
TAUBERIAN AND COTAUBERIAN MULTIPLIERS
OF THE GROUP ALGEBRAS L_{1}(G)

MANUEL GONZÁLEZ

ABSTRACT. We describe some recent results on the multipliers of the group algebras
L_{1}(G) which are tauberian or cotauberian, where G is a locally compact abelian group.
We show the connections between those results, and we state some open questions on

the topic.

1. INTRODUCTION

Tauberian operators were introduced by Kalton and Wilansky in [13] in order to study
a problem of summability from an abstract point of view, and cotauberian operators were

introduced in [18] as those operators whose conjugate is tauberian. These two classes of

operators have found many applications in Banach space theory (see [10, Chapter 5
The tauberian operators from L_{1}( $\mu$) into a Banach space were studied in [9], where the

question whether all tauberian operators T : L_{1}( $\mu$) \rightarrow  L_{1}( $\mu$) are upper semi‐Fredholm

(have closed range and finite dimensional kernel) was raised. A negative answer to this

question was given in [12]: there exists a tauberian operator T : L_{1}(0,1) \rightarrow  L_{1}(0,1)
with non‐closed range. The corresponding question for the multipliers of the Banach

algebra L_{1}(G) which are tauberian or cotauberian, where G is a locally compact abehan

group, was studied in [4] and [5]. Observe that the multipliers of L_{1}(G) coincide with
the convolution operators T_{ $\mu$} associated to the Borel measures  $\mu$ on  G [14

, Chapter 0].
It was proved in [4] that the tauberian operators T_{ $\mu$} are invertible when the group G is

non‐compact, and that they are Fredholm when G is compact and they have closed range
or the singular continuous part (with respect to the Haar measure on G) of the associated

measure  $\mu$ is zero. Moreover, it was proved in [5] that the cotauberian operators  T_{ $\mu$} are

invertible when G is non‐compact, and that they are Fredholm when G is compact. These
results provide new characterizations of the Fredholm multipliers of the group algebras
L_{1}(G) described in [1, Theorem 5.97]. Here we present the results of [4, 5], describe the
relations between them, and point out some problems that remain open.

Throughout the paper X and Y are (complex) Banach spaces, we consider (continuous
linear) operators T:X\rightarrow Y

,
and we denote by R(T) and N(T) the range and the kernel

of T . An operator T:X\rightarrow Y is called taubentan if its second conjugate T^{**}:X^{**}\rightarrow Y^{**}
satisfies T^{**-1}(Y) = X

,
and the operator T is called cotauberian when its conjugate

 $\tau$* : \mathrm{Y}^{*}\rightarrow X^{*} is tauberian. Moreover an operator K : X\rightarrow \mathrm{Y} is called weakly compact
if K^{**}(X^{**}) \subset \mathrm{Y} . Note that given T : X\rightarrow Y tauberian (cotauberian) and K : X\rightarrow Y

weakly compact, the sum T+K is tauberian (cotauberian).
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An operator T : X \rightarrow  Y is upper semi‐Fredholm if it has closed range and finite
dimensional kernel, and T is Fredholm if it has closed finite codimensional range and
finite dimensional kernel. Upper semi‐Fredholm operators are tauberian [10, Theorem

2.1.5], and from our point of view can be considered as
�  $\zeta$

trivial� tauberian operators.
For basic results on Fredholm theory, tauberian operators, multipliers of Banach alge‐

bras and Fourier analysis we refer to [1], [10] [14] and [17].

2. PRELIMINARY RESULTS

We denote by  G a locally compact abelian group (a LCA group, for short), m is the

Haar measure on G, L_{1}(G) is the space of m‐integrable complex functions on G endowed
with the L_{1} ‐norm \Vert. \Vert_{1} , and M(G) denotes the space of complex Borel measures on G
endowed with the variation norm. The space L_{1}(G) can be identified with the subspace
of those  $\mu$ \in  M(G) that are absolutely continuous with respect to m by associating to

f\in L_{1}(G) the measure m_{f}\in M(G) defined by m_{f}(A)=\displaystyle \int_{A}f(x)dm(x) . The space L_{1}(G)
with the convolution (f\displaystyle \star g)(x)=\int_{G}f(x-y)g(y)dm(y) is a commutative Banach algebra.

