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ABSTRACT. Let C^{1}[0 ,
1 ] be a complex linear space of all continuously differentiable com‐

plex valued functions on the unit interval [0 ,
1 ] . We give a characterization of surjec‐

tive, not necessarily linear, isometries on C^{1}[0 , 1 ] with respect to the following norms:

\Vert f\Vert_{ $\Sigma$}=\Vert f\Vert_{\infty}+\Vert f'\Vert_{\infty}, \displaystyle \Vert f\Vert_{C}=\sup\{|f(t)|+|f'(t)| : t\in[0, 1]\} and \Vert f\Vert_{ $\sigma$}=|f(0)|+\Vert f'\Vert_{\infty}
for f\in C^{1}[0 , 1 ] , respectively.

1. INTRODUCTION

Let M and N be real or complex normed linear spaces with norms \Vert\cdot\Vert_{M} and \Vert\cdot\Vert_{N},
respectively. We say that a mapping T:M\rightarrow N is an isometry if and only if

\Vert T(a)-T(b)\Vert_{N}=\Vert a-b\Vert_{M} (a, b\in M) .

It should be emphasized that we never assume linearity of isometries unless otherwise

stated. Let X be a compact Hausdorff space and C(X) the Banach space of all continuous

complex valued functions on X with the supremum norm \Vert\cdot\Vert_{\infty} . Denote by C_{\mathrm{R}}(X) the

real Banach space of all continuous real valued functions on X . Banach [1, Theorem 3

in Chapter XI] proved that if T : C_{\mathbb{R}}(X) \rightarrow  C_{\mathbb{R}}(Y) is a surjective isometry and if X

and Y are compact metric spaces, then there exist a continuous function  u:Y\rightarrow \{\pm 1\}
and a homeomorphism  $\varphi$ :  Y \rightarrow  X such that T(f)(y) = T(0)(y)+u(y)f( $\varphi$(y)) for all

f \in  C_{\mathrm{R}}(X) and y \in  Y . Stone [18, Theorem 83] generalized the result by Banach for

compact Hausdorff spaces X and Y . On the other hand, the so‐called Banach‐Stone

theorem states that if T : C(X)\rightarrow C(Y) is a surjective complex linear isometry, then there

exist a continuous function u : Y\rightarrow \mathbb{C} with |u(y)| =1 for y\in Y and a homeomorphism
 $\varphi$:Y\rightarrow X such that T(f)(y)=u(y)f( $\varphi$(y)) for all f\in C(X) and y\in Y.

Let C^{1}[0 ,
1 ] be the Banach space of all continuously differentiable complex valued func‐

tions on the unit interval [0 ,
1 ] with the norm \displaystyle \Vert f\Vert_{C}=\sup\{|f(t)|+|f'(t)| : t\in [0, 1]\} for

f \in  C^{1}[0 , 1 ] . Cambern [4, Theorem 1.5] gave a characterization for surjective complex
linear isometries from C^{1}[0 , 1 ] onto itself; to be more explicit, if T :  C^{1}[0, 1]\rightarrow  C^{1}[0 ,

1 ]
is a surjective complex linear isometry, then there exists c \in \mathbb{C} with |c| = 1 such that

T(f)(t)=cf(t) for all f\in C^{1}[0 , 1 ] and  t\in [0 , 1 ] , or T(f)(t)=cf(1-t) for all f\in C^{1}[0 , 1 ]
and  t\in [0 ,

1 ] . The result by Cambem has been extended in various directions; Pathak [16,
Theorem 2.5] described surjective complex linear isometries between thè Banach space of
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all n times continuously differentiable functions. Rao and Roy [17, Theorem 4.1] con‐

sidered surjective complex linear isometries on C^{1}[0 ,
1 ] with the norm \Vert f\Vert_{\infty}+\Vert f'\Vert_{\infty} for

f \in  C^{1}[0 ,
1 ] . Jarosz and Pathak [9, Theorem 3] gave a scheme to verify that surjective

complex linear isometries are given by homeomorphisms. Botelho and Jamison [2, Theo‐

rem 3.5] investigated surjective complex linear isometries between C^{1}([0,1], E) , where E

denotes a finite dimensional Hilbert space. We refer the reader to [6, 7] for a survey of

the study of isometries on various function spaces.

