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Abstract

This note announces a recent result on isometries of C^{1}‐function

spaces over compact Riemannian manifolds [7]. We characterize

isometries (with respect to certain norms inducing the C^{1}‐topology)
of the C^{1}‐function spaces over compact Riemannian manifolds as

generalized weighted composition operators, under some regularity
assumption. We also apply the characterization to study continuous

deformations of isometry groups induced by perturbations of norms

on the function spaces.

Let M be a compact Riemannian manifold with a Riemannian metric

g and let C^{1}(M, \mathbb{R}^{d}) be the space of all C^{1}‐maps of M to \mathbb{R}^{d} with the C^{1}-

topology. For  p\in [1, \infty] and for a submanifold K of M
, we define a norm

\Vert_{<M,K;p>} on C^{1}(M,\mathbb{R}^{d}) by

\Vert f\Vert_{<M,K;p>}=(\Vert f|K\Vert_{\infty}^{p}+\Vert Df\Vert_{\infty}^{p})^{1/p}

for f \in  C^{1}(M, \mathbb{R}^{d}) ,
where Df denotes the derivative of f . Here the norm�

\Vert Df\Vert_{\infty} is defined as follows. Take a point q \in  M and take a local chart

(xl, . . . x^{n}) at q and let g_{ij}=g(\partial_{i}, \partial_{j}) , \partial_{i}= \displaystyle \frac{\partial}{\partial x^{i}} . The inverse matrix of (g_{ij})
is denoted by (g^{ij}) : (g^{ij})=(g_{ij})^{-1} . Let

\displaystyle \Vert D_{q}f\Vert= (\sum_{i,j=1}^{n}g^{i0}\partial_{i}f . \partial_{j}f)^{1/2}
where denotes the standard inner product on \mathbb{R}^{d} . It can be shown that

\Vert D_{q}f\Vert does not depend on the local chart and let ||Df\displaystyle \Vert_{\infty}=\sup_{q\in M}\Vert D_{q}f\Vert.
When \dim M=1 or K=M

, we essentially have characterized surjective
linear isometries T : (C^{1}(M, \mathbb{R}^{d}), \Vert\cdot\Vert_{<M,K;p>})\rightarrow(C^{1}(M,\mathbb{R}^{d}), \Vert\cdot\Vert_{<M,K_{!}\cdot p>}) as

generalized weighted composition operators [8], [5], [6]. As a continuation

of the research the following theorem is proved in [7]. An operator T :

C^{1}(M, \mathbb{R}^{d})\rightarrow C^{1}(M, \mathbb{R}^{d}) is said to be C^{k}‐preserving, if Tf is a C^{k}‐map for

each C^{k}‐map f\in C^{1}(M, \mathbb{R}^{d}) . Also T is said to preserve the constant maps

if Tc is a constant map whenever c : M\rightarrow \mathbb{R}^{d} is a constant map.
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Theorem 1 Ĩ71 Let M be compact connected Riemannian manifold with

\dim M > 1 and let K and L be connected submanifolds of M. For p \in

(1, \infty] ,
let \Vert\cdot\Vert_{<M,K;p>}and \Vert\cdot\Vert_{<M,L;p>}be the norms defined by the above and

let T : (C^{1}(M, \mathbb{R}^{d}), \Vert \Vert_{<M,K;p>})\rightarrow(C^{1}(M, \mathbb{R}^{d}), \Vert \Vert_{<M,L;p>}) be a surjective
linear isometry. Assume that T and T^{-1} are C^{3} ‐preserving and preserve the

constant maps. Then K and L are homeomorphic and we have the following.

(1) Assume that \dim K = \dim L > 0 . Then there exist a Riemannian

isometry  $\varphi$ :  M\rightarrow M and a linear isometry U:\mathbb{R}^{d}\rightarrow \mathbb{R}^{d} such that

(1.1)  $\varphi$(L)=K and

(1.2) Tf (x)=U(f( $\varphi$(x))) for each x\in M and for each f\in C^{1}(M, \mathbb{R}^{d}) .

(2) Assume that K=\{a\}, L=\{b\} . There exist a Riemannian isometry
 $\varphi$:M\rightarrow M and linear isometries U, V : \mathbb{R}^{d}\rightarrow \mathbb{R}^{d} such that

(2.1) Tf(b)=U(f(a)) and

(2.2) Tf (x)=V(f( $\varphi$(x)))+\{U(f(a))-V(f( $\varphi$(b)))\} for each x\in M

and for each f\in C^{1}(M, \mathbb{R}^{d}) .

