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Abstract. The k‐product range of a complex matrix A is defined as the set of

the products of any k diagonal entry of A under unitary similarities. For k=2,
the k‐product range of a normal matrix A is convex if the eigenvalues of A form

an acute‐angled or right‐angled triangle.

1. Introduction

Let A be an n\times n complex matrix. For any integer k with 1\leq k\leq n , the k ‐product
range of A is defined as

W_{k}^{ $\Pi$}(A)= { \displaystyle \prod_{i=1}^{k}(UAU^{*})_{ii}:U is a unitary matrix}. (1.1)

When k equals 1, the product range is the classical numerical range of A

W(A)=\{x^{*}Ax : x\in \mathbb{C}^{n}, x^{*}x=1\}.

Hence W_{k}^{ $\Pi$}(A) is one of a generalized numerical range. We refer the reader to [3] for

fundamental properties of the numerical ranges.

Especially, when A is a normal matrix which means A commutes with its conjugate
transpose, we have W(A)=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}( $\sigma$(A)) where Conv and  $\sigma$(A) are the convex hull and

the spectrum of A
, respectively. In this article, we will concern the convexity of the

k‐product range of any 3\times 3 normal matrix. The details of our results, see [5].
The concept of product ranges was introduced firstly by Marvin Marcus [6] in

1973. Bebiano, Li and Providência [1] investigated some geometrical properties, such as
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convexity, star‐shapedness and simply connectedness of W_{k}^{ $\Pi$}(A) in 1993. In particular,
they have shown that W_{k}^{ $\Pi$}(A) is not generally simply connected when A is an n\times n

normal matrix with n\geq 4 . In addition, they also gave an example which shows that

W_{3}^{ $\Pi$}(A) is not convex when A is a 3\times 3 normal matrix. Hence W_{k}^{ $\Pi$}(A) is not necessary
convex in general even when A is normal. However, for the 2‐by‐2 case, Hu and Tam

[4] have shown that W_{2}^{ $\Pi$}(A) is a line segment if and only if A is normal. In the case

n=2
, every doubly stochastic matrix is unistochastic. For N=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}($\lambda$_{1}, $\lambda$_{2}) , we get

the line segment

W_{2}^{ $\Pi$}(N)= [$\lambda$_{1}$\lambda$_{2}, (\displaystyle \frac{$\lambda$_{1}+$\lambda$_{2}}{2})^{2}]
In addition, the convexity of the range W_{k}^{ $\Pi$}(N) is characterized in [2] in the case the

eigenvalues of N are on a straight line.

2. Preliminaries

By the defimition of W_{k}^{ $\Pi$}(N) ,
when N is normal we may assume N=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}($\lambda$_{1}, $\lambda$_{2}, \ldots, $\lambda$_{n})

in (1.1) where $\lambda$_{1}, $\lambda$_{2} , .. ., $\lambda$_{n} are the eigenvalues of N . Moreover, having in mind that

\displaystyle \prod_{i=1}^{k}(UNU^{*})_{ii}=\prod_{i=1}^{k}\sum_{j=1}^{n}|u_{ij}|^{2}$\lambda$_{j},
we can define W_{k}^{ $\Pi$}(N) equivalently by

W_{k}^{ $\Pi$}(N)= { \displaystyle \prod_{i=1}^{k}\sum_{j=1}^{n}a_{ij}$\lambda$_{j} : (a_{ij}) is a unitary matrix }. (2.1)

In the case N is a 3\times 3 normal matrix and k=2
,

the 3 eigenvalues $\lambda$_{1}, $\lambda$_{2}, $\lambda$_{3} are

on a straight line P , we can characterize the range W_{2}^{ $\Pi$}(N) according to the different

two situation: (i) 0\in P , (ii) 0\not\in\ell.
In the case (i), we may assume that $\lambda$_{1}, $\lambda$_{2}, $\lambda$_{3} are real numbers and (i‐1)  0\leq$\lambda$_{3}\leq