The purpose of this paper is to describe surjective isometries on C^{1}[0 ,
1 ] without as‐

suming lineairity of maps. In fact, the following is the main theorem of this paper, which

extends the result by Rao and Roy [17, Theorem 4.1]:

2. MAIN RESULTS

Theorem 2.1. Let T :  C^{1}[0, 1]f\rightarrow  C^{1}[0 ,
1 ] be a surjective isometry, which need not be

linear, with respect to the norm \Vert f\Vert_{ $\Sigma$} = \Vert f\Vert_{\infty}+\Vert f'\Vert_{\infty} . Then there exists a constant

c\in \mathbb{C} with |c|=1 such that

T(f)(t)=T(0)(t)+cf(t) (\forall f\in C^{1}[0,1] , \forall t\in[0,1 or

T(f)(t)=T(0)(t)+cf(1-t) (\forall f\in C^{1}[0,1], \forall t\in[0,1 or

T(f)(t)=T(0)(t)+\overline{cf(t)} (\forall f\in C^{1}[0,1], \forall t\in[0,1 or

T(f)(t)=T(0)(t)+\overline{cf(1-t)} (\forall f\in C^{1}[0,1], \forall t\in[0,1
where

-

denotes the complex conjugate.
Conversely, each of the above maps is a surjective isometry on C^{1}[0 , 1 ] with respect to

\Vert\cdot\Vert_{ $\Sigma$} , where T(0) bs an arbitrary element of C^{1}[0 , 1].

The following result is a special case of [2, Theorem 3.5] by Botelho and Jamison; in

fact, they consider surjective linear isometries on C^{1}([0,1], H) with respect to the norm

\displaystyle \sup\{\Vert f(t)\Vert_{H}+\Vert f'(t)\Vert_{H} :  t\in [0 , 1 where H denotes a finite dimensional Hilbert space.

We can identify C^{1}[0 ,
1 ] with C^{1}([0,1],\mathbb{R}^{2}) . If T_{0} is a surjective real linear isometry on

C^{1}[0 ,
1 ] , then we may regard T_{0} as a surjective linear isometry on C^{1}([0,1],\mathbb{R}^{2}) . Thus,

T_{0} is characterized by [2, Theorem 3.5]. On the other hand, we can prove the following
result as a corollary to Theorem 2.1.

Corollary 2.2. Let T :  C^{1}[0, 1]\rightarrow  C^{1}[0 ,
1 ] be a surjective isometry, which need not be

linear, with respect to the norm \displaystyle \Vert f\Vert_{C}=\sup\{|f(t)|+|f'(t)| : t\in[0 ,
1 Then there exists

a constant c\in \mathbb{C} with |c|=1 such that

T(f)(t)=T(0)(t)+cf(t) (\forall f\in C^{1}[0,1], \forall t\in[0,1 or

T(f)(t)=T(0)(t)+cf(1-t) (\forall f\in C^{1}[0,1] , \forall t\in[0,1 or

T(f)(t)=T(0)(t)+\overline{cf(t)} (\forall f\in C^{1}[0,1] , \forall t\in[0,1 or

T(f)(t)=T(0)(t)+\overline{cf(\cdot 1-t)} (\forall f\in C^{1}[0,1] , \forall t\in[0,1
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Conversely, each of the above maps is a surjective isometry on C^{1}[0 , 1 ] with respect to

||\cdot\Vert_{C} , where T(0) is an arbitrary element of C^{1}[0 ,
1].

