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Riemann matrices for the Hyperbolic Curves

Hiroshi Nakazato (Hirosaki University)

Abstract.

The Riemann matrix of the Riemann surface determined as the non-singular
model of the plane algebraic curve Fr(z,y, z) = det(zR(T) +yS(T)+2I) = 0
of a complex matrix T provides a new invariant for us to study the numerical
ranges of matrices.

1.Numerical range of a matrix

Let T be an n x n complex matrix. The numerical range of T is defined as

W(T) ={(T¢,€) : § € C",£"¢ =1},

where C" is considered as the set of column vectors. This set is a compact
convex set by the Toeplitz-Hausdorff theorem (1918-1919). The spectrum
o(T') of T is contained in this set W(T'). Its support line

max{R(e"?2) : 2 € W(T)} = h(9)
is characterized as
h(6) = max o (R(e~T))

for any angle 0 < § < 27. It is known that W(T') contains an interior point
in the Gaussian plane C unless 7" is normal and the spectrum o(T) lies on
a line. In such an exceptional case T is called essentially Hermitian. The
numerical rage W(T') satisfies

W(T + M) = X+ W(T)

for any complex number A. We assume that T is not essentially Hermitian
and hence the range W(T) contains an interior point. By using the above



property, we assume that 0 is an interior point of W(T"). Under this assump-
tion, we set

K(T) = {(z,y) € R?: aR(z) + y3(2) + 1 > Oforanyz € W(T)}.

Then this set K(T') is a compact convex set in the plane R? and the set
W(T) is characterized as

W(T)={X+iY : (X,Y) e R>, Xz + Yy + 1 > Oforany (z,y) € K(T)}.

In the case T is an essentially Hermitian matrix, the treatment of W (T') is so
easy. In the case T is not essentially Hermitian, if we restrict our attention to
the boundary of W (T'), we can determine its boundary by using the boundary
of the range K(T'). For the determination of the boundary of W(T'), we do
not have to assume that 0 is an interior point of W(T"). We define the ternary
form Fr(z,y, z) associated to T by

Fr(z,y,z) = det(zR(T) + yS(T) + z1,).

where R(T) = (T +T*)/2, S(T) = (T — T*)/(2¢). If T is an essentially
Hermitian matrix, the set

{(z,y) € R?: Fr(z,y,1) =0}

composed of finite number of parallel straight lines. If T is non-Hermitian
normal matrix satisfying the condition that 0 is an interior point of W(T'),
then the set K(T) is a compact convex set surrounded by a convex polygon.
Each edge of K(T) on the line a;z+b;y+ 1 = 0 corresponds to an eigenvalue
aj++/—1b; of T. In 1951, A German mathematician Kippenhahn introduced
an algebraic curve method to treat the boundary of the range W(T') by using
the ternary form Fr(z,y, z) or its associative curve

C(T) = {[(z,y,2)] € CP*: Fr(z,y,z) = 0}
in the complex projective space CP2. This space is the quotient space
{(z,y,2) € C*: (z,9,2) # (0,0,0)}

with respect to the equivalence relation (z,y,2) = (2/,v/,2’) defined by
¥ = kzx,y = ky,z’ = kz for some non-zero scalar k € C. The factor
decomposition of the ternary form Fr(z,y,z) is unique in the polynomial
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ring Clz, y, z] up to constant factors. If Fr(z,y, z) is expressed as the prod-
uct of two (necessarily homogeneous) polynomials Fi(z,y, z) and Fs(z,y, z),
then the curves Fy(z,y, z) = 0 and Fx(z,y, 2) = 0 have some common points
P; = (z},y;,2;) # (0,0,0) at which first derivatives satisfy

Fi(z5,Y5, 25) = Fy(%5,95, %) = Fa(%5,95,2) =0

with the equation F(z;,y;, z;) = 0. Such points (z;, y;, 2;) are called singular
points of the curve C(T) : Fr(z,y,z) = 0. Even if Fr(z,y, z) is irreducible
in the polynomial ring C[z,y, 2], the curve C(T') may have singular points.
We provides two typical examples. Let

