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CONTRACTIVE PROJECTIONS ON SUBSPACES OF CONTINUOUS
FUNCTIONS

FERNANDA BOTELHO AND TAKESHI MIURA

ABSTRACT. This paper deals with the structure of contractive and bi-contractive projec-
tions on spaces of continuous functions defined on a compact and Hausdorff topological
space.

1. INTRODUCTION

This paper deals with contractive and bi-contractive projections on subspaces of con-
tinuous functions. More precisely, the underlying spaces are closed subspaces of C(2),
with Q a compact Hausdorff space, endowed with the standard infinite norm. A generic
closed subspace of C(£2) is denoted by A. The operators under investigation are projec-
tions which are idempotent bounded operators on A. Each projection P determines a
new projection P+ = I — P, called the complement of P. Within the class of projections,
we are interested in those that are contractive, meaning || P|| = 1, and also those that are
bi-contractive, i.e. ||P| = ||P|| = 1.

Friedman and Russo in [10] showed that contractive projections in C(£2) can be de-
scribed by its essential part. This is represented by an operator @, taking values in the
space of continuous and bounded functions defined on a special Borel subset of £2, Cy(S)
also endowed with the infinite norm. The operator @ : C(2) — Cy(S) simply restricts
the action of P on f to S while preserving the norm [|Q(f)|lcc = ||P(f)|lco- Furthermore,
P is then retrieved from @ via an isometric simultaneous extension from the range of @
to the entire C(). _ '

As for contractive projections on C(€2), a contractive projection on A can be represented
by its essential part followed by an isometric simultaneous extension. The proof follows
steps presented in [10] that are outlined in the section 2 of this paper.

The Friedman-Russo decomposition of contractive projections on C(f2) has very pow-
erful corollaries, one of which is the representation for the bi-contractive projections.
Proposition 1.19 in [10] formulates that bi-contractive projections on C(f2) are given as
the average of the identity with an isometric reflection. This is a very interesting result
since the bi-contractive projections on C(f2).and the generalized bi-circular projections
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have exactly the same form. In this paper we explore this feature for some subspaces of
continuous functions.

Bi-circular projections were introduced in 2004 by Staché and Zalar. Bi-circular pro-
jections appeared as a characterization for Hilbert spaces among JB* triples, see [20]. For
the structure of these projections on spaces of operator algebras we refer the reader to
[19]. This notion was generalized by Fosner, IliSevic and Li to the so-called generalized
bi-circular projections and, in [9], they found a representation of these projections on
spaces of matrices. ‘

Generalized bi-circular projections have been characterized on several Banach spaces,
and often they can be represented as the average of the identity with an isometric reflec-
tion. These new settings include, spaces of continuous functions, Lipschitz functions and
spaces of analytic functions, see [1, 5, 7] and many references therein.

It is known that generalized bi-circular projections are contractive, see [12] and [14].”

It is also easy to see that generalized bi-circular projections are bi-contractive. It is not
clear when the bi-contractive projections of a Banach space are exactly the generalized
bi-circular projections of that space. There are many spaces where these two classes of
projections coincide, as for example Hilbert spaces, C(€2) and some vector valued spaces of
continuous functions, to list a few examples. When this happens we say that the Banach
space has GBPs=BCPs for short.. In this paper we discuss some spaces of continuous
functions with this property and also pose some questions.

In section 2, we followed the Friedman-Russo approach for a decomposition of a con-
tractive projection for closed subspaces of C'(2) and from this, we draw some observations
about the existence of bi-contractive projections.

In section 3, we consider a class of spaces of continously differentiable functions defined
on [0, 1], endowed with a variety of norms (KKM spaces). These spaces can be viewed as
subspaces of C(2). We give conditions under which KKM spaces are Banach algebras.
The Gelfand theory provides powerful tools for the study of these algebras but in this
case the Banach algebras are not self-adjoint and then the Gelfand transform is not an
isometry. This leaves the problem of finding the bi-contractive projections supported by
this new class of spaces. It is interesting to mention that the form of the generalized
bi-circular projections supported by a given space is directly linked to the form of the
respective surjective isometries. The form of the surjective isometries supported by the
KKM spaces was derived by Kawamura, Koshimizu and Miura in [13]. This opens a
pathway for a characterization of a class of bi-contractive projections on these new spaces,
to be presented in a forthcoming work [8].

