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Abstract.

The Riemann matrix of the Riemann surface determined as the non‐singular
model of the plane algebraic curve F_{T}(x, y, z)=\det(x\Re(T)+y\Im(T)+zI)=0
of a complex matrix T provides a new invariant for us to study the numerical

ranges of matrices.

l.Numerical range of a matrix

Let T be an n\times n complex matrix. The numerical range of T is defined as

W(T)=\{\langle T $\xi,\ \xi$\rangle: $\xi$\in \mathrm{C}^{n}, $\xi$^{*} $\xi$=1\},

where \mathrm{C}^{n} is considered as the set of column vectors. This set is a compact
convex set by the Toeplitz‐Hausdorff theorem (1918‐1919). The spectrum
 $\sigma$(T) of T is contained in this set W(T) . Its support line

\displaystyle \max\{\Re(e^{-i $\theta$}z) : z\in W(T)\}=h( $\theta$)

is characterized as

h( $\theta$)=\displaystyle \max $\sigma$(\Re(e^{-i $\theta$}T))
for any angle  0\leq $\theta$\leq 2 $\pi$ . It is known that  W(T) contains an interior point
in the Gaussian plane \mathrm{C} unless T is normal and the spectrum  $\sigma$(T) lies on

a line. In such an exceptional case T is called essentially Hermitian. The

numerical rage W(T) satisfies

W(T+ $\lambda$ I)= $\lambda$+W(T)

for any complex number  $\lambda$ . We assume that  T is not essentially Hermitian

and hence the range W(T) contains an interior point. By using the above
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property, we assume that 0 is an interior point of W(T) . Under this assump‐

tion, we set

K(T)= { (x, y)\in \mathrm{R}^{2} : x\Re(z)+y\Im(z)+1\geq 0 for anyz \in W(T) }.

Then this set K(T) is a compact convex set in the plane \mathrm{R}^{2} and the set

W(T) is characterized as

W(T)=\{X+i\mathrm{Y}:(X, \mathrm{Y})\in \mathrm{R}^{2}, Xx+\mathrm{Y}y+1\geq 0\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{y}(x, y)\in K(T)\}.

In the case T is an essentially Hermitian matrix, the treatment of W(T) is so

easy. In the case T is not essentially Hermitian, if we restrict our attention to

the boundary of W(T) , we can determine its boundary by using the boundary
of the range K(T) . For the determination of the boundary of W(T) , we do

not have to assume that 0 is an interior point of W(T) . We define the ternary
form F_{T}(x, y, z) associated to T by

F_{T}(x, y, z)=\det(x\Re(T)+y\Im(T)+zI_{n}) .

where \Re(T) = (T+T^{*})/2, \Im(T) = (T-T^{*})/(2i) . If T is an essentially
Hermitian matrix, the set

\{(x, y)\in \mathrm{R}^{2} : F_{T}(x, y, 1)=0\}

composed of finite number of parallel straight lines. If T is non‐Hermitian

normal matrix satisfying the condition that 0 is an interior point of W(T) ,

then the set K(T) is a compact convex set surrounded by a convex polygon.
Each edge of K(T) on the line a_{j}x+b_{j}y+1=0 corresponds to an eigenvalue
a_{j}+\sqrt{-1}b_{j} of T . In 1951, A German mathematician Kippenhahn introduced

an algebraic curve method to treat the boundary of the range W(T) by using
the ternary form F_{T}(x, y, z) or its associative curve

C(T)=\{[(x, y, z)]\in \mathrm{C}\mathrm{P}^{2}:F_{T}(x, y, z)=0\}

in the complex projective space \mathrm{C}\mathrm{P}^{2} . This space is the quotient space

\{(x, y, z)\in \mathrm{C}^{3}:(x, y, z)\neq(0,0,0)\}

with respect to the equivalence relation (x, y, z) \equiv (x', y', z') defined by
x' =kx, y' =ky, z' =kz for some non‐zero scalar k \in C. The factor

decomposition of the ternary form  F_{T}(x, y, z) is unique in the polynomial
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ring \mathrm{C}[x, y, z] up to constant factors. If F_{T}(x, y, z) is expressed as the prod‐
uct of two (necessarily homogeneous) polynomials F_{1}(x, y, z) and F_{2}(x, y, z) ,

then the curves F_{1}(x, y, z)=0 and F_{2}(x, y, z)=0 have some common points
P_{j}=(x_{j}, y_{j}, z_{j})\neq(0,0,0) at which first derivatives satisfy