011 g
N={00 1),N=|,
000 0

Then the polynomials 4Fy,(z,y,2) = 23 + zy? — 3(z® + y?)z + 423 and
4Fy, (z,y, 2) = 22y? +y* — 4(z? +y?)22 +42* are irreducible in the polynomial
ring. But the curve C(NV;) has a singular point at (z,y,2) = (2,0,1). The
curve C(N) has a pair of singular points at (z,y,2) = (0,£v/2,1). If the
form Fr(z,y,z) has a repeated factor H(z,y, z), every point of the curve
H(z,y,z) =0 is a singular point of the curve Fr(z,y, z) = 0, and hence the
curve C(T) has infinite many singular points. We assume that Fr(z,y, 2) is
multiplicity free. Under this assumption, at almost every point (z1,11,21) #
(0,0,0) of the curve C(T') [except for finite many singular point], the curve
C(T) has the unique tangent

01
10
01
00

o OO

Fy(z1, 11, 21) + Fy(z1, 91, 21)y + Fo(21,91,21)2 = 0.
We consider the closure of the set
{[(Fx(mly Y1, Z]_), Fy(xl, N, zl)v Fz(a"l, Y1, 21))] € CP2 :

(z1,41, 21) isanon — singular point of C(T)}.

This set is also an algebraic curve. The closure of this set is expressed as
{[(X,Y,Z)] € CP?: Gr(X,Y, Z) = 0}

for some real ternary form G(X,Y, Z). If Fr is an irreducible polynomial of
degree n and the curve C(T) has no singular points, then the degree of the
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polynomial of Gr is n(n — 1). If C(T) is an order n curve with no singular
point, then the boundary of W(T') is given by

OW(T) = {X +1iY : (X,Y) € R* Gr(X,Y,1) = 0}.

If Fr is a general multiplicity free curve, then Kippenhahn’s theorem is ex-
pressed as

W(T) = Conv({X +iY : (X,Y) € R}, Gr(X,Y,1) = 0}).

In fact, boundary points of W(T') are classified into the two classes. The first
class consists of points X +iY for which (X,Y) € R? satisfies G7(X,Y,1) =
0. The second class consists of line segments [X; + Y7, X + 1Y5] for which
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these segments are extended to the common tangent line of the curve Gr(X,Y,1) =

0 at (Xl’ Yh 1)) (X2>Yéa 1)
The real part of the above curve

{[(z,y,2)] € RP*: Fr(z,y,2) = 0},
or the real affine part of the curve
{(z,y) € R*: Fr(z,y,1) = 0}

also attract our attentions.

Kippenhahn provided a birational method to treat W (T') by using Fr. We
shall consider the compact Riemann surface defined as a non-singular model
of the curve Fr(z,y,z) = 0.

2. Compact Riemann surfaces

A compact Riemann surface S is an (orientable) complex 1-dimensional an-
alytic manifold. The complete topological invariant of compact Riemann
surfaces is given by its genus g. The genus of S is the number of holes of S
realized as a topological space in R3.

Example 1: Riemann sphere CP' = CU {o0}: g = 0.

Example 2: Torus; C/Z% g = 1.

Example 3: Doble torus: g = 2.

Example 4: Triple torus: g = 3.



3. Homology group, Riemann matrix

We consider a metric invariant of a Riemann surface S. Let T be an n x n
complex matrix for which the form Fr is irreducible. By blowing up of
singular points of the curves Fr(z,y, z) = 0, we obtain a compact Riemann
surface with genus g < (n—1)(n —2)/2. For instance, a generic 4 x 4 matrix
T has an associated curve Fr(z,y,z) = 0 which is a Riemann surface with
g=3.

We shall consider a general compact Riemann surface S with genus g. If ¢
is 0, the fundamental group 7(S) of S is the trivial group, that is, S is simply
connected. If g is 1, the space S is homeomorphic to the torus R?/Z? and
hence the fundamental group 7 (S) of S is isomorphic to the abelian group
Z?. We shall treat the case g > 2. Then the group 7,(S) is isomorphic to
the free group Fy with g generators. We shall consider the integration of
holomorphic differential 1-forms w on S over closed oriented path v on S:

fw. (3.1)

The set H!(S) of all holomorphic differential 1-forms on S is a complex g-
dimensional vector space if the genus of S is g. The space H(S) viewed as
an abelian group is called the cohomology group of S. We shall provide a
concrete example.

