SURJECTIVE ISOMETRIES ON $C^{1}[0,1]$ WITH RESPECT TO SEVERAL NORMS

TAKESHI MIURA

ABSTRACT. Let $C^1[0,1]$ be a complex linear space of all continuously differentiable complex valued functions on the unit interval [0,1]. We give a characterization of surjective, not necessarily linear, isometries on $C^1[0,1]$ with respect to the following norms: $\|f\|_{\Sigma} = \|f\|_{\infty} + \|f'\|_{\infty}, \|f\|_{C} = \sup\{|f(t)| + |f'(t)| : t \in [0,1]\}$ and $\|f\|_{\sigma} = |f(0)| + \|f'\|_{\infty}$ for $f \in C^1[0,1]$, respectively.

1. INTRODUCTION

Let M and N be real or complex normed linear spaces with norms $\|\cdot\|_M$ and $\|\cdot\|_N$, respectively. We say that a mapping $T: M \to N$ is an *isometry* if and only if

$$||T(a) - T(b)||_N = ||a - b||_M$$
 $(a, b \in M)$

It should be emphasized that we never assume linearity of isometries unless otherwise stated. Let X be a compact Hausdorff space and C(X) the Banach space of all continuous complex valued functions on X with the supremum norm $\|\cdot\|_{\infty}$. Denote by $C_{\mathbb{R}}(X)$ the real Banach space of all continuous real valued functions on X. Banach [1, Theorem 3 in Chapter XI] proved that if $T: C_{\mathbb{R}}(X) \to C_{\mathbb{R}}(Y)$ is a surjective isometry and if X and Y are compact metric spaces, then there exist a continuous function $u: Y \to \{\pm 1\}$ and a homeomorphism $\varphi: Y \to X$ such that $T(f)(y) = T(0)(y) + u(y)f(\varphi(y))$ for all $f \in C_{\mathbb{R}}(X)$ and $y \in Y$. Stone [18, Theorem 83] generalized the result by Banach for compact Hausdorff spaces X and Y. On the other hand, the so-called Banach-Stone theorem states that if $T: C(X) \to C(Y)$ is a surjective *complex linear* isometry, then there exist a continuous function $u: Y \to \mathbb{C}$ with |u(y)| = 1 for $y \in Y$ and a homeomorphism $\varphi: Y \to X$ such that $T(f)(y) = u(y)f(\varphi(y))$ for all $f \in C(X)$ and $y \in Y$.

Let $C^1[0,1]$ be the Banach space of all continuously differentiable complex valued functions on the unit interval [0,1] with the norm $||f||_C = \sup\{|f(t)| + |f'(t)| : t \in [0,1]\}$ for $f \in C^1[0,1]$. Cambern [4, Theorem 1.5] gave a characterization for surjective complex linear isometries from $C^1[0,1]$ onto itself; to be more explicit, if $T: C^1[0,1] \to C^1[0,1]$ is a surjective complex linear isometry, then there exists $c \in \mathbb{C}$ with |c| = 1 such that T(f)(t) = cf(t) for all $f \in C^1[0,1]$ and $t \in [0,1]$, or T(f)(t) = cf(1-t) for all $f \in C^1[0,1]$ and $t \in [0,1]$. The result by Cambern has been extended in various directions; Pathak [16, Theorem 2.5] described surjective complex linear isometries between the Banach space of

²⁰⁰⁰ Mathematics Subject Classification. 46J10.

Key words and phrases. continuously differentiable function, extreme point, isometry.

all *n* times continuously differentiable functions. Rao and Roy [17, Theorem 4.1] considered surjective complex linear isometries on $C^1[0, 1]$ with the norm $||f||_{\infty} + ||f'||_{\infty}$ for $f \in C^1[0, 1]$. Jarosz and Pathak [9, Theorem 3] gave a scheme to verify that surjective complex linear isometries are given by homeomorphisms. Botelho and Jamison [2, Theorem 3.5] investigated surjective complex linear isometries between $C^1([0, 1], E)$, where E denotes a finite dimensional Hilbert space. We refer the reader to [6, 7] for a survey of the study of isometries on various function spaces.