Given  $\mu$\in M(G) and f\in L_{1}(G) the expression ( $\mu$\displaystyle \star f)(x)=\int_{G}f(x-y)d $\mu$(y) defines

 $\mu$\star f \in  L_{1}(G) satisfying \Vert $\mu$\star f\Vert_{1} \leq \Vert $\mu$\Vert\cdot\Vert f\Vert_{1} . Thus for every  $\mu$\in  M(G) we obtain a

convolution operator T_{ $\mu$} on L_{1}(G) defined by T_{ $\mu$}f = $\mu$\star f , and satisfying \Vert T_{ $\mu$}\Vert = \Vert $\mu$\Vert.
Moreover, given  $\mu$, \mathrm{v}\in M(G) ,

the convolution of measures  $\mu$\star \mathrm{v}\in M(G) is commutative

[17]. Therefore T_{ $\mu$\star $\nu$}=T_{ $\mu$}T_{ $\nu$}=T_{ $\nu$}T_{ $\mu$} . For each r\in G the translation operator T_{r} on L_{1}(G)
is defined by (T_{r}f)(x)=f(x-r) . Note that T_{r} is the convolution operator associated to

the unit measure $\delta$_{r} concentrated at \{r\}.
The convolution operators acting on L_{1}(G) can be characterized as those operators

T : L_{1}(G) \rightarrow  L_{1}(G) that commute with translations (T_{r}T=TT_{r} for each r \in  G), and

coincide with the convolution operators T_{ $\mu$},  $\mu$\in M(G) [14
, Chapter 0].

Let  $\Gamma$ denote the dual group of  G . Given f \in  L_{1}(G) and  $\mu$ \in  M(G) , the Fourier

transform \hat{f}: $\Gamma$\rightarrow \mathbb{C} of f and the Fourier‐Sieltjes transform \hat{ $\mu$} :  $\Gamma$\rightarrow \mathbb{C} of  $\mu$ are defined

by \displaystyle \hat{f}( $\gamma$)=\int_{G}f(x) $\gamma$(-x)dm(x) and \displaystyle \hat{ $\mu$}( $\gamma$)=\int_{G} $\gamma$(-x)d $\mu$(x) .

Let A be a Banach algebra and let B be a subset of a A . The left annihilator of B

is the set l(B) :=\{x\in A : xB=\{0\}\} ,
and the right annihilator of B is the set r(B) :=

\{x\in A: Bx=\{0\}\} . Following [14], we say that a Banach algebra A is without order if

l(A)=\{0\} or r(A)=\{0\} ,
and a mapping T:A\rightarrow A is a multiplier of A if x(Ty)=(Tx)y

for all x, y\in A . If G is an LCA group, then L_{1}(G) is without order.

The second dual space A^{**} of a Banach algebra A is also a Banach algebra endowed
with the (first) Arens product [3]. Specifically, given M, N\in A^{**}, f\in A^{*} and a, b\in A,
we define the product M\cdot N in three steps as follows:

 f\cdot a\in A^{*}: \langle f\cdot a, b\rangle :=\langle f, ab\rangle
 N\cdot f\in A^{*}: \langle N\cdot f, a\rangle :=\langle N, f\cdot a\rangle

 M\cdot N\in A^{**} : \langle M\cdot N,  f\rangle :=\langle M, N\cdot f\rangle.
Thus, for G an LCA group, L_{1}(G)^{**} is a Banach algebra.

