle \frac{ $\pi$}{p}< $\theta$<\min\{ $\pi$, \frac{2 $\pi$}{p}\} ,

then \sin(p $\theta$)<0 and

\displaystyle \lim_{r\rightarrow\infty}l(p,r,  $\theta$)=\infty.
Therefore \exp\{DL_{p}(x)\} is not operator monotone if 1<p from Theorem 2.

We can also show the case p<-1 similarly. \square 
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