Example. Let

T =

O O OO
O O ON
S o N O
OO

Then the form Fr(z,y, z) is given by
Fr(z,y,z) = 16y* + (200% — 122%)y® + 4a* — 12222% + 2*.

By using the first derivative F(z,y, z) = 8y(5z% + 8y? — 3), we find that a
basis of the vector space H(S) of this non-singular curve Fr(z,y,1) = 0 is
given by

dzx zdx

dx w _1
502 +8y2 -3 ° 8y(5z% + 8y% — 3)

1
8y(5a2 + 8y — 3)’

W = w—l
1= 2—8
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([5]). By Cauchy’s theorem, if a closed path 7 is deformed to another closed
path 4" by a 1-parameter family of continuous maps, that is, v is homotopic

to 7', the equation
f w= f w, (3.2)
v 04

holds for any holomorphic form w € H*(S). We consider an oriented closed
path 7y on S as a continuous (rectifiable ) curve of [0, 1] into S satisfying the
condition v(0) = (1) = P, for a given base point Py of S. For two closed
paths 7, , we define its product v o~y by

v oy(t) =(2t),7 o(t + (1/2)) =~ (2t)
for 0 <t < 1. Then the equation

f w=% w=fw+/w, (3.3).
7 oy vov' v '

holds for any w € H'(S) and closed oriented paths v,7 on S. By the
equations (3.2), (3.3), closed oriented paths on S form an abelian group

Hl(S, Z) = ﬂl(S)/N

where N is the commutator subgroup of m(S). This group H,(S) is called
the homology group of S. The homology group H,(S) is isomorphic to Z2
if the genus of S is g. We define the intersection index -y - ¥ of two closed
paths v and 7. We assume that these two paths have common points at
Py, P, ..., P,. Theintersection index v- is the sum of the local intersection
indices )
(v-7)p

for j = 1,2,...,m. If two paths 7, v have common tangent at P;, then
(v-7) p; = 0. We consider the respective tangent vectors vy, v of the paths
v,7 at P;. If the outer product v; x vy of v1,v, points out the surface S,
then ('y-fy')Pj = +1. If v; X v, points into the surface S, then ('y-'y')pj =-1.
It is known that the homology group Hy(S : Z) of a Riemann surface with
genus g > 1 has a canonical basis

{a1,a2,...,a4,b1,b2,...,b4}
which satisfy the relation

ai-aj=b,~-bj=0, a,--bj=—bj-a,-=6ij
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(i, =1,2,...,9), where §;; is the Kronecker delta. Tretkoff [13] provided
an algorithm to construct a canonical basis of the homology group H;(S) for
any compact Riemann surface associated with an arbitrary irreducible plane
algebraic curve.

Deconinck and van Hoeji [4] presented codes to perform this algorithm.
The ”algcurves” package of ”Maple” is available to obtain a canonical basis
of Hy(S) for an arbitrary irreducible algebraic curve with integral coefficients.
We shall explain Tretkoff’s method to express the elements of the homology
group H,(S : Z) by using the non-singular quartic curve Fr(z,y,1) = 16y* +
(2022 — 12)y% + 4z* — 1222 + 1 = 0. We shall solve the equation

16y* + (202% — 12)y® + 42* — 1222 + 1 = 0, (3.4)

in y. For a usual value of z, this equation in y has 4 distinct solutions. There
are 8 exceptional values of z for which some of 4 solutions coincide. The
condition for such exceptional values are obtained by eliminate y from the
equations

16y*+(2022—12)y*+4z*—122%+1 = 0, %(16y4+(20x2—12)y2+4x4—12x2+1) =

The exceptional points are called branch points of the curve Fr(z,y,1) = 0.
In this case those are solutions of the equation

(3z% +5)(3x% +1)(22° + 4z + 1)(222 — 4z + 1) = 0.

We denote those branch points by P; as the following:

Py :iz=—i\/5/3~ 129099, P;:z=——= ~ —0.577350i,

V3
Pz= —2-V2 -1.70711, P,:z= '2+‘/§ ~ —0.292893,
— V3 5
Poigo27V2 0202803, P = 2T V2 1.70711,

2 2
i
Py :x=—m0577350i, Ps:z=1i/5/3~ 1.29099i.
g 7 C /

We use the following decomposition

{(z,y) € C*: Fr(z,y,1) =0,z # P; (j = 1,2,3,4,5,6,7,8)}

76

0.