F_{x}(x_{j}, y_{j}, z_{j})=F_{y}(x_{j}, y_{j}, z_{j})=F_{z}(x_{j}, y_{j}, z_{j})=0

with the equation F(x_{j}, y_{j}, z_{j})=0 . Such points (x_{j}, y_{j}, z_{j}) are called singular
points of the curve C(T) : F_{T}(x, y, z) =0 . Even if F_{T}(x, y, z) is irreducible

in the polynomial ring \mathrm{C}[x, y, z] ,
the curve C(T) may have singular points.

We provides two typical examples. Let

N_{1}= \left(\begin{array}{lll}
0 & \mathrm{l} & 1\\
0 & 0 & 1\\
0 & 0 & 0
\end{array}\right) N_{2}= \left(\begin{array}{llll}
0 & 1 & 0 & 1\\
0 & 0 & 1 & 0\\
0 & 0 & 0 & 1\\
0 & 0 & 0 & 0
\end{array}\right)
Then the polynomials 4F_{N_{1}}(x, y, z) = x^{3}+xy^{2} -3(x^{2}+y^{2})z+4z^{3} and

4F_{N_{2}}(x, y, z)=x^{2}y^{2}+y^{4}-4(x^{2}+y^{2})z^{2}+4z^{4} are irreducible in the polynomial
ring. But the curve C(N_{1}) has a singular point at (x, y, z) =(2,0,1) . The

curve C(N_{2}) has a pair of singular points at (x, y, z) = (0, \pm\sqrt{2},1) . If the

form F_{T}(x, y, z) has a repeated factor H(x, y, z) , every point of the curve

H(x, y, z)=0 is a singular point of the curve F_{T}(x, y, z)=0 ,
and hence the

curve C(T) has infinite many singular points. We assume that F_{T}(x, y, z) is

multiplicity free. Under this assumption, at almost every point (x_{1}, y_{1}, z_{1})\neq
(0,0,0) of the curve C(T) [except for finite many singular point], the curve

C(T) has the unique tangent

F_{x}(x_{1}, y_{1}, z_{1})x+F_{y}(x_{1}, y_{1}, z_{1})y+F_{z}(x_{1}, y_{1}, z_{1})z=0.

We consider the closure of the set

\{[(F_{x}(x_{1}, y_{1}, z_{1}), F_{y}(x_{1}, y_{1}, z_{1}), F_{z}(x_{1}, y_{1}, z_{1} \in \mathrm{C}\mathrm{P}^{2} :

(x_{1}, y_{1}, z_{1}) is a non‐ singular point of C(T) }.
This set is also an algebraic curve. The closure of this set is expressed as

\{[(X, \mathrm{Y}, Z)]\in \mathrm{C}\mathrm{P}^{2} : G_{T}(X, \mathrm{Y}, Z)=0\}

for some real ternary form G_{T}(X, \mathrm{Y}, Z) . If F_{T} is an irreducible polynomial of

degree n and the curve C(T) has no singular points, then the degree of the
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polynomial of G_{T} is n(n-1) . If C(T) is an order n curve with no singular
point, then the boundary of W(T) is given by

\partial W(T)=\{X+i\mathrm{Y} : (X, \mathrm{Y})\in \mathrm{R}^{2}, G_{T}(X, \mathrm{Y}, 1)=0\}.

If F_{T} is a general multiplicity free curve, then Kippenhahn�s theorem is ex‐

pressed as

W(T)=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}(\{X+i\mathrm{Y} : (X, \mathrm{Y})\in \mathrm{R}^{2}, G_{T}(X, \mathrm{Y}, 1)=0

In fact, boundary points of W(T) are classified into the two classes. The first

class consists of points X+i\mathrm{Y} for which (X, \mathrm{Y})\in \mathrm{R}^{2} satisfies G_{T}(X, \mathrm{Y}, 1)=
0. The second class consists of line segments [X_{1}+i\mathrm{Y}_{1}, X_{2}+i\mathrm{Y}_{2}] for which

these segments are extended to the common tangent line of the curve G_{T}(X, Y, 1)=
0 at (X_{1}, \mathrm{Y}_{1},1) , (X_{2}, \mathrm{Y}_{2},1) .