The purpose of this paper is to describe surjective isometries on $C^{1}[0,1]$ without assuming linearity of maps. In fact, the following is the main theorem of this paper, which extends the result by Rao and Roy [17, Theorem 4.1]:

2. MAIN RESULTS

Theorem 2.1. Let $T: C^1[0,1] \to C^1[0,1]$ be a surjective isometry, which need not be linear, with respect to the norm $||f||_{\Sigma} = ||f||_{\infty} + ||f'||_{\infty}$. Then there exists a constant $c \in \mathbb{C}$ with |c| = 1 such that

T(f)(t) = T(0)(t) + cf(t)	$(\forall f \in C^1[0,1], \ \forall t \in [0,1]),$	or
T(f)(t) = T(0)(t) + cf(1-t)	$(\forall f\in C^1[0,1], \ \forall t\in [0,1]),$	or
$T(f)(t) = T(0)(t) + \overline{cf(t)}$	$(\forall f\in C^1[0,1], \ \forall t\in [0,1]),$	or
$T(f)(t) = T(0)(t) + \overline{cf(1-t)}$	$(\forall f\in C^1[0,1], \ \forall t\in [0,1]),$	

where $\overline{\cdot}$ denotes the complex conjugate.

Conversely, each of the above maps is a surjective isometry on $C^1[0,1]$ with respect to $\|\cdot\|_{\Sigma}$, where T(0) is an arbitrary element of $C^1[0,1]$.

The following result is a special case of [2, Theorem 3.5] by Botelho and Jamison; in fact, they consider surjective linear isometries on $C^1([0, 1], H)$ with respect to the norm $\sup\{||f(t)||_H + ||f'(t)||_H : t \in [0, 1]\}$, where H denotes a finite dimensional Hilbert space. We can identify $C^1[0, 1]$ with $C^1([0, 1], \mathbb{R}^2)$. If T_0 is a surjective real linear isometry on $C^1[0, 1]$, then we may regard T_0 as a surjective linear isometry on $C^1([0, 1], \mathbb{R}^2)$. Thus, T_0 is characterized by [2, Theorem 3.5]. On the other hand, we can prove the following result as a corollary to Theorem 2.1.

Corollary 2.2. Let $T: C^1[0,1] \to C^1[0,1]$ be a surjective isometry, which need not be linear, with respect to the norm $||f||_C = \sup\{|f(t)| + |f'(t)| : t \in [0,1]\}$. Then there exists a constant $c \in \mathbb{C}$ with |c| = 1 such that

T(f)(t) = T(0)(t) + cf(t)	$(orall f \in C^1[0,1], \ orall t \in [0,1]),$	or
T(f)(t) = T(0)(t) + cf(1-t)	$(\forall f\in C^1[0,1], \ \forall t\in [0,1]),$	or
$T(f)(t) = T(0)(t) + \overline{cf(t)}$	$(\forall f\in C^1[0,1], \ \forall t\in [0,1]),$	or
$T(f)(t) = T(0)(t) + \overline{cf(1-t)}$	$(\forall f \in C^1[0,1], \ \forall t \in [0,1]).$	

Conversely, each of the above maps is a surjective isometry on $C^1[0,1]$ with respect to $\|\cdot\|_C$, where T(0) is an arbitrary element of $C^1[0,1]$.

Theorem 2.3. Let $T: C^1[0,1] \to C^1[0,1]$ be a surjective isometry, which need not be linear, with respect to the norm $||f||_{\sigma} = |f(0)| + ||f'||_{\infty}$. Then there exist a constant $c \in \mathbb{C}$ with |c| = 1, a continuous unimodular function $\beta: [0,1] \to \mathbb{C}$ and a homeomorphism $\rho: [0,1] \to [0,1]$ such that

$$\begin{split} T_{0}(f)(t) &= cf(0) + \int_{0}^{t} \beta(s)f'(\rho(s)) \, ds & (\forall f \in C^{1}[0,1], \ \forall t \in [0,1]), \ or \\ T_{0}(f)(t) &= c\overline{f(0)} + \int_{0}^{t} \beta(s)f'(\rho(s)) \, ds & (\forall f \in C^{1}[0,1], \ \forall t \in [0,1]), \ or \\ T_{0}(f)(t) &= cf(0) + \int_{0}^{t} \beta(s)\overline{f'(\rho(s))} \, ds & (\forall f \in C^{1}[0,1], \ \forall t \in [0,1]), \ or \\ T_{0}(f)(t) &= c\overline{f(0)} + \int_{0}^{t} \beta(s)\overline{f'(\rho(s))} \, ds & (\forall f \in C^{1}[0,1], \ \forall t \in [0,1]), \end{split}$$

where $T_0(f)(t) = T(f)(t) - T(0)(t)$.