Given f\in L_{\infty}(G)\equiv L_{1}(G)^{*} and  $\phi$\in L_{1}(G) , and denoting \overline{ $\phi$}(x)= $\phi$(-x) , we have

(1) f\cdot $\phi$=f\star\overline{ $\phi$}.
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Since G is commutative, the center of L_{1}(G)^{**} is L_{1}(G) [15 , Corollary 3] i.e.,

L_{1}(G)= {m\in L_{1}(G)^{**} : m\cdot n=n\cdot m for each n\in L_{1}(G)^{**} }.
When G is compact, L_{1}(G) is \mathrm{a} (closed) ideal of L_{1}(G)^{**} [ 19 , Proposition 4.2]. Thus

L_{1}(G)^{**}/L_{1}(G) is a Banach algebra.

For f\in L_{1}( $\mu$) , we denote \mathrm{D}(f)=\{t:f(t)\neq 0\} . We say that a sequence (f_{n}) in L_{1}( $\mu$)
is disjoint if  $\mu$(\mathrm{D}(f_{k})\cap \mathrm{D}(f_{l})) =0 for k\neq l.

The following result was proved in [9] (see also [10, Chapter 4]) when  $\mu$ is a non‐atomic

finite measure, but the arguments given there are valid when  $\mu$ is  $\sigma$‐finite.

Theorem 2.1. [9, Theorems 2 and 6] Let  $\mu$ be a  $\sigma$ ‐finite measure. For an operator
 T:L_{1}( $\mu$)\rightarrow Y the following assertions are equivalent:

(1) T is tauberian;
(2) \displaystyle \lim\inf_{n\rightarrow\infty}\Vert Tf_{n}\Vert >0 for every disjoint normalized sequence (f_{n}) in L_{1}( $\mu$) ;
(3) there exists a number r > 0 such that \displaystyle \lim\inf_{n\rightarrow\infty}\Vert Tf_{n}\Vert > r for every disjoint

normalized sequence (f_{n}) in L_{1}( $\mu$) ;
(4) \displaystyle \lim\inf_{n\rightarrow\infty}\Vert Tf_{n}\Vert > 0 for every normalized sequence (f_{n}) in L_{1}( $\mu$) satisfying

\displaystyle \lim_{n\rightarrow\infty} $\mu$(D(f_{n}))=0.

The convolution operators with closed range were described by Host and Parreau.

Theorem 2.2. [11, Théorème 1] Let G be a LCA group and let  $\mu$ \in  M(G) . Then the

convolution operator T_{ $\mu$} has closed range if and only if  $\mu$= $\nu$\star $\xi$ , where  v,  $\xi$\in M(G) ,  $\nu$ is

invertible and  $\xi$ is idempotent.

Corollary 2.3. Let  G be a LCA group and let  $\mu$\in M(G) . Suppose that the convolution

operator T_{ $\mu$} has closed range. Then L_{1}(G)=R(T_{ $\mu$})\oplus N(T_{ $\mu$}) .

Proof. The factorization  $\mu$= $\nu$\star $\xi$ in Theorem 2.2 and the commutativity of the convolu‐

tion product of measures give  T_{ $\mu$}=T_{ $\nu$}T_{ $\xi$}=T_{ $\xi$}T_{ $\nu$} . So the result follows from the fact that

T_{ $\xi$} is a projection, since N(T_{ $\xi$})=N(T_{ $\mu$}) and R(T_{ $\xi$})=R(T_{ $\mu$}) . \square 

The point spectrum $\sigma$_{p}(T) of an operator T : X\rightarrow X is the set of those  $\lambda$ \in \mathbb{C} such
that T- $\lambda$ I is not injective. When G is compact, the point spectrum of a convolution

operator admits the following description.

Proposition 2.4. [16, Example 4.6.2] Let G be a compact group with dual group  $\Gamma$ , and

 let $\mu$\in M(G) . Then $\sigma$_{p}(T_{ $\mu$})=\hat{ $\mu$}( $\Gamma$) .

In particular, since T_{r}=T_{$\delta$_{r}} and

(2) \displaystyle \hat{$\delta$_{r}}( $\gamma$)=\int_{G} $\gamma$(-x)d$\delta$_{r}(x)= $\gamma$(-r)
for each  $\gamma$\in $\Gamma$ , we obtain that  $\sigma$_{p}(T_{r})=\{ $\gamma$(-r) :  $\gamma$\in $\Gamma$\}.