The real part of the above curve

\{[(x, y, z)] \in \mathrm{R}\mathrm{P}^{2} : F_{T}(x, y, z)=0\},

or the real affine part of the curve

\{(x, y)\in \mathrm{R}^{2} : F_{T}(x, y, 1)=0\}

also attract our attentions.

Kippenhahn provided a birational method to treat W(T) by using F_{T} . We

shall consider the compact Riemann surface defined as a non‐singular model

of the curve F_{T}(x, y, z)=0.

2. Compact Riemann surfaces

A compact Riemann surface S is an (orientable) complex 1‐dimensional an‐

alytic manifold. The complete topological invariant of compact Riemann

surfaces is given by its genus g . The genus of S is the number of holes of S

realized as a topological space in \mathrm{R}^{3}.

Example 1: Riemann sphere \mathrm{C}\mathrm{P}^{1}=\mathrm{C}\cup\{\infty\} : g=0.

Example 2: Torus; \mathrm{C}/\mathrm{Z}^{2} : g=1.

Example 3: Doble torus: g=2.

Example 4: Triple torus: g=3.
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3. Homology group, Riemann matrix

We consider a metric invariant of a Riemann surface S . Let T be an n\times n

complex matrix for which the form F_{T} is irreducible. By blowing up of

singular points of the curves F_{T}(x, y, z)=0 ,
we obtain a compact Riemann

surface with genus g\leq(n-1)(n-2)/2 . For instance, a generic 4\times 4 matrix

T has an associated curve F_{T}(x, y, z)=0 which is a Riemann surface with

g=3.

We shall consider a general compact Riemann surface S with genus g . If g
is 0

,
the fundamental group  $\pi$(S) of S is the trivial group, that is, S is simply

connected. If g is 1, the space S is homeomorphic to the torus \mathrm{R}^{2}/\mathrm{Z}^{2} and

hence the fundamental group  $\pi$(S) of S is isomorphic to the abelian group
\mathrm{Z}^{2} . We shall treat the case g\geq 2 . Then the group $\pi$_{1}(S) is isomorphic to

the free group F_{g} with g generators. We shall consider the integration of

holomorphic differential 1‐forms  $\omega$ on  S over closed oriented path  $\gamma$ on  S :

\displaystyle \oint_{ $\gamma$} $\omega$ . (3.1)

The set  H^{1}(S) of all holomorphic differential 1‐forms on S is a complex g‐
dimensional vector space if the genus of S is g . The space H^{1}(S) viewed as

an abelian group is called the cohomology group of S . We shall provide a

concrete example.

Example. Let

T= \left(\begin{array}{llll}
0 & 2 & 0 & 6\\
0 & 0 & 2 & 0\\
0 & 0 & 0 & 2\\
0 & 0 & 0 & 0
\end{array}\right)
Then the form F_{T}(x, y, z) is given by

F_{T}(x, y, z)=16y^{4}+(20x^{2}-12z^{2})y^{2}+4x^{4}-12x^{2}z^{2}+z^{4}

By using the first derivative F_{y}(x, y, z)=8y(5x^{2}+8y^{2}-3) , we find that a

basis of the vector space H^{1}(S) of this non‐singular curve F_{T}(x, y, 1)=0 is

given by

$\omega$_{1}=\displaystyle \frac{1}{8}\frac{dx}{y(5x^{2}+8y^{2}-3)}, $\omega$_{2}=\displaystyle \frac{1}{8}\frac{dx}{5x^{2}+8y^{2}-3}, $\omega$_{3}=\underline{1}\underline{xdx}
8 y(5x^{2}+8y^{2}-3)
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([5]). By Cauchy�s theorem, if a closed path  $\gamma$ is deformed to another closed

path  $\gamma$^{J} by a 1‐parameter family of continuous maps, that is,  $\gamma$ is homotopic
to  $\gamma$ , the equation

\displaystyle \oint_{ $\gamma$} $\omega$=\oint_{ $\gamma$},  $\omega$ , (3.2)

holds for any holomorphic form  $\omega$\in H^{1}(S) . We consider an oriented closed

path  $\gamma$ on  S as a continuous (rectifiable) curve of [0 ,
1 ] into S satisfying the

condition  $\gamma$(0) = $\gamma$(1) =P_{0} for a given base point P_{0} of S . For two closed

paths  $\gamma,\gamma$' , we define its product  $\gamma$'0 $\gamma$ by

 $\gamma$^{J}0 $\gamma$(t)= $\gamma$(2t) , $\gamma$'\circ $\gamma$(t+(1/2))=$\gamma$'(2t)
for 0\leq t\leq 1 . Then the equation