Theorem 2.3. Let T :  C^{1}[0, 1]\rightarrow  C^{1}[0 ,
1 ] be a surjective isometry, which need not be

linear, with respect to the norm \Vert f\Vert_{ $\sigma$}=|f(0)|+\Vert f'\Vert_{\infty} . Then there exist a constant c\in \mathbb{C}
with |c| = 1

,
a continuous unimodular function  $\beta$ : [0 ,

1] \rightarrow \mathbb{C} and a homeomorphism
 $\rho$ : [0, 1]\rightarrow[0 ,

1 ] such that

T_{0}(f)(t)=cf(0)+\displaystyle \int_{0}^{t} $\beta$(s)f'( $\rho$(s))ds (\forall f\in C^{1}[0,1] , \forall t\in[0,1 or

T_{0}(f)(t)=c\displaystyle \overline{f(0)}+\int_{0}^{t} $\beta$(s)f'( $\rho$(s))ds (\forall f\in C^{1}[0,1] , \forall t\in[0,1 or

T_{0}(f)(t)=cf(0)+\displaystyle \int_{0}^{t} $\beta$(s)\overline{f'(p(s))}ds (\forall f\in C^{1}[0,1] , \forall t\in[0,1 or

T_{0}(f)(t)=c\displaystyle \overline{f(0)}+\int_{0}^{t} $\beta$(s)\overline{f'( $\rho$(s))}ds (\forall f\in C^{1}[0,1], \forall t\in[0,1
where T_{0}(f)(t)=T(f)(t)-T(0)(t) .

Conversely, each of the above maps is a surjective isometw on C^{1}[0 ,
1 ] with respect to

\Vert\cdot\Vert_{ $\sigma$} , where T(0) is an arbitrary element of C^{1}[0 ,
1].

A key of proofs of the main results is a significant result related to isometries proven by
Mazur and Ulam. The Mazur‐Ulam theorem [13] states that if T is a surjective isometry
between normed linear spaces, then T-T(0) is real linear; consequently T-T(0) is

a surjective, real linear isometry. Väisälä [19] gave a simple proof of the Mazur‐Ulam

theorem. Theorem 2.1 states that surjective real linear isometry T-T(0) on C^{1}[0 , 1 ] is

the same as complex linear one up to the complex conjugate; similar results were proven
for function algebras [5, 8, 14] and for function spaces under additional assumptions [12].
On the other hand, real linear isometries are quite different from complex linear ones in

general; such an elementary example is given in [12, Example 6.2]. A characterization

is obtained in [15] in order that surjective real linear isometries on function spaces with

respect to the supremum norm be of the canonical form, that is, a combination of weighted
composition operators and the complex conjugate. Surjective, non‐canonical isometries

are investigated in [10].
Let C^{1}[0 , 1 ] be the Banach space of all continuously differentiable complex valued func‐

tions on the unit interval [0 ,
1 ] with respect..to the following norms:,

\Vert f\Vert_{ $\Sigma$}=\Vert f\Vert_{\infty}+\Vert f'\Vert_{\infty} , \Vert f\Vert_{ $\sigma$}=|f(0)|+\Vert f'\Vert_{\infty} and

\displaystyle \Vert f\Vert_{C}=\sup\{|f(t)|+|f'(t)| : t\in[0, 1]\}
for f\in C^{1}[0 , 1 ] , where \Vert\cdot\Vert_{\infty} denotes the supremum norm on [0 , 1 ] . Let  $\Gamma$=\{z\in \mathbb{C} : |z|=
1\} be the unit circle in the complex plane \mathbb{C} , and set  X_{ $\Sigma$}=[0, 1]\times [0 ,

1 ] \times $\Gamma$,

X_{ $\sigma$}=\{(r, s, z)\in X_{ $\Sigma$} : r=0\} and X_{c}=\{(r, s, z)\in X_{ $\Sigma$} : r=s\}
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with the product topology. Define

(1) \tilde{f}(r, s, z)=f(r)+zf'(s)
for f \in  C^{1}[0 , 1 ] and (r, s, z) \in  X_{ $\Sigma$} ; thus \tilde{f}(r, s, z) = f(0)+zf'(s) if (r, s, z) \in  X_{ $\sigma$} , and

