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1. SOME RESULTS ABOUT LINEAR ISOMETRIES ON SPACES OF CONTINUOUS

FUNCTIONS

The classical Banach‐Stone theorem [4, 30] states that if X and Y are compact Haus‐

dorff topological spaces and T is a linear isometry from C(X) onto C(Y) (endowed with

the supremum norm), then there exists a homeomorphism from Y onto X and a continuous

function  $\tau$ from  Y into S_{\mathrm{K}} such that

Tf= $\tau$\cdot(f\mathrm{o} $\varphi$) (f\in C(X)) .

An important generalization of the Banach‐Stone theorem was given by Holsztyński in

[14, 1966] by considering into isometries. His theorem asserts that if T is a linear isometry
from C(X) into C(Y) , then there exists a closed subset Y_{0} of Y

, a continuous surjective
map  $\varphi$ from  Y_{0} onto X

, and a norm‐one element  $\tau$\in C(Y) with | $\tau$(y)|=1 for all y\in Y_{0}
such that

Tf(y)= $\tau$(y)f( $\varphi$(y)) (f\in C(X), y\in Y_{0}) .

These results have been generalized in many ways. We can cite the works by Jeang and

Wong [16, 1996] on spaces of continuous scalar‐valued functions vanishing at infinity, by
Araujo and Font [3, 1997] on certain subspaces of scalar‐valued continuous functions, by
Hatori and Miura [13, 2013] on unifomly closed function algebras, by Koshimizu, Miura,
Takagi and Takahasi [23, 2014], etc.

In the vector‐valued case, on the one hand, Jerison [17, 1950] extended the Banach‐

Stone theorem and, on the other hand, Cambern [8, 1978] improved the Holsztyński theo‐

rem by characterizing into linear isometries between spaces of vector‐valued continuous

functions. Subsequently, many other studies have been published on this subject (see
the monograph [9]). To mention a recent one, we cite Kawamura�s work [22, 2016] con‐

cerning surjective linear isometries between certain subspaces of vector‐valued continuous

functions.

This type of results can be very useful. For example, Botelho and Jamison [6, 2008]
investigated the algebraic and topological reflexivity of C(X) and C(X, E) by using the

representations of the into isometries given by Holsztyński and Cambern (extending, in

this way, a theorem of Molnár and Zalar [25]).

2. LINEAR ISOMETRIES ON SPACES OF LIPSCHITZ FUNCTIONS

Let us recall that a map f:X\rightarrow Y between metric spaces is said to be Lipschitz if

L(f)=\displaystyle \sup\{\frac{d_{Y}(f(x),f(y))}{d_{X}(x,y)}:x, y\in X, x\neq y\}<\infty.
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In such case, L(f) is called the Lipschitz constant of f.
Given a metric space X and a normed space E

, we denote by Lip(X, E ) the vector

space of all bounded Lipschitz functions f:X\rightarrow E . If E is the field of real or complex
numbers, we shall write simply Lip(X).

On Lip(X, E), it is usually considered the norm \displaystyle \Vert f\Vert=\max\{\Vert f\Vert_{\infty}, L(f)\} ,
where \Vert f\Vert_{\infty}

is the supremum norm of f . If E is a Banach space, then (Lip(X, E), \Vert . is a Banach

space too.

The spaces of Lipschitz functions appear in the works of many authors. See for example
[29, 20, 32, 21, 12, 1, 7]. In particular, the study of the surjective linear isometries

between Lipschitz‐spaces started with Roy [28, 1968], Vasavada [31, 1969] and Novinger
[27, 1975]. Later Weaver [32, 1999] improved these results by taking complete and 1‐

connected metric spaces (a metric space is  r‐connected if it cannot be decomposed into

two nonempty disjoint sets whose distance is greater than or equal to r). On the other

hand, Mayer‐Wolf [24, 1981] provided a description of the surjective linear isometries on

spaces of Hölder functions different from a weighted composition operator.
For our part, we stated a Lipschitz version of the Holsztyński theorem for into linear

isometries (not necessarily surjective) on Lipschitz spaces [18], only under the assumption
that the linear isometry takes the constant function 1 into a contraction. Moreover we

extended our result to the vector‐valued case [19], obtaining in this way a Lipschitz version

of Cambern�s theorem.

More recently, Botelho, Fleming and Jamison [5, 2011] gave a description of the linear

surjective isometries on Lip(X, E) under weaker conditions by using extreme points of
the ball of the dual Lip (\mathrm{X}, E)^{*}.