\displaystyle \oint_{ $\gamma$ 0 $\gamma$} $\omega$=\oint_{ $\gamma$ 0 $\gamma$},  $\omega$=\oint_{ $\gamma$} $\omega$+\int_{ $\gamma$},  $\omega$ , (3.3)

holds for any  $\omega$ \in  H^{1}(S) and closed oriented paths  $\gamma$, $\gamma$^{J} on S . By the

equations (3.2), (3.3), closed oriented paths on S form an abelian group

H_{1}(S, \mathrm{Z})=$\pi$_{1}(S)/N

where N is the commutator subgroup of $\pi$_{1}(S) . This group H_{1}(S) is called

the homology group of S . The homology group H_{1}(S) is isomorphic to \mathrm{Z}^{2g}
if the genus of S is g . We define the intersection index  $\gamma$\cdot$\gamma$' of two closed

paths  $\gamma$ and  $\gamma$' . We assume that these two paths have common points at

P_{1}, P_{2} ,
. . . , P_{m} . The intersection index  $\gamma$\cdot$\gamma$' is the sum of the local intersection

indices

( $\gamma$\cdot$\gamma$')_{P_{j}}
for j = 1 , 2, . ..

,
m . If two paths  $\gamma$, $\gamma$' have common tangent at P_{j} , then

( $\gamma$\cdot$\gamma$^{J})_{P_{\mathrm{j}}}=0 . We consider the respective tangent vectors v_{1}, v_{2} of the paths
 $\gamma$, $\gamma$^{J} at P_{j} . If the outer product v_{1} \times v_{2} of v_{1}, v_{2} points out the surface S,
then ( $\gamma$\cdot$\gamma$')_{P_{j}}=+1 . If v_{1}\times v_{2} points into the surface S ,

then ( $\gamma$\cdot$\gamma$')_{P_{j}}=-1.
It is known that the homology group H_{1} (S : Z) of a Riemann surface with

genus g\geq 1 has a canonical basis

\{a_{1}, a_{2}, . .., a_{g}, b_{1}, b_{2}, \cdots, b_{g}\}

which satisfy the relation

a_{i}\cdot a_{j}=b_{i}\cdot b_{j}=0, a_{i}\cdot b_{j}=-b_{j}\cdot a_{i}=$\delta$_{ij}
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(i,j= 1,2, \ldots, g) , where $\delta$_{ij} is the Kronecker delta. Tretkoff [13] provided
an algorithm to construct a canonical basis of the homology group H_{1}(S) for

any compact Riemann surface associated with an arbitrary irreducible plane
algebraic curve.

Deconinck and van Hoeji [4] presented codes to perform this algorithm.
The �

algcurves� package of� Maple� is available to obtain a canonical basis

of H_{1}(S) for an arbitrary irreducible algebraic curve with integral coefficients.

We shall explain Tretkoff�s method to express the elements of the homology
group H_{1}(S:\mathrm{Z}) by using the non‐singular quartic curve F_{T}(x, y, 1)=16y^{4}+
(20x^{2}-12)y^{2}+4x^{4}-12x^{2}+1=0 . We shall solve the equation

16y^{4}+(20x^{2}-12)y^{2}+4x^{4}-12x^{2}+1=0 , (3.4)

in y . For a usual value of x
,
this equation in y has 4 distinct solutions. There

are 8 exceptional values of x for which some of 4 solutions coincide. The

condition for such exceptional values are obtained by eliminate y from the

equations

16y^{4}+(20x^{2}-12)y^{2}+4x^{4}-12x^{2}+1=0, \displaystyle \frac{\partial}{\partial y}(16y^{4}+(20x^{2}-12)y^{2}+4x^{4}-12x^{2}+1)=0.
The exceptional points are called branch points of the curve F_{T}(x, y, 1)=0.
In this case those are solutions of the equation

(3x^{2}+5)(3x^{2}+1)(2x^{2}+4x+1)(2x^{2}-4x+1)=0.