Conversely, each of the above maps is a surjective isometry on $C^1[0,1]$ with respect to $\|\cdot\|_{\sigma}$, where T(0) is an arbitrary element of $C^1[0,1]$.

A key of proofs of the main results is a significant result related to isometries proven by Mazur and Ulam. The Mazur-Ulam theorem [13] states that if T is a surjective isometry between normed linear spaces, then T - T(0) is real linear; consequently T - T(0) is a surjective, real linear isometry. Väisälä [19] gave a simple proof of the Mazur-Ulam theorem. Theorem 2.1 states that surjective real linear isometry T - T(0) on $C^1[0, 1]$ is the same as complex linear one up to the complex conjugate; similar results were proven for function algebras [5, 8, 14] and for function spaces under additional assumptions [12]. On the other hand, real linear isometries are quite different from complex linear ones in general; such an elementary example is given in [12, Example 6.2]. A characterization is obtained in [15] in order that surjective real linear isometries on function spaces with respect to the supremum norm be of the canonical form, that is, a combination of weighted composition operators and the complex conjugate. Surjective, non-canonical isometries are investigated in [10].

Let $C^{1}[0, 1]$ be the Banach space of all continuously differentiable complex valued functions on the unit interval [0, 1] with respect to the following norms:

$$\begin{split} \|f\|_{\Sigma} &= \|f\|_{\infty} + \|f'\|_{\infty} \,, \qquad \|f\|_{\sigma} = |f(0)| + \|f'\|_{\infty} \qquad \text{and} \\ \|f\|_{C} &= \sup\{|f(t)| + |f'(t)| : t \in [0,1]\} \end{split}$$

for $f \in C^1[0, 1]$, where $\|\cdot\|_{\infty}$ denotes the supremum norm on [0, 1]. Let $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ be the unit circle in the complex plane \mathbb{C} , and set $X_{\Sigma} = [0, 1] \times [0, 1] \times \mathbb{T}$,

$$X_{\sigma} = \{(r, s, z) \in X_{\Sigma} : r = 0\}$$
 and $X_{c} = \{(r, s, z) \in X_{\Sigma} : r = s\}$

with the product topology. Define

(1)
$$\tilde{f}(r,s,z) = f(r) + zf'(s)$$

for $f \in C^1[0,1]$ and $(r,s,z) \in X_{\Sigma}$; thus $\tilde{f}(r,s,z) = f(0) + zf'(s)$ if $(r,s,z) \in X_{\sigma}$, and $\tilde{f}(r,s,z) = f(s) + zf'(s)$ if $(r,s,z) \in X_c$. The function \tilde{f} is continuous on X_{Σ} . Let C(K) be the Banach space of all continuous complex valued functions on a compact Hausdorff space K with respect to the supremum norm $\|\cdot\|_{\infty}$. We define $A_{\Sigma} = \{\tilde{f} \in C(X_{\Sigma}) : f \in C^1[0,1]\}$, $A_{\sigma} = A_{\Sigma}|_{X_{\sigma}}$ and $A_C = A_{\Sigma}|_{X_c}$. Let $(A, X) \in \{(A_{\Sigma}, X_{\Sigma}), (A_{\sigma}, X_{\sigma}), (A_C, X_c)\}$. Then A is a normed linear subspace of C(X). Let $\mathbf{1} \in C^1[0,1]$ be the constant function such that $\mathbf{1}(t) = 1$ for all $t \in [0,1]$. By (1), we see that A has constant function $\tilde{\mathbf{1}}$. Notice that A separates points of X in the sense that for each pair of distinct points $x_1, x_2 \in X$ there exists $\tilde{f} \in A$ such that $\tilde{f}(x_1) \neq \tilde{f}(x_2)$. The correspondence $f \mapsto \tilde{f}$ is a complex linear isometry from $(C^1[0,1], \|\cdot\|)$ onto $(A, \|\cdot\|_{\infty})$; where, $\|f\| = \|f\|_{\Sigma}$ if $A = A_{\Sigma}, \|f\| = \|f\|_{\sigma}$ if $A = A_{\sigma}$ and $\|f\| = \|f\|_C$ if $A = A_C$. Note that $\tilde{i}\tilde{f} = \tilde{i}\tilde{f}$ for $f \in C^1[0,1]$. We denote by A^* the complex dual space of $(A, \|\cdot\|_{\infty})$. Let $\delta_x : A \to \mathbb{C}$ be the point evaluation defined as $\delta_x(\tilde{f}) = \tilde{f}(x)$ for $\tilde{f} \in A$ and $x \in X$. We see that the set of all extreme points of the unit ball of A^* is $\{\lambda\delta_x : x \in X, \lambda \in \mathbb{T}\}$.