Recall that r\in G has finite order if there exists m\in \mathrm{N} such that mr=0 (where mr

denotes the sum of m copies of r in G). Otherwise we say that r has infinite order. It

follows from Proposition 2.4 and formula (2) that $\sigma$_{\mathrm{p}}(T_{r}) is a finite subset of the unit circle
 $\Gamma$ when  r has finite order.
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A measure  $\mu$\in M(G) is said to be discrete if it is concentrated in a countable subset

of G ; i.e., if there exist sequences (x_{i}) in G and ($\beta$_{i}) in \mathbb{C} so that \displaystyle \sum_{i=1}^{\infty}|$\beta$_{i}| < \infty and

 $\mu$=\displaystyle \sum_{i=1}^{\infty}$\beta$_{i}$\delta$_{x_{i}}.

Proposition 2.5. [16, Theorem 4.11.1] Let G be a LCA group and let  $\mu$ \in  M(G) be a

discrete measure. Then the spectrum  $\sigma$(T_{ $\mu$}) of the convolution operator T_{ $\mu$} coincides with

the closure of the set \hat{ $\mu$}( $\Gamma$) .

3. TAUBERIAN OPERATORS

Here we show that, under certain conditions, tauberian convolution operators acting
on L_{1}(G) are Fredholm.

Theorem 3.1. Let G be a non‐compact LCA group. Then every tauberian convolution

operator T_{ $\mu$} : L_{1}(G)\rightarrow L_{1}(G) is invertible.

In the proof of Theorem 3.1 we show first that T_{ $\mu$} is bounded below, and then we derive
from Corollary 2.3 that T_{ $\mu$} is invertible.

The prof of the result for the case G compact (Theorem 3.5) is done in in several steps.
Recall that given r\in G ,

the translation operator T_{r} is an invertible operator on L_{1}(G)
that satisfies T_{r}T_{s}=T_{r+s} for every s\in G . In the proof of the next result we distinguish
the cases in which r has finite or infinite order.

Proposition 3.2. Let G be a compact group, and let  $\lambda$\in$\sigma$_{p}(T_{r}) for some r\in G . Then

T_{r}- $\lambda$ I is not tauberian.

Next we consider the case of a discrete measure concentrated in a finite number of

points of G ; namely  $\mu$=\displaystyle \sum_{l=1}^{k}$\alpha$_{l}$\delta$_{r_{l}} . In this case T_{ $\mu$}=\displaystyle \sum_{l=1}^{k}$\alpha$_{l}T_{r_{l}}.
Theorem 3.3. Let G be a compact group with dual group  $\Gamma$

, and let  $\mu$=\displaystyle \sum_{l=1}^{k}$\alpha$_{l}$\delta$_{r_{l}} where

r_{1} ,
. . .

, r_{k} are distinct points in G. Then T_{ $\mu$}- $\lambda$ I is not tauberian when  $\lambda$\in $\sigma$(T_{ $\mu$}) .

To prove this result, we consider first the case  $\lambda$ \in$\sigma$_{p}(T_{ $\mu$}) , which coincides with \hat{ $\mu$}( $\Gamma$)
(Proposition 2.4), and then the general case.

Now we consider the case of an arbitrary discrete measure on G ; namely  $\mu$=\displaystyle \sum_{i=1}^{\infty}$\beta$_{i}$\delta$_{x}i
where (x_{i}) is a sequence of points of G and ($\beta$_{i}) is a sequence in \mathbb{C} satisfying \displaystyle \sum_{i=1}^{\infty}|$\beta$_{i}|<\infty.
In this case T_{ $\mu$}=\displaystyle \sum_{i=1}^{\infty}$\beta$_{i}T_{x $\iota$}.

Proposition 3.4. Let G be a compact group with dual group $\Gamma$_{\mathrm{Z}} and let  $\mu$=\displaystyle \sum_{i=1}^{\infty}$\beta$_{i}$\delta$_{x_{i}},
where (x_{i}) is a sequence of distinct points in G and ($\beta$_{i}) \subset \mathbb{C} satisfying \displaystyle \sum_{i=1}^{\infty}|$\beta$_{i}| < \infty.