We denote those branch points by P_{j} as the following:

P_{1} : x=-i\sqrt{5/3}\approx-1.29099i, P_{2}:x=-\displaystyle \frac{i}{\sqrt{3}}\approx-0.577350i,
P3 : x=\displaystyle \frac{-2-\sqrt{2}}{2}\approx-1.70711, P_{4}:x=\displaystyle \frac{-2+\sqrt{2}}{2}\approx-0.292893,
P5 : x=\displaystyle \frac{2-\sqrt{2}}{2}\approx 0.292893, P_{6}=\displaystyle \frac{2+\sqrt{2}}{2}\approx 1.70711,
P7: x=\displaystyle \frac{i}{\sqrt{3}}\approx 0.577350i, P_{8}:x=i\sqrt{5/3}\approx 1.29099i.

We use the following decomposition

\{(x, y)\in \mathrm{C}^{2}:F_{T}(x, y, 1)=0, x\neq P_{j}(j=1,2,3,4,5,6,7,8)\}
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=\displaystyle \bigcup_{1\leq k\leq 8}\{(x, k):x\in \mathrm{C}, x\neq P_{j}(j=1,2,3,4,5,6,7,8
We take a base point x_{0}=-2.27279 . If x_{1} is a complex number and \Im(x_{1})\neq
 0, x_{1} \neq P_{j} (j=1,2, \ldots, 8) , then the line segment [x_{0}, x] does not intersect

with any of P_{j} . The equation F_{T}(x_{0}, y, 1)=0 has the following solutions

y_{1}(-2.27279)\approx-2.26981i, y_{2}(-2.27279)\approx-0.744951i,

y_{3}(-2.27279)\approx 0.744951i, y_{4}(-2.27279)\approx 2.26981i.
The values of y_{j}(x_{0}) are pure imaginary, and labeled as

\Im(y_{1}(x_{0}))<\Im(y_{2}(x_{0}))<\Im(y_{3}(x_{0}))<\Im(y_{4}(x0)) .

The 4 solutions of F_{T}(x_{1}, y, 0) = 0 are labeled as y_{j}(x_{1}) if y_{j}(x_{1}) is the

analytic continuation of y_{j}(x_{0}) along the line segment [x_{0}, x_{1}] . Concerning
the labeling of y_{j}(x_{1}) for the points x_{j} \in \mathrm{R}, x \neq  P_{3}, P_{4}, P_{5}, P_{6} are due to

Tretkoff�s rule. We shall define some closed paths on the curve (3.4) which we

use for the computation of the Riemann matrix. Firstly, we define the closed

paths { a_{1}, a_{2}, a_{3}, b_{1}, c_{6}-a_{1} , c7} which start at x_{0} = -2.27279 and arrive at

x_{0} in the following way:

1. The closed path a_{1} starts on sheet 1, encircle branch point P_{1} to arrive

at sheet 2, encircle branch point P_{2} to arrive at sheet 1.

2. The closed a_{2} starts on sheet 1, encircle branch point P_{4} to arrive at

sheet 4, encircle branch point P5 to arrive at sheet 1.

3. The closed path a_{3} starts on sheet 3, encircle branch point P_{2} to arrive

at sheet 4, encircle branch point P7 to arrive at sheet 3.

4. The closed path b_{1} starts on sheet 1, encircle branch point P_{1} to arrive

at sheet 2, encircle point P_{8} to arrive sheet 1.

5. The closed path c_{6}-a_{1} starts on sheet 1, encircle branch point P_{2} to

arrive at sheet 2, encircle branch point P3 to arrive at sheet 3, encircle

branch point P7 to arrive at sheet 4, encircle branch point P_{4} to arrive

at sheet 1.

6. The closed path c7 starts on sheet 1, encircle branch point P_{1} to arrive

at sheet 2, encircle branch point P3 to arrive at sheet 3, encircle branch

point P_{8} to arrive at sheet 4, encircle branch point P_{4} to arrive at sheet

1.
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The closed paths b_{2} , b3 are defined by b_{2} = b_{1}-a_{1}-2(c_{6}-a_{1})+c_{7} , and

b_{3}=a_{2}+(c_{6}-a_{1})+a_{1}-c_{7} . Then the set \{a_{1}, a_{2}, \mathrm{a}_{3}, b_{1}, b_{2}, b3\} is a canonical

basis for the homology group  H_{1}(S)\sim . We use another canonical basis \{\~{a} \mathrm{l}=
a_{\sim^{1}} , ã2 = a2, \~{a} 3\tilde{}=a_{3}-a_{2}, \tilde{b}_{1}=b_{1}, b_{2}=b_{2}+b_{3}-a_{2}, b_{3}^{\sim}=b_{3}\} . Then the cycles
b_{2} , b3 satisfy b_{2}=b_{1}-(c_{6}-c_{1}) , b_{3}=a_{2}+(c_{6}-a_{1})+a_{1}-c_{7}.