For p=1 ,
we can obtain a similar result when \dim M=1 by applying the

argument due to Botelho and Jamison [1] which relies on the Borsuk‐Ulam

theorem. Ìt should be mentioned that detailed study for M = [0 ,
1 ] and

p=1 has been carried out by [1], [2], [3], [10], [11], [13] etc. It is not known

to the author whether the same conclusion as Theorem 1 holds for the case

\dim M>1 and p=1.
Let K and L be two positive‐dimensional connected submanifolds of

a compact Riemannian manifold M of dimension at least 2 and assume

that (C^{1}(M, \mathbb{R}^{d}), \Vert \Vert_{<M,K;p>}) and (C^{1}(M, \mathbb{R}^{d}), \Vert \Vert_{<M,L;p>}) are isometric.

It follows from the above theorem that (M, K) and (M, L) are isomet‐

\mathrm{r}\mathrm{i}\mathrm{c} manifold pairs. In this sense the isometry type of the function space

(C^{1}(M,\mathbb{R}^{d}), \Vert \Vert_{<M,K;p>}) not only determines the isometry type of the am‐

bient manifold M but also the embedding type of the submanifold K up to

isometry.

We may apply the above theorem along the line of [6] to study per‐

turbations of norms on C^{1}(M,\mathbb{R}^{d}) and deformations of associated isometry
groups. To be more precise we give the following definitions. For a norm \Vert\cdot\Vert
on  C^{1}(M,\mathbb{R}^{d}) ,

the group of all linear \Vert \Vert ‐isometries is denoted by \mathcal{U}
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Definition 2 Let M be a compact connected Riemannian manifold and  d\geq
 1.

(1) Let \mathcal{N}(M, \mathbb{R}^{d}) be the space of all norms on C^{1}(M, \mathbb{R}^{d}) which induce

the C^{1} ‐topology. The space \mathcal{N}(M, \mathbb{R}^{d}) is endowed with the coarsest

topology such that the map e_{f}:C^{1}(M, \mathbb{R}^{d})\rightarrow \mathbb{R} defined by

e_{f}
. =\Vert f\Vert, \Vert \Vert \in \mathcal{N}(M, \mathbb{R}^{d})

is continuous for each f\in C^{1}(M, \mathbb{R}^{d}) .

(2) Let \mathcal{B}(M, \mathbb{R}^{d}) be the space of all linear operators on C^{1}(M,\mathbb{R}^{d}) which

are continuous with respect to the C^{1} ‐topology. The space \mathcal{B}(M, \mathbb{R}^{d}) is

endowed with the coarsest topology such that the map E_{f} : \mathcal{B}(M,\mathbb{R}^{d})\rightarrow
 C^{1}(M, \mathbb{R}^{d}) given by

E_{f}(T)=Tf, T\in \mathcal{B}(M,\mathbb{R}^{d})

is continuous for each f\in C^{1}(M, \mathbb{R}^{d}) .

(3) We define �the bundle of isometries� as :

\mathcal{U}(M, \mathbb{R}^{d}) = T)\in \mathcal{N}(M, \mathbb{R}^{d})\times \mathcal{B}(M, \mathbb{R}^{d}) |T\in u
\subset \mathcal{N}(M,\mathbb{R}^{d})\times \mathcal{B}(M,\mathbb{R}^{d})

with the projection  $\Pi$ : \mathcal{U}(M, \mathbb{R}^{d})\rightarrow \mathcal{N}(M, \mathbb{R}^{d}) given by II \Vert, T) =

\Vert We have $\Pi$^{-1}(\Vert =\mathcal{U}

Let  $\nu$ : [0, 1]\rightarrow \mathcal{N}(M, \mathbb{R}^{d}) be a continuous path and take an isometry
T \in  u( $\nu$(0)) . Motivated by covering space/fiber bundle theory we study
the existence/uniqueness of a continuous path  $\tau$ : [0, 1]\rightarrow \mathcal{U}(M, \mathbb{R}^{d}) ,

called

a lift of \mathrm{y} starting with T
, such that  P\mathrm{o} $\tau$ =  $\nu$ and  $\tau$(0) = T . Theorem

1 reduces the problem to the existence /\mathrm{m}\mathrm{u}queness of appropriate paths in

the isometry group lsom(M) and in the orthogonal group O(\mathbb{R}^{d}) .