Then T_{ $\mu$}- $\lambda$ I is not tauberian when  $\lambda$\in $\sigma$(T_{ $\mu$}) .

Now we can state our result for the case G compact.

Theorem 3.5. Let G be a compact group G , let  $\mu$, $\mu$_{0} \in M(G) with $\mu$_{0} discrete, and let

f\in L_{1}(G) . Then

(1) If T_{ $\mu$} is tauberian with closed range, then it is �Fredholm.

(2) T_{$\mu$_{0}} \dot{u} tauberian if and only if it is invertible.

(3) T_{ $\mu$ 0+m}f is tauberian if and only if it \dot{u} Fredholm.
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4. COTAUBERIAN OPERATORS

In this section we show that the cotauberian convolution operators T_{ $\mu$} acting on L_{1}(G)
are always Fredholm, and that T_{ $\mu$} is tauberian if and only if its natural extension to the

algebra of measures M(G) is tauberian. We derive some consequences for convolution

operators acting on C_{0}(G) and L_{\infty}(G) , and we answer a question raised in [8] about the

measures  $\mu$\in M(G) such that  $\nu$\in M(G) and  $\mu$\star $\nu$\in L_{1}(G) imply  $\nu$\in L_{1}(G) .

First we show that the Banach algebras involved in our arguments are without order.

Proposition 4.1. Let G be a LCA group. Then the algebra (L_{1}(G)^{**}, \cdot) admits a norm‐

one right identity; hence it \dot{u} a Banach algebra without order. Moreover, when the group
G is compact, the quotient algebra L_{1}(G)^{**}/L_{1}(G) also admits a norm‐one right identity
and it is a Banach algebra without order.

The multipliers of algebras without order have a good behavior under duality:

Proposition 4.2. Let A a Banach algebra without order and let T be a multiplier of A.

Then the second conjugate T^{**}:A^{**}\rightarrow A^{**} is a multiplier of A^{**}.

Given a Banach space X , we denote by X^{co} the quotient space X^{**}/X . The second

conjugate T^{**} of an operator T:X\rightarrow Y induces another operator T^{co}:X^{co}\rightarrow \mathrm{Y}^{\mathrm{c}o} which

is defined by T^{\mathrm{c}o}(m+X) :=T^{**}m+Y(m\in X^{**}) ,
and it is called the residuum operator

of T . Note that T is tauberian if and only if T^{co} is injective, and T is cotauberian if and

only if T^{co} has dense range [10, Proposition 3.1.8 and Corollary 3.1.12].

Corollary 4.3. Let G be a compact LCA group and let T_{ $\mu$} : L_{1}(G)\rightarrow L_{1}(G) be a convo‐

lution operator. Then the residuum operator T_{ $\mu$}^{\mathrm{c}o} is a multiplier of the algebra L_{1}(G)^{co}.
Next we show that cotauberian convolution operators on L_{1}(G) are tauberian. This

result contrasts with the fact that it is easy to find non‐trivial cotauberian operators
on L_{1}(G) , just take a surjective operator with non‐reflexive kernel, but it is much more

difficult to obtain a non‐trivial tauberian operator (see [12]).

Proposition 4.4. Let G be a LCA group. Then every cotauberian convolution operator
T_{ $\mu$} : L_{1}(G)\rightarrow L_{1}(G) is tauberiian.

Corollary 4.5. Let G be a non‐compact LCA group. A convolution operator on L_{1}(G)
is cotauberian if and only if it is invertible.

‐Let E be a right identity in L_{1}(G)^{**} provided by Proposition 4.1. We consider the map

$\Gamma$_{E} : M(G)\rightarrow L_{1}(G)^{**}\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{i}_{\mathrm{J}}\mathrm{e}\mathrm{d} by

$\Gamma$_{E}( $\mu$):=T_{ $\mu$}^{**}(E) ,  $\mu$\in M(G) .