$\lambda$_{2}\leq$\lambda$_{1} or (i‐2) $\lambda$_{3}\leq 0\leq$\lambda$_{2}\leq$\lambda$_{1} . The equations

W_{2}^{ $\Pi$}(N)=[$\lambda$_{2}$\lambda$_{3}, ($\lambda$_{1}+$\lambda$_{2})^{2}/4] , (2.2)

and

W_{2}^{ $\Pi$}(N)=[$\lambda$_{1}$\lambda$_{3}, ($\lambda$_{1}+$\lambda$_{2})^{2}/4] , (2.3)
hold respectively in the case (i‐1) and (i‐2).

In the case (ii), the range W_{2}^{ $\Pi$}(N) is not convex [2, Theorem 3.1]. The exact figure
of W_{2}^{ $\Pi$}(N) in this situation is given in [7] under the assumption

{\rm Im}($\lambda$_{1})={\rm Im}($\lambda$_{2})={\rm Im}($\lambda$_{3})=1.
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The range W_{2}^{ $\Pi$}(N) is characterized as the image of D(3) under a quadratic map. So we

may assume that ($\lambda$_{2}-$\lambda$_{3})/($\lambda$_{1}-$\lambda$_{3}) is a well defined imaginary number. We assume

that $\lambda$_{1}, $\lambda$_{2}, $\lambda$_{3} lie on a circle counterclockwisely. The relations (2.2), (2.3) and some

numerical experiments suggest the equation

W_{2}^{ $\Pi$} (diag ($\lambda$_{1}, $\lambda$_{2}, $\lambda$_{3}) ) =\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}($\lambda$_{1}$\lambda$_{2}, $\lambda$_{2}$\lambda$_{3}, $\lambda$_{1}$\lambda$_{3}) , (2.4)

holds only when the the interior  $\Gamma$ of the circumscribed circle of  $\Delta \lambda$_{1}$\lambda$_{2}$\lambda$_{3} satisfies

 0\in $\Gamma$ (2.5)

and

 0<\arg(($\lambda$_{3}-$\lambda$_{1})/($\lambda$_{2}-$\lambda$_{1} \arg(($\lambda$_{1}-$\lambda$_{2})/($\lambda$_{3}-$\lambda$_{2} \arg((\mathrm{A}_{2}-$\lambda$_{3})/($\lambda$_{1}-$\lambda$_{3}))\leq $\pi$/2.
(2.6)

However, so far we are not sure if these two conditions are necessary for the equation
(2.4) to hold, we show its necessity of the condition (2.6) under some special two

situations (Corollary 3.2 and Corollary 3.3). We assume these conditions to consider

the subject.
The next lemma provides the main motivation to assume the conditions (2.5). For

a moment, we assume that the three points $\lambda$_{1}$\lambda$_{2}, $\lambda$_{1}$\lambda$_{3}, $\lambda$_{2}$\lambda$_{3} are not colinear. For

any 1 \leq i<j\leq 3 ,
let k=\{1, 2, 3\}\backslash \{i,j\} . Denote by H_{ij} , the closed half‐plane with

the boundary passing through $\lambda$_{i}$\lambda$_{k}, $\lambda$_{j}$\lambda$_{k} satisfying $\lambda$_{i}$\lambda$_{j}\in H_{ij} . We have the following
lemma.

Lemma 2.1. Let $\lambda$_{1}, $\lambda$_{2}, $\lambda$_{3} be mutually distinct non‐zero complex numbers satisfying
the condition (2.5). Then the three points $\lambda$_{1}$\lambda$_{2}, $\lambda$_{1}$\lambda$_{3}, $\lambda$_{2}$\lambda$_{3} are not colinear, Moreover

the interior of the respective three half‐planes H_{12}, H_{13} , H23 contains the respective
points $\lambda$_{3}^{2}, $\lambda$_{2}^{2}, $\lambda$_{1}^{2}.