Let \mathcal{K}_{M} be the space of all connected submanifolds of M with the Haus‐

dorff metric. Motivated by [10] and [8], we consider a path  $\alpha$ : [0, 1]\rightarrow \mathcal{K}_{M}
such that

(\star)  $\alpha$(0) is a singleton, and \dim $\alpha$(t)>0 and  $\alpha$(t)\neq M for each t\in(0,1) .
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Fix p\in[1, \infty] and let

$\nu$_{ $\alpha$}(t)=\Vert \Vert_{<M, $\alpha$(t);p>}, t\in[0, 1].

This defines a continuous path \mathrm{v}_{ $\alpha$} : [0, 1]\rightarrow \mathcal{N}(M, \mathbb{R}^{d}) .

Convention. Taking account of the additional condition of C^{3}‐preservation
and constant‐maps‐preservation which is assumed on the isometry
T : (C^{1}(M,\mathbb{R}^{d}), \Vert \Vert_{<M,K;p>}) \rightarrow ((C^{1}(M, \mathbb{R}^{d}), \Vert \Vert_{<M,K;p>}) of Theorem 1,
we assume in the sequel that every lift  $\tau$ : [0, 1]\rightarrow \mathcal{U}(M, \mathbb{R}^{d}) satisfies the

additional condition:

(b) for each t \in [0 ,
1 ] , the isometries  $\tau$(t) and  $\tau$(t)^{-1} are C^{3}‐preserving

and preserve the constant maps.

Let  $\alpha$ : [0, 1]\rightarrow \mathcal{K}_{M} be a continuous path satisfying the condition (\star)
and assume that a continuous path  $\tau$ : [0, 1]\rightarrow \mathcal{U}(M, \mathbb{R}^{d}) is a lift of of \mathrm{y}_{ $\alpha$}.

By Theorem 1 and the above convention, there exist isometries \{$\varphi$_{t} | 0 \leq

 t\leq  1\} \subset Isom-(M) and linear isometries \{U_{t} | 0 \leq t\leq.1\}\mathrm{U}\{V\} \subset  O(\mathbb{R}^{d})
such that

 $\tau$(0)f = Vofo $\varphi$_{0}+(U_{0}(f(a))-V(f($\varphi$_{0}(a))) (*)
 $\tau$(t)f = U_{t}\circ f\circ$\varphi$_{t} t\in(0,1) (**)

for each f \in  C^{1}(M,\mathbb{R}^{d}) , where $\varphi$_{t}( $\alpha$(t)) =  $\alpha$(t) for each t \in (0,1]. We

can show from the continuity of  $\tau$ that  U_{0} = V and $\varphi$_{0}(a) =a , and thus

 $\tau$(0)f= U_{0}\circ f\circ$\varphi$_{0} for  f\in  C^{1}(M, \mathbb{R}^{d}) . Hence in order to obtain a lift of

$\nu$_{ $\alpha$} ,
the initial isometry T\in u(\mathrm{v}_{ $\alpha$}(0)) must be of the form (**) .

The validity of the converse depends on manifolds M
, paths  $\alpha$ : [0, 1]\rightarrow

\mathcal{K}_{M} and the im
\cdot

tial isometry  T\in u(\mathrm{v}_{ $\alpha$}(0)) . Here we study the lifting problem
when M is the standard sphere, the flat torus and a manifold with finite

isometry group Isom(M) (e.g. hyperbolic surfaces). For an isometry  $\varphi$ \in

Isom(M) and for a linear isometry  U\in O(\mathbb{R}^{d}) , C_{ $\varphi$,U} stands for the weighted
composition operator given by

C_{ $\varphi$,U}f=U\circ f\circ $\varphi$, f\in C^{1}(M, \mathbb{R}^{d}) .

The isometry  $\varphi$ \in Isom(M) and  U \in  O(\mathbb{R}^{d}) above are called the symbol
and the weight of the operator C_{ $\varphi$,U}.