The map $\Gamma$_{E} is an isometric algebra homomorphism of M(G) into L_{1}(G)^{**} which extends

the natural embedding of L_{1}(G) into L_{1}(G)^{**} [7 , Proposition 2.3].
Since T_{ $\mu$}^{**} is a multiplier of L_{1}(G)^{**} , for each m\in L_{1}(G)^{**} we have

(3) T_{ $\mu$}^{**}m=(T_{ $\mu$}^{**}m)\cdot E=m\cdot T_{ $\mu$}^{**}E=m\cdot$\Gamma$_{E}( $\mu$) .

Thus T_{ $\mu$}^{**} is a right multiplication operator (by $\Gamma$_{E}( $\mu$) ). Moreover

(4) E\cdot$\Gamma$_{E}( $\mu$)=T_{ $\mu$}^{**}(E)=$\Gamma$_{E}( $\mu$) .

Next we give our main result.
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Theorem 4.6. Let G be a LCA group. Then T_{ $\mu$} : L_{1}(G)\rightarrow L_{1}(G) is cotauberian if and

only if it is Fredholm of index zero.

To prove Theorem 4.6, we note that T_{ $\mu$} cotauberian implies T_{ $\mu$} tauberian (Proposition
4.4). Then, in the case G non‐compact, Theorem 3.1 implies that T_{ $\mu$} is invertible.

In the case G compact, L_{1}(G)^{\mathrm{c}o} is a Banach algebra, and we prove that T_{ $\mu$} cotauberian

implies that the residuum operator T_{ $\mu$}^{co} acting on L_{1}(G)^{co} is bijective, and from the inverse

of T_{ $\mu$}^{\mathrm{c}o} we get an inverse of T_{ $\mu$} modulo the compact operators, hence T_{ $\mu$} is Fredholm.

Next we study the relation between a convolution operator T_{ $\mu$} : L_{1}(G) \rightarrow L_{1}(G) and

its extension M_{ $\mu$} : M(G)\rightarrow M(G) defined by M_{ $\mu$}( $\nu$)= $\mu$\star $\nu$.
Theorem 4.7. Let G be a LCA group. ThenT_{ $\mu$} is tauberian if and only ifM_{ $\mu$} is tauberian.

Proof. Suppose that T_{ $\mu$} is tauberian, and let E be a right identity in L_{1}(G)^{**} . Then the

following diagram is commutative:

Now T_{ $\mu$} tauberian implies T_{ $\mu$}^{**} tauberian [10, Theorem 4.4.2]. Therefore T_{ $\mu$}^{**}$\Gamma$_{E}=$\Gamma$_{E}M_{ $\mu$}
is tauberian, and hence M_{ $\mu$} is tauberian, in both cases by [10, Proposition 2.1.3].

Similarly, denoting by J:L_{1}(G)\rightarrow M(G) the natural isomorphic embedding, we have

JT_{ $\mu$}=M_{ $\mu$}J . Hence, by [10, Proposition 2.1.3], if M_{ $\mu$} is tauberian, so is T_{ $\mu$}. \square 

Recall that an operator T : L_{1}(G) \rightarrow  L_{1}(G) is tauberian if and only if m \in  L_{1}(G)^{**}
and  T^{**}m\in  L_{1}(G) imply  m\in  L_{1}(G) . In particular, if T_{ $\mu$} is tauberian, then  $\nu$ \in  M(G)
and  $\mu$\star $\nu$\in L_{1}(G) imply \mathrm{v}\in L_{1}(G) .

Observation 4.8. It was asked in [8] whether a convolution operator T : L_{1}(G)\rightarrow L_{1}(G)
is tauberian when the measure  $\mu$ satisfies the following condition:

(5)  $\nu$\in M(G) ,  $\mu$\star $\nu$\in L_{1}(G)\Rightarrow $\nu$\in L_{1}(G) .

Next we will show that the answer to this question is negative.