We shall compute the Riemann matrix (r_{ij})_{i,j=1}^{4} with respect to the canon‐

ical basis

{ãl, ã2, ã3, \tilde{b}_{1}, \tilde{b}_{2}, \tilde{b}_{3} }.
The original \{a_{1}, \cdots, b3\} is the basis of H_{1}(S) which the �

algcurves� package
provides. But we replaced the original basis by another one to get a Riemann

matrix expressed in a good form. We compute the A‐matrix (a_{ij}) , and the

B‐matrix (b_{ij}) defined by

a_{ij}=\displaystyle \oint_{\tilde{a}_{j}}$\omega$_{i}, b_{i\mathrm{j}}=\oint_{b_{j}^{-}}$\omega$_{i}.
These matrices A = (a_{ij}) ,

B = (b_{ij}) are invertible. The Riemann matrix

R=(r_{ij}) of the Riemann surface S is defined as A^{-1}B which is a complex
symmetric matrix and \Im(R) is a positive definite (real) symmetric matrix

for a general Riemann surface S . The Riemann matrix is an invariant to

characterize the metric structure of the period lattice of a Riemann surface

S . By using the g\times g matrix R=(r_{ij}) , we can embed the homology group

H_{1}(S) in the vector space \mathrm{C}^{g} . Let \{$\omega$_{1}, \cdots, $\omega$_{g}\} be a basis of the cohomology
group H^{1}(S) .

For any  $\gamma$\in H_{1}(S) , consider a vector

( $\gamma$(1), \ldots, $\gamma$(g))\in \mathrm{C}^{g} , where  $\gamma$(i)=\displaystyle \oint_{ $\gamma$}$\omega$_{i}
(i=1, \ldots, g) . In this way, H_{1}(S) viewed as a lattice  $\Gamma$ in \mathrm{C}^{g} isomorphic

to \mathrm{Z}^{2g}.

Let R=\{e_{g+1}, \cdots, e_{2g}\} . Let e_{1}=\{1, 0, . . . , 0\}^{T} ,
.. .

, e_{g}=\{0, . . . , 0, 1\}^{T} be

the standard basis of \mathrm{C}^{g} . Consider the standard inner product on \mathrm{C}^{g} . The

2g vectors \{e_{1}, \cdots, e_{g}, e_{g+1}, . . ., e_{2g}\} are generators of the lattice  $\Gamma$ . We wish

to characterize the metric structure of  $\Gamma$ for a Riemann surface  S for F_{T}=0
of a matrix T.
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Proposition 3.1. (Chien, N. [2]) Let T= \left(\begin{array}{llll}
0 & 2 & 0 & 6\\
0 & 0 & 2 & 0\\
0 & 0 & 0 & 2\\
0 & 0 & 0 & 0
\end{array}\right) . Then the genus

of the curve F_{T}=0 is 3. For a suitably chosen cycles a_{i}, b_{j} ,
we can decompose

 $\Gamma$ as the orthogonal direct sum of two lattices  $\Gamma$_{1} spanned by e_{1}, e_{2}, e_{6} and

$\Gamma$_{2} spanned by e_{3}, e_{4}, e_{5} :  $\Gamma$=$\Gamma$_{1}\oplus$\Gamma$_{2}.

Numerical approximations of these vectors are given by

e_{1}=(1,0,0)^{T}, e_{2}=(0,1,0)^{T}, e_{3}=(0,0,1)^{T}

e_{4}=(1.69486i, 0.847432i, 0.152568)^{T}, e_{5}=(0.847432i, 1.54696i, 0.576284)^{T},
e_{6}= (0.152568, 0.576284, 0.576284i)^{T}.

The vector e_{6} is orthogonal to e_{3}, e_{4}, e_{5} . The vectors e_{4}, e_{5} are orthogonal to

e_{1}, e_{2}.