In section 4, we give an overview of some results of bi-contractive projections supported
by spaces of vector valued continuous functions, details shall be available soon in [4].

2. RESULTS ON CONTRACTIVE PROJECTIONS ON SUBSPACES OF C(f2)

We review the characterization of the contractive projections on C(€2) due to Friedman
and Russo adapted to closed subspaces of C(£2), cf. [10].
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Throughout this paper € denotes a compact Hausdorff space and C(2) denotes the
space of all continuous functions endowed with the standard || - ||, norm. A contractive
projection P : C(2) — C(Q) is an idempotent bounded operator of norm 1.

We first observe that a contractive projection P induces projections of the same norm
on the dual and double dual spaces, P* and P** respectively.

The Riesz-Fisher-Markov Theorem identifies the dual space C(Q2)* with the space of
all regular Borel measures of bounded variation, defined on the o-algebra of the Borel
subsets of €, for details we refer the reader to [16, 17].
~ Given a closed subspace of C(2), A, and an element 7 in A*, we denote by 7 any

Hahn-Banach extension of 7 to C(Q2)* such that ||7|| = ||7|]. We associate to 7 the unique
regular Borel measure u representing 7
f) = / fau,
Q

for every f € C(Q). We observe that all measures representing some Hahn-Banach
extension of 7 yield the same value when restricted to the functions in A. Hence for
7 € A*, when we say that a measure represents 7 we refer to any measure representing
some Hahn-Banach extension of 7.

We pursue by reviewing some additional definitions and by setting notation to be
followed throughout this paper. Given a subspace of €, say €, we denote by Ag, =
{g:% = C: g= fla,, for some f € A}. We also define support of a Borel measure
v as a Borel subset of Q, S,, such that z € S, if and only if |v|(U) > 0 for every open
neighborhood U of z, where |v| denotes the total variation measure of v.

We now prove a result that, following the approach in [10], also describes the form of
a contractive projection on A, with A a closed subspace of C(£2). The next proposition

- follows an argument due to Atalla applied to the extreme points of P*(A}), see [2].

Definition 2.1. Let A be a subspace of C(2) and let P be a contractive projection on A.
Then a family of extreme points of P*(A}) is said to have the mazimal support property if
and only if any two distinct elements in the family have disjoint supports and the support
of any given extreme point of P*(A}) is equal to the support of some element in the family.

The next proposition ensures that a family with the maximal support property asso-
ciated with a contractive projection exists and it determines in a natural way the form
of the elements in the range of the projection restricted to points in the support of any
measure belonging to the family.

Proposition 2.2. (¢f. [10]) Let A be a closed subspace of C(Q) and let P be a contractive
projection on A. Then there exists a family of extreme points of P*(A}), {ps}ier which
satisfies the mazimal support property and there exist functions ¢; € A such that, for
every f € A, P(f) - ¢; is constant on S,,.

Proof. We observe that A} is a convex and closed subset of A*, and since P* is a contractive
projection, then P*(A}) is also a convex and closed subset of Aj.
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The Krein-Milman Theorem implies the existence of an extreme point p of P*(A}), cf.
[15]. We denote the support of u by S,. The measure y represents the functional on A

given by 7,(f) = [, fdp.

This measure can be decomposed as p = |u| - ¢, with |u| denoting the variation of u
and ¢ the Radon-Nikodym derivative of u with respect to |u|. As such, ¢ is a function
in Ly(|p]) with values in S'. Therefore, for every integrable function h, in particular all
functions in A, we have [, hdp = [, k- @d|u|. For details on this decomposition we refer
the reader to [16] or [17].