Let $T: C^1[0,1] \to C^1[0,1]$ be a surjective isometry. Define a mapping $T_0: C^1[0,1] \to C^1[0,1]$ as $T_0 = T - T(0)$. By the Mazur-Ulam theorem, T_0 is a surjective, real linear isometry from $C^1[0,1]$ onto itself. We define $S: A \to A$ as

Since $f \mapsto \tilde{f}$ is a surjective isometry from $C^1[0,1]$ onto A, it is a bijection, and thus S is well defined. As $f \mapsto \tilde{f}$ is a surjective complex linear isometry, S is a surjective real linear isometry on A. We define a mapping $S_*: A^* \to A^*$ as

(3)
$$S_*(\eta)(\hat{f}) = \operatorname{Re} \eta(S(\hat{f})) - i \operatorname{Re} \eta(S(i\hat{f}))$$

for $\eta \in A^*$ and $\tilde{f} \in A$. It is routine to check that the mapping S_* is a surjective real linear isometry with respect to the operator norm on A^* (cf. [15, Proposition 1]).

Proof of Theorem 2.1, Corollary 2.2 and Theorem 2.3 are given in [11]. In fact, Kawamura, Koshimizu and the author of this paper generalize these results.

References

- [1] S. Banach, Theory of linear operations, Dover Books on Mathematics, 2009.
- [2] F. Botelho and J. Jamison, Surjective isometries on spaces of differentiable vector-valued functions, Studia Math. 192 (2009), 39-50.

- F. Botelho and J. Jamison, Surjective isometries on spaces of vector valued continuous and Lipschitz functions, Positivity 17 (2013), 395–405.
- [4] M. Cambern, Isometries of certain Banach algebras, Studia Math. 25 (1964-1965), 217-225.
- [5] A.J. Ellis, Real characterizations of function algebras amongst function spaces, Bull. London Math. Soc. 22 (1990), 381–385.
- [6] R. Fleming and J. Jamison, Isometries on Banach spaces: function spaces, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 129, Boca Raton, 2003.
- [7] R. Fleming and J. Jamison, Isometries on Banach spaces Vol. 2. Vector-valued function spaces, Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. 138, Boca Raton, 2008.
- [8] O. Hatori and T. Miura, Real linear isometries between function algebras. II, Cent. Eur. J. Math. 11 (2013), 1838–1842.
- [9] K. Jarosz and V.D. Pathak, Isometries between function spaces, Trans. Amer. Math. Soc. 305 (1988), 193-205.
- [10] K. Kawamura and T. Miura, Real-linear sujective isometries between function spaces, submitted.
- [11] K. Kawamura, H. Koshimizu and T. Miura, Norms on $C^1([0,1])$ and their isometries, submitted.
- [12] H. Koshimizu, T. Miura, H. Takagi and S.-E. Takahasi, Real-linear isometries between subspaces of continuous functions, J. Math. Anal. Appl. 413 (2014), 229–241.
- [13] S. Mazur and S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946–948.
- [14] T. Miura, Real-linear isometries between function algebras, Cent. Eur. J. Math. 9 (2011), 778-788.
- [15] T. Miura, Surjective isometries between function spaces, Contemp. Math. 645 (2015), 231–239.
- [16] V.D. Pathak, Isometries of C⁽ⁿ⁾[0,1], Pacific J. Math. 94 (1981), 211-222.
- [17] N.V. Rao and A.K. Roy, Linear isometries of some function spaces, Pacific J. Math. 38 (1971), 177–192.
- [18] M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375–481.
- [19] J. Väisälä, A proof of the Mazur-Ulam theorem, Amer. Math. Monthly, 110-7 (2003), 633-635.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, NIIGATA UNIVERSITY, NIIGATA 950-2181, JAPAN

E-mail address: miura@math.sc.niigata-u.ac.jp