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Remarks on A-commuting operators
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Abstract

In this paper, we study properties of A-commuting operators. We give
spectral and local spectral relations between A-commuting operators. More-
over, we show that the operators A-commuting with a unilateral shift are
representable as weighted composition operators. We also provide the polar
decomposition of the product of (A, u)-commuting operators where A and
p are real numbers with Ay > 0. Finally, we find the restriction of u for
the product of (A, 4)-commuting quasihyponormal operators to be quasihy-
ponormal.

1 Introduction

This paper is part of a paper submitted for possible publication in some journal.
Let H be a separable complex Hilbert space and let £(#H) denote the algebra of
all bounded linear operators on . For T' € L(#), we write o(T), 0,(T), 04,(T),
01e(T), and r(T) for the spectrum, the point spectrum, the approximate point
spectrum, the left essential spectrum, and the spectral radius of T', respectively.
We say that operators S and T in £(H) are A-commuting if ST = AT'S, where
A is a complex number. In (3], S. Brown showed that every operator \-commuting
with a nonzero compact operator has a nontrivial hyperinvariant subspace, as one
of the generalizations of the famous Lomonosov’s theorem (see [10]). Since then,
many mathematicians have been interested in A-commuting operators.
Different classes of operators can be specified depending on the restriction on
A (see [11]). An operator T € L(H) is called normal if T*T = TT*. We say that
T € L(H) is hyponormal if T*T > TT*. In [12], J. Yang and H. Du showed that if
S and T are A-commuting normal operators with ST # 0, then |A| = 1. Moreover,
M. Cho, J. Lee, and T. Yamazaki proved in [4] that if S and T are A-commuting
operators such that both $* and T are hyponormal and ST # 0, then |\| < 1.
For A\, u € C, operators S,T € L(H) are said to be (X, u)-commuting if ST =
ATS and S*T = pT'S*. By Fuglede-Putnam Theorem, if A, B € L(H) are normal
and AX = XB for some X € L(H), then A*X = XB* (see [7]). Hence, if S is
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normal and A-commuting with T, then S and T are (A, X)-commuting. For a simple
example, given any fixed complex constant A with |A| < 1, suppose D is a diagonal
operator given by De,, = A"e, for n > 0, where {e, }22, is an orthonormal basis for
H. Then, every weighted shift W on #H given by We, = anen+; for n > 0 satisfies
DW = AWD. Since D is normal, the operators D and W are (), X)-commuting by
Fuglede-Putnam Theorem; we also observe that W and D are (A~!, )-commuting.
For another example, the 2x2 matrices S = ((2) 8) and T = ((1) g) are (3,3)-
commuting.

In this paper, we study properties of A-commuting operators. We give spec-
tral and local spectral relations between A-commuting operators. Moreover, we
show that the operators A-commuting with a unilateral shift are representable
as weighted composition operators. We also provide the polar decomposition of
the product of (A, p)-commuting operators where A and p are real numbers with
Ap > 0. Finally, we find the restriction of p for the product of (A, p)-commuting
quasihyponormal operators to be quasihyponormal.

2 Preliminaries

An operator T' € L(H) is said to have the single-valued extension property (or
SVEP) if for every open set G in C and every analytic function f : G — H with
(T — 2)f(2) = 0 on G, we have f(z) = 0 on G. For an operator T € L(H) and
a vector z € H, the set pr(z), called the local resolvent of T at x, consists of
elements 2y in C such that there exists an H-valued analytic function f(z) defined
in a neighborhood of 2, which verifies (T — z) f(z) = z. The local spectrum of T at
z is given by orp(z) := C\ pr(z). Moreover, we define the local spectral subspace
of T as Hr(F) := {z € H : or(z) C F}, where F is a subset of C. An operator
T € L(H) is said to have Dunford’s property (C) if Hp(F') is closed for each closed
subset F' of C. We say that T € £L(H) is said to have Bishop’s property () if for
every open subset G of C and every sequence f, : G — H of H-valued analytic
functions such that (T' — 2)f,(2) converges uniformly to 0 in norm on compact
subsets of G, then f,(z) converges uniformly to 0 in norm on compact subsets of
G. The following implications are well known (see [2], [5], or [9] for more details):

Bishop’s property (4) = Dunford’s property (C') = SVEP.
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3 Main results

In this section, we give several properties of A-commuting operators. We first con-
sider the product of A-commuting operators. We say that T € L(H) is quasinilpo-
tent if o(T) = {0}.

Theorem 3.1. Let S and T be operators in £(H) such that ST = AT'S for some
A € C. Then the following statements hold:

@) 7(ST) < r(S)r(T) and r(T'S) < r(S)r(T).

(ii) If |A| # 1, then ST and T'S are quasinilpotent.