= Uick<s{(z, k) ;2 € C,z # P;(j =1,2,3,4,5,6,7,8)}.

We take a base point zy = —2.27279. If z; is a complex number and $(z;) #
0, z1 # P; ( =1,2,...,8), then the line segment [z, z] does not intersect
with any of P;. The equation Fr(z,y,1) = 0 has the following solutions

11 (—2.27279) ~ —2.269814, yo(—2.27279) &~ —0.7449514,
y3(—2.27279) = 0.7449513, y,(—2.27279) ~ 2.26981;.

The values of y;(zo) are pure imaginary, and labeled as

S(y1(z0)) < S(ya(z0)) < F(ya(20)) < (ya(0))-

The 4 solutions of Fr(z1,y,0) = 0 are labeled as y;(z1) if y;(z1) is the
analytic continuation of y;(z,) along the line segment [z, z;]. Concerning
the labeling of y;(z;) for the points z; € R, = # P, Py, Ps, Ps are due to
Tretkoff’s rule. We shall define some closed paths on the curve (3.4) which we
use for the computation of the Riemann matrix. Firstly, we define the closed
paths {a;, ag, a3, b1, cg — a1, c7} which start at zp = —2.27279 and arrive at
Zp in the following way:

1. The closed path a; starts on sheet 1, encircle branch point P, to arrive
at sheet 2, encircle branch point P, to arrive at sheet 1.

2. The closed a; starts on sheet 1, encircle branch point Py to arrive at
sheet 4, encircle branch point P to arrive at sheet 1.

3. The closed path a3 starts on sheet 3, encircle branch point P to arrive
at sheet 4, encircle branch point P; to arrive at sheet 3.

4. The closed path b; starts on sheet 1, encircle branch point P, to arrive
at sheet 2, encircle point Py to arrive sheet 1.

5. The closed path cg — a; starts on sheet 1, encircle branch point P, to
arrive at sheet 2, encircle branch point P to arrive at sheet 3, encircle
branch point P; to arrive at sheet 4, encircle branch point P, to arrive
at sheet 1. '

6. The closed path c; starts on sheet 1, encircle branch point P; to arrive
at sheet 2, encircle branch point P; to arrive at sheet 3, encircle branch
point F; to arrive at sheet 4, encircle branch point Py to arrive at sheet
1.
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The closed paths bs, b3 are defined by by = by — a; — 2(cg — a1) + ¢7, and
b3 = az + (cg — a1) + a1 — ¢7. Then the set {ay, as, az, by, by, b3} is a canonical
basis for the homology group H;(S). We use another canonical basis {d; =
a1, G2 = az,d3 = a3 — az,bl =by,by = by + b3 — az,b3 = b3}. Then the cycles
b, bs satisfy by = by — (cs — c1), bz =as + (s — a1) + a1 — cr.

We shall compute the Riemann matrix (r;;);,;_, with respect to the canon-
ical basis o
{dly d2a d3a b11 b27 b3}-
The original {ay, .. .,b3} is the basis of H{(S) which the "algcurves” package
provides. But we replaced the original basis by another one to get a Riemann

matrix expressed in a good form. We compute the A-matrix (a;;), and the
B-matrix (b;;) defined by

Q;; = f w;, bij = ﬁ wj.
i 5

7

These matrices A = (a;;), B = (b;;) are invertible. The Riemann matrix
R = (ry;) of the Riemann surface S is defined as A~'B which is a complex
symmetric matrix and (R) is a positive definite (real) symmetric matrix
for a general Riemann surface S. The Riemann matrix is an invariant to
characterize the metric structure of the period lattice of a Riemann surface
S. By using the g X g matrix R = (r;;), we can embed the homology group
H;(S) in the vector space C9. Let {wi,...,wy} be a basis of the cohomology
group H'(S).
For any v € Hy(S), consider a vector

(v(1),...,7(9)) € C% wherev(i) = f w;

(2=1,...,9). In this way, H;(S) viewed as a lattice I' in CY isomorphic
to Z29.