3. Main theorems

The following theorem is our main result.

Theorem 3.1. Suppose that $\mu$_{1}, $\mu$_{2} and $\mu$_{3} are three complex numbers with modulus

one given by
$\mu$_{2}=1=e^{2i($\eta$_{1}+$\eta$_{2}+$\eta$_{3})}, $\mu$_{3}=e^{2i$\eta$_{1}},$\mu$_{1}=e^{2i($\eta$_{1}+$\eta$_{2})}

with 0<$\eta$_{1}\leq$\eta$_{2}\leq$\eta$_{3}\leq $\pi$/2,  $\eta$_{1}+$\eta$_{2}+$\eta$_{3}= $\pi$ . Let

\tilde{ $\Gamma$}_{j}=\{z\in \mathbb{C}:|z| \leq\cos$\eta$_{j}\}
and $\Gamma$_{j}=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}(\tilde{ $\Gamma$}_{j},$\mu$_{j}) for j=1 , 2, 3. Then the triple

($\lambda$_{1}, $\lambda$_{2}, $\lambda$_{3})=($\mu$_{1}-$\mu$_{0},$\mu$_{2}-$\mu$_{0}, $\mu$_{3}-$\mu$_{0})
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Figure 1. C_{O} is the circumcenter of  $\Delta \mu$_{1}$\mu$_{2}$\mu$_{3}.

for a point $\mu$_{0}\in \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}($\mu$_{1}, $\mu$_{2}, $\mu$_{3}) satisfies

W_{2}^{ $\Pi$}(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}($\lambda$_{1}, $\lambda$_{2}, $\lambda$_{3}))=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}($\lambda$_{1}$\lambda$_{2}, $\lambda$_{2}$\lambda$_{3}, $\lambda$_{1}$\lambda$_{3})

if and only if $\mu$_{0}\in$\Gamma$_{1}\cap$\Gamma$_{2}\cap$\Gamma$_{3} . The region $\Gamma$_{1}\cap$\Gamma$_{2}\cap$\Gamma$_{3} is shown in Figure 1.

As simple consequences of Theorem 3.1 we provide the following two corollaries.

Corollary 3.2. Suppose that $\lambda$_{1}, $\lambda$_{2}, $\lambda$_{3} are complex numbers with modulus 1 and satis‐

fies the condition (2.6). Then an acute‐angled or right‐angled triangle $\lambda$_{1}, $\lambda$_{2}, $\lambda$_{3} satisfies

W_{2}^{ $\Pi$}(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}($\lambda$_{1}, $\lambda$_{2}, $\lambda$_{3}))=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}($\lambda$_{1}$\lambda$_{2}, $\lambda$_{2}$\lambda$_{3}, $\lambda$_{1}$\lambda$_{3}) .

Corollary 3.3. Suppose that $\lambda$_{1}, $\lambda$_{2}, $\lambda$_{3} are vertices of a acute‐angled or a right‐angled
triangle in the Gaussian plane and satisfy the condition $\lambda$_{1}+$\lambda$_{2}+$\lambda$_{3} = 0 . Then the

relation

W_{2}^{ $\Pi$}(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}($\lambda$_{1}, $\lambda$_{2}, $\lambda$_{3}))=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}($\lambda$_{1}$\lambda$_{2}, $\lambda$_{2}$\lambda$_{3}, $\lambda$_{1}$\lambda$_{3})
holds.

Remark 3.4. One would suppose that the assertion of Corollary 3.2 remains valid if

we replace the circumcenter by the incenter of a triangle. However such an assertion

is false, see Example 4.2.