Finally Araujo and Dubarbie [2, 2011] gave a complete description of surjective linear

isometries in a very general setting (only strict convexity on the normed spaces E and F

is assumed). They considered standard tsometries and purely nonstandard isometWies. \mathrm{A}

map T:\mathrm{L}\mathrm{i}\mathrm{p}(X, E)\rightarrow \mathrm{L}\mathrm{i}\mathrm{p}(\mathrm{Y}, F) is a standard isometry if it has the form

T(f)(y)=Jy(f( $\varphi$(y))) (f\in \mathrm{L}\mathrm{i}\mathrm{p}(X, E), y\in Y) ,

where Jy: E\rightarrow F is a surjective linear isometry for each y\in Y , the map J is constant on

each 2‐component of Y
, and  $\varphi$:Y\rightarrow X satisfies that Uoth  $\varphi$ and  $\varphi$^{-1} preserve distances

less than 2. The purely nonstandard isometries, howev.er, are not weighted composition
operators on a part of the metric space Y . Concretely, S_{ $\psi$} : Lip(Y, F) \rightarrow \mathrm{L}\mathrm{i}\mathrm{p}(Y, F) is a

purely nonstandard isometry if it can be described by

S_{ $\psi$}(f)(y)=\left\{\begin{array}{ll}
f(y) & \mathrm{i}\mathrm{f} y\in \mathcal{B},\\
f( $\psi$(y))-f(y) & \mathrm{i}\mathrm{f} y\in u.
\end{array}\right.
where \{B,u\} is certain partition of Y

, and  $\psi$:\mathcal{U} \rightarrow  B is a map with certain metric

properties. Araujo and Dubarbie proved.that every nonstandard surjective isometry is

the composition of a standard and a purely nonstandard isometry (when we are not in

the case E and F complete and X or Y not complete).

3. BILINEAR ISOMETRIES ON SPACES OF CONTINUOUS FUNCTIONS

In the setting of bilinear isometries, we do not find such an extensive literature. The

first result that we can cite is a bilinear version of the Holsztyński theorem obtained

by Moreno and Rodríguez [26, 2005]. They proved that if X, Y, Z are compact Hausdorff

spaces and  $\Phi$ :  C(X)\times C(Y)\rightarrow C(Z) is a bilinear mapping satisfying \Vert $\Phi$(f, g =\Vert f\Vert\Vert g\Vert
for every (f, g) \in C(X) \times C(Y) , then there exists a closed subset Z_{0} of Z , a continuous
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surjective mapping  $\varphi$ :  Z_{0}\rightarrow X\times Y , and a norm‐one function  $\tau$\in C(Z) with | $\tau$(z)| =1

such that

 $\Phi$(f, g)(z)= $\tau$(z)f($\pi$_{X}( $\varphi$(z)))g($\pi$_{Y}( $\varphi$(z)))
for all (f, g)\in C(X)\times C(Y) and z\in Z_{0} (where $\pi$_{X}, $\pi$_{Y} stand for the natural coordinate

projections).
Moreno and Rodríguez�s theorem was extended by Font and Sanchis. Firstly, to the

case of certain subspaces of scalar‐valued continuous functions [10, 2010]; and, secondly,
to the case of vector‐valued continuous functions [11, 2012]. Moreover Hosseini, Font and

Sanchis got a multilinear version of that theorem [15, 2015].

4. BILINEAR ISOMETRIES ON SPACES OF LIPSCHITZ FUNCTIONS

We follow the ideas of Moreno and Rodriguez and get a description of the bilinear

isometries of Lip(X)‐spaces. Concretely, our main theorem is

Theorem 4.1. Let X, Y, Z be compact metric spaces, and  $\Phi$:\mathrm{L}\mathrm{i}\mathrm{p}(X)\times \mathrm{L}\mathrm{i}\mathrm{p}(Y)\rightarrow \mathrm{L}\mathrm{i}\mathrm{p}(Z)
be a btinear mapping taking t\grave{h}e pair of constant functions one (1_{X}, 1_{Y}) into a contraction

and satisfying \Vert $\Phi$(f, g = \Vert f\Vert\Vert g\Vert for every (f, g) \in \mathrm{L}\mathrm{i}\mathrm{p}(X) \times \mathrm{L}\mathrm{i}\mathrm{p}(Y) . Then there exist

a closed subset Z_{0} of Z
, a surjective mapping  $\varphi$:Z_{0}\rightarrow X\times Y and a function  $\tau$\in \mathrm{L}\mathrm{i}\mathrm{p}(Z)

with | $\tau$(z)|=1 for every z\in Z_{0} such that

 $\Phi$(f, g)(z)= $\tau$(z)f($\varphi$_{1}(z))g($\varphi$_{2}(z)) ((f, g)\in \mathrm{L}\mathrm{i}\mathrm{p}(X)\times \mathrm{L}\mathrm{i}\mathrm{p}(Y), z\in Z_{0}) .

Here, $\varphi$_{1} : Z_{0} \rightarrow  X and $\varphi$_{2} : Z_{0} \rightarrow  Y denote the compositions of  $\varphi$ with the natu‐

ral coordinate projections. Moreover, if it ts considered on  X \times  Y the maximum dis‐

tance d_{\infty} , it holds that  $\varphi$ is Lipschitz with  L( $\varphi$) \displaystyle \leq\max{  1 , diam(X)/2, \mathrm{d}\mathrm{i}_{\mathfrak{N}}\mathrm{n}(Y)/2}, and

d_{\infty}( $\varphi$(z),  $\varphi$(z'))\leq d(z, z') for every z, z'\in Z_{0} with d(z, z')<2.

By taking in this theorem the space Y reduced to a point, we can get as a consequence

the description of the into linear isometries given earlier in [18, Theorem 2.4].
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