\tilde{f}(r, s, z)=f(s)+zf'(s) if (r, s, z)\in X_{c} . The function \tilde{f} is continuous on X_{ $\Sigma$} . Let C(K) be

the Banach space of all continuous complex valued functions on a compact Hausdorff space

K with respect to the supremum norm \Vert\cdot\Vert_{\infty} . We define A_{ $\Sigma$}=\{\tilde{f}\in C(X_{ $\Sigma$}) : f\in C^{1}[0 ,
1

A_{ $\sigma$}=A_{ $\Sigma$}|_{X_{ $\sigma$}} and A_{C}=A_{ $\Sigma$}|_{X_{c}} . Let (A, X) \in\{(A_{ $\Sigma$}, X_{ $\Sigma$}) , (A_{ $\sigma$}, X_{ $\sigma$}) , (A_{C}, X_{c} Then A is

a normed linear subspace of C(X) . Let 1 \in  C^{1}[0 ,
1 ] be the constant function such that

1(t)=1 for all  t\in [0 , 1 ] . By (1),, we see that A has constant function \overline{1} . Notice that A

separates points of X in the sense that for. each pair of distinct points x_{1}, x_{2} \in X there

exists \tilde{f}\in A such that \tilde{f}(x_{1}) \neq \tilde{f}(x_{2}) . The correspondence  f\mapsto \tilde{f} is a complex linear

isometry from (C^{1}[0,1] , onto (A, \Vert\cdot\Vert_{\infty}) ; where
-

\Vert f\Vert = \Vert f\Vert_{ $\Sigma$} if A=A_{ $\Sigma$}, \Vert f\Vert = \Vert f\Vert_{ $\sigma$}
if A=A_{ $\sigma$} and \Vert f\Vert =\Vert f\Vert_{C} if A=A_{C} . Note that if=i\tilde{f} for f\in C^{1}[0 ,

1] . We denote by
A^{*} the complex dual space of (A, \Vert\cdot\Vert_{\infty}) . Let $\delta$_{x} : A\rightarrow \mathbb{C} be the point evaluation defined

as $\delta$_{x}(\tilde{f}) =\tilde{f}(x) for \tilde{f}\in A and x\in X . We see that the set of all extreme points of the

unit ball of A^{*} is \{ $\lambda \delta$_{x} : x\in X,  $\lambda$\in $\Gamma$\}.
Let T : C^{1}[0, 1]\rightarrow C^{1}[0 ,

1 ] be a surjective isometry. Define a mapping T_{0} :  C^{1}[0, 1]\rightarrow
 C^{1}[0 ,

1 ] as T_{0} = T-T(0) . By the Mazur‐Ulam theorem, T_{0} is a surjective, real linear

isometry from C^{1}[0 , 1 ] onto itself. We define S:A\rightarrow A as

(2) S(\tilde{f})=\overline{T_{0}(f)} (\tilde{f}\in A) .

Since  f\mapsto \tilde{f} is a surjective isometry from C^{1}[0 , 1 ] onto A
, it is a bijection, and thus S

is well defined. As  f\mapsto \tilde{f} is a surjective complex linear isometry, S is a surjective real

linear isometry on A . We define a mapping S_{*}:A^{*}\rightarrow A^{*} as

(3) S_{*}( $\eta$)(\tilde{f})={\rm Re} $\eta$(S(\tilde{f}))-i{\rm Re} $\eta$(S(i\tilde{f}))
for  $\eta$\in A^{*} and \tilde{f}\in A . It is routine to check that the mapping S_{*} is a surjective real linear

isometry with respect to the operator norm on A^{*} (cf. [15, Proposition 1

Proof of Theorem 2.1, Corollary 2.2 and Theorem 2.3 are given in [11]. In fact, Kawa‐

mura, Koshimizu and the author of this paper generalize these results.
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