Next we will consider some generalizations of Corollary 3.2 and Corollary 3.3.
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Proposition 3.5. Let $\lambda$_{1}, $\lambda$_{2} and $\lambda$_{3} be three distinct points on the unit circle |z|=1.
Then the equation

W_{2}^{\mathrm{n}}(\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}($\lambda$_{1}, $\lambda$_{2}, $\lambda$_{3}))=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}($\lambda$_{1}$\lambda$_{2}, $\lambda$_{2}$\lambda$_{3}, $\lambda$_{1}$\lambda$_{3}) , (3.1)

holds only when  $\Delta \lambda$_{1}$\lambda$_{2}$\lambda$_{3} is an acute‐angled or right‐angled triangle.

Proposition 3.6. Let $\lambda$_{1}, $\lambda$_{2} and $\lambda$_{3} be three distinct complex numbers satisfying

$\lambda$_{1}+$\lambda$_{2}+$\lambda$_{3}=0.

Then the equation (3.1) holds only when  $\Delta \lambda$_{1}$\lambda$_{2}$\lambda$_{3} is an acute‐angled or right‐angled
triangle.

For the proof of Theorem 3.1, we firstly prove the following inclusion

W_{2}^{ $\Pi$}(N)\subseteq \mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}($\lambda$_{1}$\lambda$_{2}, $\lambda$_{2}$\lambda$_{3}, $\lambda$_{1}$\lambda$_{3}) , (3.2)

where N=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}($\lambda$_{1}, $\lambda$_{2}, $\lambda$_{3}) .

By using the half‐planes H_{ij} introduced in Lemma 2.1, the inclusion (3.2) is rewrit‐

ten as

W_{2}^{ $\Pi$}(N)\subseteq H_{12}\cap H_{23}\cap H_{13}.
We shall prove the inclusion

W_{2}^{ $\Pi$}(N)\subseteq H_{12} , (3.3)
under the assumption $\mu$_{0} \in$\Gamma$_{3} . Similar inclusions for H23 and H13 can be proved in

the same manner. To prove the inclusion (3.3), we use a functional on the set Uni(3).
Let  $\xi$=\arg($\lambda$_{1}$\lambda$_{3}-$\lambda$_{2}$\lambda$_{3})- $\pi$/2 . Then this angle satisfies

{\rm Re}(e^{-i $\xi$}$\lambda$_{1}$\lambda$_{3})={\rm Re}(e^{-i $\xi$}$\lambda$_{2}$\lambda$_{3})<{\rm Re}(e^{-i $\xi$}$\lambda$_{1}$\lambda$_{2}) .

For any (a_{ij})\in \mathrm{U}\mathrm{n}\mathrm{i}(3) , the element z of W_{2}^{ $\Pi$}(N) can be expressed as

z = $\lambda$_{1}$\lambda$_{2}(a_{\mathrm{n}}a_{22}+a_{12}a_{21})+$\lambda$_{1}$\lambda$_{3}(a_{11}a_{23}+a_{13}a_{21})+$\lambda$_{2}$\lambda$_{3}(a_{12}a_{23}+a_{13}a_{22})
+$\lambda$_{1}^{2}a_{11}a_{21}+$\lambda$_{2}^{2}a_{12}a_{22}+$\lambda$_{3}^{2}a_{13}a_{23}.

The inclusion (3.3) is equivalent to the inequality

{\rm Re}(e^{-\not\in}z)\geq{\rm Re}(e^{-i $\xi$}$\lambda$_{1}$\lambda$_{3})

for any (a_{ij}) \in \mathrm{U}\mathrm{n}\mathrm{i}(3) . So we shall prove the positivity of {\rm Re}(e^{-i $\xi$}(z-$\lambda$_{1}$\lambda$_{3})) for any

(a_{ij}) \in Uni(3). This functional depends on the relative positions of $\lambda$_{i} =$\mu$_{i}-$\mu$_{0} for

i=1
, 2, 3.
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We shall consider the following normalized functional on Uni(3)