In what follows, p>1 and d\geq 1 are fixed. To simplify terminology we

say that a path  $\alpha$ : [0, 1]\rightarrow \mathcal{K}_{M} satisfying the condition (\star) is a path of disks
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if  $\alpha$(t) is homeomorphic to a disk of dimension \dim M for each t \in (0,1) .

Also we say that two lifts $\tau$_{1}, $\tau$_{2} : [0, 1]\rightarrow \mathcal{U}(M, \mathbb{R}^{d}) have different symbols if

$\tau$_{1}(t) and $\tau$_{2}(t) have different symbols for some t.

Let n \geq  1 and let S^{n} = \displaystyle \{(x_{i})_{1\leq i\leq n+1} \in \mathbb{R}^{n+1} | \sum_{i=1}^{n+1}x_{i}^{2} = 1\} be the

standard sphere. It is known that Isom (S^{n})\cong O(n+1) . A similar result to

the next proposition for n=1 has been proved in [6] (cf.[7]).

Proposition 3 Let n\geq 2 and take a point a\in S^{n}.

(1) There exist two paths of diisks  $\alpha$,  $\beta$ : [0, 1]\rightarrow \mathcal{K}_{S^{7 $\iota$}} with  $\alpha$(0)= $\beta$(0)=
\{a\} such that

(1. 1) for each T = C_{ $\varphi$,U} with  $\varphi$(a) =a there exist infinitely many

lifts of \mathrm{y}_{ $\alpha$} starting with T such that they have mutually distinct

symbols, and

(1.2) for each T=C_{ $\varphi$,U} with  $\varphi$(a) =a and  $\varphi$ is. not isotopic to. \mathrm{i}\mathrm{d}_{S^{n}},
there exist no lifts of \mathrm{v}_{ $\beta$} starting with T.

(2) There exist (n+1) paths of disks $\alpha$_{1} , . . . $\alpha$_{n+1} such that $\alpha$_{i}(0)=\{a\}, i=
1

,
. . . n+1 , such that

(2.1) for each i=1
,

. . .

, n+1 and for each T=C_{ $\varphi$,U} with  $\varphi$(a) =a,

there exist infinitely many lifts of$\nu$_{ $\alpha$} starting with T with mutually
distinct symbols, and

(2.2) for each T=C_{ $\varphi$,U} with  $\varphi$(a) =a such that  $\varphi$ is not isotopic to

\mathrm{i}\mathrm{d}_{S^{n}} and for each lift $\tau$_{i} : [0, 1]\rightarrow \mathcal{U}(S^{n}, \mathbb{R}^{d}) of \mathrm{y}_{$\alpha$_{i}} starting with

T, i=1
,

. . . n+1 ,
there exist i,j such that $\tau$_{i}(1)\neq$\tau$_{j}(1) .

Proposition 4 Let M be a compact Riemannian manifold such that Isom(M)
is a finite group (e.g. a hyperbolic surface). Take a point  a\in  M and

 $\alpha$ : [0 ,
1 ] \rightarrow \mathcal{K}_{M} be a path of disks with  $\alpha$(0) = \{a\} . Also take T =

C_{ $\varphi$,U} \in  u($\nu$_{ $\alpha$}(0)) with  $\varphi$(a) = a . Then there exists a continuous lift  $\tau$ :

[0, 1]\rightarrow u(M, \mathbb{R}^{d}) of \mathrm{y}_{ $\alpha$} starting with T if and only if  $\varphi$( $\alpha$(t)) =  $\alpha$(t) for
each  t\in (0,1) . The symbol of  $\tau$(t) (t\in [0,1]) for each such lift  $\tau$ is equal
to  $\varphi$.

Proposition 5 Let T^{n} :=\mathbb{R}^{n}/\mathbb{Z}^{n} be the flat torus and take a point a\in T^{n}.

There exists a path of disks  $\alpha$ : [0, 1]\rightarrow \mathcal{K}_{T^{n}} such that for each  T=C_{ $\varphi$,U}\in
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\mathcal{U}(\mathrm{v}_{ $\alpha$}(0)) with  $\varphi$(a) = a
,

there exists a lift  $\tau$ : [0, 1]\rightarrow \mathcal{U}(T^{n}, \mathbb{R}^{d}) of $\nu$_{ $\alpha$}

starting with T. The symbol of  $\tau$(t) (t\in [0,1]) for each such lift  $\tau$ is equal
to  $\varphi$.
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