Recall that an operator T in L(H) is called normaloid if |T|| = r(T). An
operator T € L(H) is said to belong to class A if |T?| > |T|?>. Every operator
which belongs to class A is normaloid, and hyponormal operators belong to class
A (see [6]).

Corollary 3.2. Let S and T be operators in £(#) such that ST = AT'S for some
A € C and ST belongs to class A. If S or T is quasinilpotent, then ST =TS = 0.

We next provide spectral properties of A-commuting operators.

Theorem 3.3. Suppose that S,T € L(H) satisfy ST = A\T'S for some A € C. For
oa € {0p, Oap, 0l }, the following assertions hold:

(i) either 0 € oa(T) or else Aaa(S) C oa(S);

(ii) either 0 € oa(S) or else oa(T) C Aoa(T).

Remark. One can derive that T ker(S — u) C ker(S — Ax) and Sker(T — p) C
ker(A\T — ) for each p € C. Hence, ker(S) and ker(T) are common invariant
subspaces for S and T'.

Corollary 3.4. Let S and T be operators in £(H) such that ST = AT'S for some
A € C. Then the following assertions hold:

(i) If 0 & 04p(T), then 04,(S) = {0} or [A| < 1.

(i) If 0 & 04p(S), then 0,4,5(T) = {0} or |[A| > 1.

Hence, if 0 & 04,(5) U 04,(T), then |A] = 1.

When A is a root of unity, the inclusions in Theorem 3.3 become equalities, as
follows:

Corollary 3.5. Let S,T € L(H) satisfy that ST = AT'S where A is a root of
unity. Then the following statements hold for oa € {0, 04,01 }:

(i) If 0 € oa(T), then oa(S) = Aoa(S);

(ii) If 0 € oa(S), then oa(T) = Aoa(T).
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Recall that T € L(H) is said to be an m-isometry if 337" ;(~1)’ (';)T*jTj =0,
where m is a positive integer. In [1], it turned out that every m-isometry has
approximate point spectrum contained in the unit circle.

Corollary 3.6. Suppose that S and T are operators in £(#) such that ST = A\T'S
for some A € C. If || # 1 and S is an m-isometry for some positive integer m,
then 0 € 0,(T).

We now consider local spectral properties of A-commuting operators.

Proposition 3.7. Let S,T € L(H). If ST = ATS for some A € C, then the
following statements hold:

(i) os(Tz) C Aos(z) and Aor(Sz) C or(z) for all z € H.

(ii) THg(F) € Hg(AF) for any subset F of C.

(iii) If A # 0, then SHr(AF) C Hr(F) for any subset F of C.

Corollary 3.8. Suppose that S,T € L(H) are A\-commuting where X\ is a root
of unity with order k. If A is a root of unity with order k£ and S has Dunford’s
property (C), then Hg(F') is a common invariant subspace of S and T*, where F
is any closed subset of C.

Combining Corollary 3.8 with [12], we obtain the following corollary.

Corollary 3.9. Assume that S,T € L(H) are A-commuting. If S € L(H) is
hyponormal and o(ST') consists of k distinct nonzero elements, then Hg(F) is a
common invariant subspace of S and T*.

For an operator T' € L(H), we define the quasinilpotent part of T, denoted
by Ho(T), as Hy(T) := {z € H : lim,_,o0 ||T"z||% = 0} (see [2] and [9] for more
details).

Proposition 3.10. Let S,7 € L(H). If ST = AT'S for some A € C\ {0}, then
Hy(S) is invariant for T.

Let H? = H?(D) be the canonical Hardy space of the open unit disk D, and let
H®* be the space of bounded functions in H2. For an analytic map ¢ from D into
itself and u € D, the weighted composition operator Wy, - H? — H? is defined by
Wyoh = u-(hoy). In particular, C, := W1, is said to be a composition operator.
In the following theorem, we assert that if |A\| = 1, then the operators A-commuting
with the unilateral shift U on H? given by (Uf)(z) = zf(z) are representable as
weighted composition operators.
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Theorem 3.11. Let U be the unilateral shift on H? given by (Uf)(z) = zf(2).
Assume that S € L£(H?) and A € dD. Then SU = AUS if and only if S = W, ,,
for some u € H™.

For a bounded sequence {a,, }52, in C, a weighted shift on H with weights {a,}
is an operator T' such that Te, = ane,41 for n > 0, where {e,}52, denotes an
orthonormal basis for H.

Proposition 3.12. Let S and T be weighted shifts in £(H) with weights {a,,} and
{B.}, respectively, and let A € C. Then ST = AT'S if and only if 0118, = A\Bnt+10n
for all n.

In the following example, we consider the case when S is the Bergman shift
determined by the weights {4/241}% .