L((a_{ij}))=\displaystyle \frac{{\rm Re}(e^{-i $\xi$}(z-$\lambda$_{1}$\lambda$_{3}))}{{\rm Re}(e^{-i $\xi$}($\lambda$_{1}$\lambda$_{2}-$\lambda$_{1}$\lambda$_{3}))}.
It is rewritten as

L((a_{ij}))=a_{11}a_{22}+a_{12}a_{21}+pa_{13}a_{23}+qa_{11}a_{21}+ra_{12}a_{22} , (3.4)
where

p=\displaystyle \frac{{\rm Re}(e^{-i $\xi$}($\lambda$_{3}^{2}-$\lambda$_{1}$\lambda$_{3}))}{{\rm Re}(e^{-i $\xi$}($\lambda$_{1}$\lambda$_{2}-$\lambda$_{1}$\lambda$_{3}))},
q=\displaystyle \frac{{\rm Re}(e^{-i $\xi$}($\lambda$_{1}^{2}-$\lambda$_{1}$\lambda$_{3}))}{{\rm Re}(e^{-i $\xi$}($\lambda$_{1}$\lambda$_{2}-$\lambda$_{1}$\lambda$_{3}))},
r=\displaystyle \frac{{\rm Re}(e^{-i $\xi$}($\lambda$_{2}^{2}-$\lambda$_{1}$\lambda$_{3}))}{{\rm Re}(e^{-i $\xi$}($\lambda$_{1}$\lambda$_{2}-$\lambda$_{1}$\lambda$_{3}))},

and we may assume p> 0 by Lemma 2.1 provided that the point $\mu$_{0} belongs to the

open disc bounded by the circle circumscribed to  $\Delta \mu$_{1}$\mu$_{2}$\mu$_{3}.
The positive semi‐definiteness of L((a_{ij})) is characterized by the following.

Theorem 3.7. Let L((a_{ij})) be a functional on Uni(3) defined by (3.4). Then  L((a_{ij}))\geq
 0 for all (a_{ij})\in \mathrm{U}\mathrm{n}\mathrm{i}(3) if and only if one of the following conditions holds:

(i) 0<p\leq 1, p+q\geq 0 and p+r\geq 0.

(ii) p>1_{f}p+q\geq 0, p+r\geq 0 and-1+2p+pq+pr+qr\geq 0.
The corresponding regions of (i) and (ii) in the (q, r) ‐plane are shown in Figure 2 and

Figure 3, respectively.

4. Examples

In this section, we provide some examples of product ranges.

Example 4.1. Let N=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(1,  $\omega,\ \omega$^{2}) where $\omega$^{3} = 1 . Figure 4 and Figure 5 are the

graphs of W_{2}^{ $\Pi$}(N) and W_{3}^{ $\Pi$}(N) , respectively. Note that the diagonal entries of N satisfy
Theorem 2.1 and Theorem 2.2, so W_{2}^{ $\Pi$}(N) is a triangle Conv (1, $\omega,\ \omega$^{2}) .

Example 4.2. Let N=\displaystyle \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\frac{75}{4}i, -7-\frac{21}{4}i, 7-\frac{21}{4}i) . Note that the origin is the inner

center of the triangle consisting of the diagonal entries of N . But W_{2}^{ $\Pi$}(N) is not convex.

See Figure 6.

Example 4.3. So far we have considered the eigenvalues form an acute‐angled triangle.
However, when the eigenvalues of N form an obtuse‐angled triangle, the 2‐product
range of N is not necessary convex, even the origin is the circumcenter (Figure 7),
centroid (Figure 8) or incenter (Figure 9).
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Figure 2 Figure 3

Figure 4: W_{2}^{ $\Pi$}(N)

5. Plotting the product range

Figure 5: W_{3}^{ $\Pi$}(N)