Let R = {eg41,-..,€5}. Let e ={1,0,...,0}7,...,e,={0,...,0,1}7 be
the standard basis of C9. Consider the standard inner product on C¢. The
2g vectors {ei,...,€g,€g41,. .., €2} are generators of the lattice I'. We wish
to characterize the metric structure of I" for a Riemann surface S for Fr =0
of a matrix 7.
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0
Proposition 3.1. (Chien, N. [2]) Let T = g . Then the genus

0 00O
of the curve Fr = 0 is 3. For a suitably chosen cycles a;, b;, we can decompose
I' as the orthogonal direct sum of two lattices I'; spanned by ey, €5, e and
I'; spanned by e3,eq4,e5: T' =T @ I's.

Numerical approximations of these vectors are given by
e1 = (1,0,0)",e2 = (0,1,0)7, e3 = (0,0, 1)

es = (1.694861, 0.847432i, 0.152568), e5 = (0.847432,1.54696i, 0.576284)7
es = (0.152568, 0.576284, 0.576284i)7.

The vector eg is orthogonal to es, e4, e5. The vectors ey, e5 are orthogonal to
€1, €2.

Proposition 3.2.(Chien, N., [2]) Let

0 2 2a 2k
~ 00 2 2a
T—0002

00 0 O

with real ¢ > /2 and k = a? — 1. Then the genus of the curve Fr is 2. For
a suitably chosen d;,b;, theA-matrix is a real matrix and the B-matrix is a
pure imaginary matrix and hence R is a pure imaginary matrix. The lattice
I’ is the orthogonal direct sum of I'; spanned by e;, e; and I'y spanned by
€3, €4.

For the proof of Proposition 3.2, we choose the canonical basis {dj, a“2b~1, b~2}
as the following. Let {ai, az, b1, b2} be the canonical basis for the homology
group Hy(I') produced by the algorithm in [4] and the algcurves implementa-
tion. We construct a new basis depending on the canonical basis as follows:

1. The cycle d; = a; starts on sheet 1, encircles branch point r; = (a? —

va*+8a+8)/(4(a + 1)) to arrive at sheet 2, encircle branch point
r2 = (a2 — va* — 8a + 8)/(4(a — 1)) to arrive at sheet 1.
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2. The cycle d = —ay starts on sheet 1, encircle branch point r3 =

(a® + va* + 8a + 8)/(4(a + 1)) to arrive at sheet 2, encircle branch
point 74 = (a® — 2a + 2)/(2(a — 1)) to arrive at sheet 1.

3. The cycle 1;2 = —by — a; starts on sheet 1, encircle branch point 74 =
(a® — 2a + 2)/(2(a — 1)) to arrive at sheet 2, encircle branch point
rs = (a® + 2a + 2)/(2(a + 1)) to arrive at sheet 1.

4. The cycle b~3 = b~1 - b~2 = by + by + ay starts on sheet 1, encircle branch
point 5 = (a? — va* — 8a + 8)/(4(a — 1)) to arrive at sheet 2, encircle
branch point r3 = (a® + v/a* + 8a + 8)/(4(a + 1)) to arrive at sheet 1.

Consider the set {d, da, by, b~2} in the group H;(T') given by

dp=ay, Gy=—a, b =b—a+ay b =—-b—a.

The new basis {dy, da, by, b2} of Hi(T) is suitable for our aim.

In the case a = 2, the matrices A, B are approximately given by

An —0.195915 0.410645 B ~ 0.170162: 0.655061:
~ \—0.0199325 0.382071)° ~\0.553593i 0.865335: )

4. Development of the study of Riemann ma-
trices

We shall briefly mention the history of the study of Riemann surfaces. Bern-
hard Riemann (1826-1866) built the foundation of Riemann surfaces (com-
plex analytic 1-dimensional manifolds). Our main interests consists in com-
pact Riemann surfaces. His papers [9, 10, 11] are classical literatures of this
subjects. Torelli [12] showed that the Riemann matrices are complete in-
variants of compact Riemann surfaces. Some Japanese mathematicians are
studying Riemann matrices (cf. [6], [14]). Recently K. Konno published a
nice introduction to the theory of Riemann surfaces and algebraic curves
[8]. To study Riemann surfaces, some computer softwares help us to treat
this matrix. The above results would be just a start point of the study of
Riemann surfaces related to the numerical ranges.
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