Proposition 3.2.(Chien, N., [2]) Let

\tilde{T}= \left(\begin{array}{llll}
0 & 2 & 2a & 2k\\
0 & 0 & 2 & 2a\\
0 & 0 & 0 & 2\\
0 & 0 & 0 & 0
\end{array}\right)
with real a>\sqrt{2} and k=a^{2}-1 . Then the genus of the curve F_{T} is 2. For

a suitably chosen ãi, \tilde{b_{j}} , theA‐matrix is a real matrix and the B‐matrix is a

pure imaginary matrix and hence R is a pure imaginary matrix. The lattice

 $\Gamma$ is the orthogonal direct sum of  $\Gamma$_{1} spanned by e_{1}, e_{2} and $\Gamma$_{2} spanned by
e_{3}, e_{4}.

For the proof of Proposition 3.2, we choose the canonical basis {ãl, \tilde{a}_{2}\tilde{b}_{1}, \tilde{b}_{2} }
as the following. Let \{a_{1}, a_{2}, b_{1}, b_{2}\} be the canonical basis for the homology
group H_{1}( $\Gamma$) produced by the algorithm in [4] and the algcurves implementa‐
tion. We construct a new basis depending on the canonical basis as follows:

1. The cycle \~{a} \mathrm{l}=a_{1} starts on sheet 1, encircles branch point r_{1}=(a^{2}-
\sqrt{a^{4}+8a+8})/(4(a+1)) to arrive at sheet 2, encircle branch point
r_{2}=(a^{2}-\sqrt{a^{4}-8a+8})/(4(a-1)) to arrive at sheet 1.
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2. The cycle \~{a} 2= -a_{2} starts on sheet 1, encircle branch point r_{3} =

(a^{2}+\sqrt{a^{4}+8a+8})/(4(a+1)) to arrive at sheet 2, encircle branch

point r_{4}=(a^{2}-2a+2)/(2(a-1)) to arrive at sheet 1.

3. The cycle \tilde{b}_{2}=-b_{2}-a_{1} starts on sheet 1, encircle branch point r_{4}=

(a^{2}-2a+2)/(2(a-1)) to arrive at sheet 2, encircle branch point
r_{5}=(a^{2}+2a+2)/(2(a+1)) to arrive at sheet 1.

4. The cycle \tilde{b}_{3}=\tilde{b}_{1}-\tilde{b}_{2}=b_{1}+b_{2}+a_{2} starts on sheet 1, encircle branch

point r_{2}=(a^{2}-\sqrt{a^{4}-8a+8})/(4(a-1)) to arrive at sheet 2, encircle

branch point r_{3}=(a^{2}+\sqrt{a^{4}+8a+8})/(4(a+1)) to arrive at sheet 1.

Consider the set {ãl, ã2, \tilde{b}_{1}, \tilde{b}_{2} } in the group H_{1}( $\Gamma$) given by

\~{a} \mathrm{l}=a_{1}, \~{a} 2=-a_{2}, \tilde{b}_{1}=b_{1}-a_{1}+a_{2}, \tilde{b}_{2}=-b_{2}-a_{1}.

The new basis {ãl, ã2, \tilde{b}_{1}, \tilde{b}_{2} } of H_{1}( $\Gamma$) is suitable for our aim.

In the case a=2
, the matrices A, B are approximately given by

 A\approx \left(\begin{array}{ll}
-0.195915 & 0.4\mathrm{l}0645\\
-0.0199325 & 0.382071
\end{array}\right),  B\approx \left(\begin{array}{ll}
0.170162i & 0.655061i\\
0.553593i & 0.865335i
\end{array}\right)
4. Development of the study of Riemann ma‐

trices

We shall briefly mention the history of the study of Riemann surfaces. Bern‐

hard Riemann (1826‐1866) built the foundation of Riemann surfaces (com‐
plex analytic 1‐dimensional manifolds). Our main interests consists in com‐

pact Riemann surfaces. His papers [9, 10, 11] are classical literatures of this

subjects. Torelli [12] showed that the Riemann matrices are complete in‐

variants of compact Riemann surfaces. Some Japanese mathematicians are

studying Riemann matrices (cf. [6], [14]). Recently K. Konno published a

nice introduction to the theory of Riemann surfaces and algebraic curves

[8]. To study Riemann surfaces, some computer softwares help us to treat

this matrix. The above results would be just a start point of the study of

Riemann surfaces related to the numerical ranges.
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