In this section, we provide two MATLAB programs for plotting the 2‐product range
and 3‐product range of any 3\times 3 normal matrix. For convemience, they are written as

an m‐file for MATLAB. The range W_{k}^{ $\Pi$}(N) is a compact subset of the Guassian plane
\mathbb{C} . We approximate it by its finite many representative points. We adopt 200^{} as the

number of representative points in the examples in Section 4. The following program
is in order to plot the 2‐product range.

function \mathrm{y}
= \mathrm{p}(\mathrm{p}, \mathrm{q}, \mathrm{r},\mathrm{m})

\mathrm{a} = ones (1, \mathrm{m}+1) ;

\mathrm{t} = 0:\mathrm{p}\mathrm{i}/\mathrm{m} : pi;
\mathrm{s} = 0:\mathrm{p}\mathrm{i}/\mathrm{m} : pi;

\mathrm{u} = 0:\mathrm{p}\mathrm{i}/\mathrm{m} : pi;
bl = kron (\mathrm{a}, \mathrm{a}) ;

89



Figure 6: W_{2}^{ $\Pi$}(N)

Figure 7: N=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(15+8i, 8+15i, -15+8i) Figure 8: N=\displaystyle \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\frac{1}{2}i, -1-\frac{1}{4}i, 1-\frac{1}{4}i)

bll = kron( \cos(\mathrm{t}) , bl);
b12 = kron( \cos(\mathrm{s}) , a) ;

b12 = kron( \sin(\mathrm{t}) , b12);
b21 = kron (\mathrm{a}, \mathrm{s}\mathrm{i}\mathrm{n}(\mathrm{u})) ;

b21 = kron( \mathrm{s} in(t) , b21) ;

b2 = kron (\cos(\mathrm{s}), \sin(\mathrm{u})) ;

bb2 = kron( \cos(\mathrm{t}) , b2);
b3 = kron (\mathrm{s}\mathrm{i}\mathrm{n}(\mathrm{s}) , \cos(\mathrm{u})) ;

bb3 = kron( \mathrm{a} , b3);
b22 = −bb2 — bb3;
all = bll. \sim 2 ;

a12 = b12. \rightarrow 2 ;

a21 = b21. \sim 2 ;
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Figure 9: N=\displaystyle \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\frac{5}{3}i, -4-\frac{4}{3}i, 4-\frac{4}{3}i)

a22 = b22. \rightarrow 2 ;

a13 = 1 - all — a12;
a23 = 1 - a21 ‐ a22;
a31 = 1 - all ‐ a21;
a32 = 1 - a12 ‐ a22;
a33 = 1 - a31 ‐ a32;
X = all .* \mathrm{p} + a12 .* \mathrm{q} + a13 .* \mathrm{r} ;

\mathrm{Y} = a21 .* \mathrm{p} + a22 .* \mathrm{q} + a23 .* \mathrm{r} ;

\mathrm{Z} = \mathrm{X} .* \mathrm{Y} ;

XX = real (Z);
YY = imag(Z) ;

grid;
plot (XX , YY)

For plotting the 3‐product range of a 3\times 3 normal matrix, we only need to replace
5 codes from the bottom to the above by following:

\mathrm{Z} = a31 .* \mathrm{p} + a32 .* \mathrm{q} + a33 .* \mathrm{r} ;

ZZ = \mathrm{X} .* \mathrm{Y} .* \mathrm{Z} ;

XX = real (ZZ) ;

YY = imag(ZZ) ;

grid;
plot (XX , YY)

In the above two programs, p, q and r are the diagonal entries of the given normal

matrix N . For finer approximation, we can replace m by another large number. Of

course, it needs more computational times for larger number m.
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Although the numerical experiments indicate that the product range of a 3\times 3 nor‐

mal matrix is not necessary convex, they seem like star‐shaped and simply connected.

Hence, we end this note by providing the following problem for further researching
investigation.

Question 5.1. Are the product ranges W_{2}^{ $\Pi$}(N) and W_{3}^{ $\Pi$}(N) for any 3 \times  3 normal

matrix always star‐shaped or simply connected?
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