Indeed, it was proved in [4] that there exists an atomic measure $\mu$_{0}\in M( $\Gamma$) such that

T_{$\mu$_{0}} is an injective non‐tauberian operator, where  $\Gamma$ denotes the unit circle. It is enough
to choose  $\mu$_{0} such that its Fourier‐Stieltjes transform \hat{ $\mu$}_{0} satisfies 0\in\overline{\hat{ $\mu$}_{0}(\mathbb{Z})}\backslash \hat{ $\mu$}_{0}(\mathbb{Z}) . The

following argument, due to Doss [6], shows that T_{ $\mu$ 0} satisfies formula (5):
Every  $\nu$\in M( $\Gamma$) can be written as  $\nu$=$\nu$_{1}+$\nu$_{2} with $\nu$_{1}\ll m and $\nu$_{2}\perp m , where m is

the Haar measure on  $\Gamma$ . Since  $\mu$_{0}\star$\nu$_{1} \in L_{1}( $\Gamma$) and $\mu$_{0}\star \mathrm{v}_{2} is supported in a m‐null set,

T_{ $\mu$ 0} $\nu$\in L_{1}(G) if and only if $\nu$_{2}=0. \square 

Note that  $\mu$\star\tilde{f}=\overline{ $\mu$}\star f for  $\mu$\in M(G) and f\in L_{1}(G) . Also, if a sequence (f_{n}) \subset L_{1}(G)
is normalized and disjoint, then so is (fn). Therefore, it follows from [10, Theorem 4.1.3]
that T_{ $\mu$} is tauberian if and only if so is T_{\overline{ $\mu$}} . Hence, by Theorem 4.7, the same happens for

M_{ $\mu$} and M_{\overline{ $\mu$}} , and we get the following result, where S_{ $\mu$} : C_{0}(G)\rightarrow C_{0}(G) and its extension

L_{ $\mu$} : L_{\infty}(G)\rightarrow L_{\infty}(G) are defined by L_{ $\mu$}g= $\mu$\star g.

98



TAUBERIAN AND COTAUHERIAN MULTIPLIERS OF L_{1}(G)

Proposition 4.9. Let G be a non‐compact LCA group. Then

(i) L_{ $\mu$} : L_{\infty}(G) \rightarrow  L_{\infty}(G) is tauberian if and only if it \dot{u} cotauberian, and this \dot{u}

equivalent to L_{ $\mu$} invertiblef
(ii) M_{ $\mu$} : M(G)\rightarrow M(G) is tauberian if and only if it \dot{u} invertible;
(iii) S_{ $\mu$} : C_{0}(G)\rightarrow C_{0}(G) is cotauberian if and only if it is invertible.

5. SOME OPEN QUESTIONS

The main question that remains open is the following one.

Question 1. Let G be a compact LCA group and let T_{ $\mu$} : L_{1}(G)\rightarrow L_{1}(G) be a tauberian

operator. Is T_{m}u Fredholm?

This question admits equivalent formulations:

Question 2. Let G be a compact LCA group and let T_{ $\mu$} : L_{1}(G)\rightarrow L_{1}(G) be a tauberian

operator. Is T_{ $\mu$} cotauberian?

Observation 4.8 gives a negative answer to a problem raised in [8], but we can refor‐

mulate it as follows.

Question 3. Find a condition additional to  $\nu$ \in  M(G) ,  $\mu$\star $\nu$ \in  L_{1}(G) \Rightarrow \mathrm{v} \in  L_{1}(G)
implying T_{ $\mu$} tauberian.

We have seen in Theorem 4.7 that T_{ $\mu$} : L_{1}(G)\rightarrow L_{1}(G) is tauberian if and only if so is

M_{ $\mu$} : M(G)\rightarrow M(G) . The second condition is much stronger.

Question 4. Find characterizations of T_{ $\mu$} tauberian in terms of the restrictions

M_{ $\mu$}|_{L_{1}(|\mathrm{v}|)}:L_{1}(|\mathrm{v}|)\rightarrow M(G)
for special measures  $\nu$\in M(G) (different from the Haar measure m).
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