Example 3.13. If S is the Bergman shift, then its weights form an increasing
sequence. Then S is hyponormal. Suppose that T is any weighted shift with
positive weights {3,} and A € C\ {0}. By Proposition 3.12, it follows that ST =

AT if and only if fr1 = ;o=Eesff, for n > 0, that is, fn = 5% Antl) By for
n > 0.

For a positive integer n > 1, define J, and J; on @7 H by

00 --- 00 0I0-.--0
I 0 - 00 0017 ---0
Jo=|0 1 -+ 00) andgy=]: : :
: : 00O I
00 .- 10 0 00O 0

Proposition 3.14. Let T € L(P]H). For a complex number A, the following
statements hold:
(i) TJ, = AJ,T if and only if

( Ty 0 0 0 \
Ty M NT

Toy Xy - o A2T3 0
\Tn DV IR )\n—2T2 )‘n_lTI)
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where {T;}7_, C L(H).
(ii) Ty = AJT if and only if

AT AT,y e e AT T
0 A2, e o XT3 T
T = : : .o : :
0 0 e s Amy Tho
0 0 D Vs
0 0 cee e 0 T,

where {T}}7_, C L(H).

We next consider (A, p)-commuting operators. To obtain the polar decompo-
sition of the product of (), u)-commuting operators, we show that their partial
isometric parts and positive parts satisfy the following extended commuting rela-
tionships.

Lemma 3.15. Let S,T € L(H) be (A, p)-commuting where A and p are real num-
bers with Ay > 0. If S = Ug|S| and T' = Ur|T| denote the polar decompositions,
then the following statements hold:

(@) IT}S = (A\"'p)2S|T| and |S|T = ()3 TS];

(i) [S|Ur = (Aw)2Ur|S| and |T|Us = (X~"p)¥Us|T;

(iii) |S||T| = |T||S|, |S*(|T| = |T||S*|, and |S||T*| = |T*|S];

(iv) UsUr = UrUs and U§Ur = UrU% if A and p are positive, and UsUr = —UrUsg
and UgUr = —=UrU3 if A and p are negative.

Theorem 3.16. Assume that S,T € L(H) are (A, u)-commuting where A and p
are real numbers with Ay > 0. If ST = Ugr|ST| is the polar decomposition, then

Usr = UsUr and |ST| = (Aw)3|S||T.
In addition, if T'S = Urg|T'S| is the polar decomposition, then
Urs = UrUs and |TS| = (A\""w)%|S)|T).

For an operator T' € L(H) with polar decomposition T' = U|T, the Aluthge
transform T of T is defined by T = |T|2U|T)%. In [8], the authors showed several
connections between operators and their Aluthge transforms.

Corollary 3.17. If S,T € L(H) are (), p)-commuting operators where A and
are real numbers with Ay > 0, then the jpllowing g[@tementls ‘hold:

(i) S and T are (A, p)-commuting and ST = |p|25T = A|p|zT'S.

(i) S and T are (A, )-commuting.

(iii) S and T are (), g)-commuting.



Corollary 3.18. Let S, T € L(H) be A\-commuting for some nonzero real number
A. If S is hyponormal and T is normal, then the following statements are equiva-
lent:

(i) ST is hyponormal.

(i) o(ST) # {0}

(ifi) A = %1.

Recall that an operator T' € L(H) is said to be gquasinormal if T*T commutes
with 7.

Corollary 3.19. Let S,T € L(H) be (), p)-commuting quasinormal operators
such that ST # 0, where A and p are real numbers with Ay > 0. Then ST is
quasinormal if and only if g = £1. In particular, if ST is quasinormal and one of
S and T is normal, then A = p = +1.

An operator T' € L(H) is called gquasihyponormal if T*(T*T — TT*)T > 0,
or ||T%z| > ||T*Tz| for all z € H. In the following theorem, we show that if
|u| <1, then the product of two (), u)-commuting quasihyponormal operators is
again quasihyponormal.

Theorem 3.20. Let S and T be quasihyponormal operators in £(#) that are
(A, p)-commuting. If |u| > 1, then ST is quasihyponormal. Furthermore, if A # 0
and |p| > 1, then T'S is quasihyponormal.

An operator T in L(H) is said to be nilpotent if T" = 0 for some positive integer
n; in this case, the smallest positive integer n with 7" = 0 is referred to as the
order of T

Corollary 3.21. Let S and T be quasihyponormal operators in £(H) that are
(A, p)-commuting and ST # 0. If |A| # 1 and |p| > 1, then ST is nilpotent of
order 2 and one of S and 7T has a nontrivial invariant subspace.

Corollary 3.22. Let S € L(H) be normal and T' € L(H) be quasihyponormal
with ST # 0. If ST = AT'S for some |A\| > 1, then both ST and T'S are quasi-
hyponormal; in particular, if [A| > 1, then ST and T'S are nilpotent of order
2.
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