We claim that P(f) - ¢ is |u|-a.e. constant. Suppose otherwise, this means that there
exists f € A such that P(f) - ¢ is not |u|-a.e. constant on S,. Therefore, there should
exist a real number a such that either

lul({z € @ : Re((P(f) - ¢)(z)) Z a}) >0 and |u|({z € Q: Re((P(f) - ¢)(z)) <a}) >0

or

lul({z € @: Tm ((P(f) - ¢)(z)) 2 a}) > 0 and |u|({z € Q: Tm ((P(f) - ¥)(2)) < a}) >0,

where Re and Im represent the real and. imaginary parts of a complex number. -
Without loss of generality, we assume that |u|({z € @ : Re ((P(f) - ¢)(z)) > a}) > 0

and |u|({z € @: Re ((P(f) - )(2)) < a}) > 0.
}\Zf set = {z € Q:Re((P(f)-¢)(z)) > a} and Q2 = {z € Q: Re ((P(f) - p)(z)) <

[el(@1) =t >0 and |u[(R)=1-1>0,

since the total variation of p is equal to 1.
We use these sets to define the following two measures:

1 1
H = '"}u'lﬂl and po = Tl”’lﬂz'

Therefore p = tu; + (1 — t)ue. Since P* is a projection and y is in the image of P* then
P*(u) = p. Thus p = tP*(u1) + (1 — t)P*(u2) and

(1 p=P*(u1) = P*(p2).
On the other hand, we have

P = [ PGdu=1 [ PO
and
P = 7 [ P,

thus Re(P*(u1)(f)) > a and Re(P*(u2)(f)) < a, contradicting the equation displayed in
(1). This proves that

P(f)-p=c; |ul-ae.
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Integrating this last equation with respect to |u| we have

or= [ P) - = [ PGydu= [ fae)= [ fau

Since p is an extreme point of P*(A}), there exists g € A such that fﬂ gdu # 0 and

P(g) = (f,9dr) P, |ul-a.e. on . Therefore, setting P = ggdﬂ,

@ € A. Now we prove that P(f) = ( fQ f_du) @ on S, for every f € A. Suppose that
P(f)(z) # (f, f du) B(z) for some f € A and z € S,,.. By the continuity of P(f) and P,
there exists an open set U of £, containing z, such that P(f) # ( fn f dp,) pon U. Since
z € S, we have |u|[(U) > 0. On the other hand, P(f) = ([, f du) @, |ul-a.e. as proved
above. By the choice of U, |u|(U) = 0, which is a contradlctlon We have proved that
P(f) = (fnfd,u)goonS for every f € A.

It remains to be shown the existence of a family of extreme points of P*(A}) that
satisfies the maximal support property. Towards this, we show that given two different
extreme points of P*(A?}), u and v, with intersecting supports and decompositions || - ¢
and |v| -1 respectively, must have equal supports. We observe that % € Ag, and P € Ag,.
Let z € S, N S,, the image of the Dirac measure concentrated on z, P*(d,), applied to a
function f yields

P*(6,)( /P f)dé, = (x)Lfdqu(x)/ﬂfdu.

Therefore = Av, with A = (z)¥(z), a modulus 1 complex number. This implies that
any two extreme points of P*(A}) have either equal supports or disjoint supports.

We define a partial order on the collection of all families F; = {(1;, Sy,) }ies such that,
for each ¢ € J, y; is an extreme point of P*(A}), with S,, denoting the support of y;, and
for i # j, we have that S, and S,,; are disjoint. We say Fj, < Fy, if and only if Jo C J;.
An application of Zorn’s lemma ensures the existence of a maximal family F; with the
desired property. This completes the proof. O

we may assume that

Remark 2.3. It is a consequence of the Krein-Milman Theorem that every element in
P*(A3}) is the limit of a net of conver combinations of extreme points. For every v €
P*(A}), v =limg Yy 12 A% poy, with po, € extP*(A}), 0 < A¥ < 1 and 302 A¢ = 1.

Therefore, the support of any measure representing functionals in' P*(A}) is contamed in
the union of the supports of the extreme points of P*(A;). We denote by S the union of
the supports of the measures in Fy.

We set Q(f) equal to the restriction of P(f) to .S. We shall prove that sup,cg |Q(f)(z)| =
maxzeo|P(f)(z)|. The operator @ : A — P(A)|s is given by Q(f)(z) = P(f)(z), for every
z € S. We observe that @Q(A) is a subspace of the space of all continuous and bounded
functions defined on S. Moreover, there exists an operator T : Q(A) — A given by
T(Q(f)) = P(f), under some additional conditions on A.
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We summarize these considerations in the next result. We denote by P(A)|s the space
of all functions in the range of P restricted to S. . The existence of the family F is
established in Proposition 2.2. We first introduce a definition.

Definition 2.4. Let W be a Borel subset of 2. The space A has the W -norming property
if and only if for every continuous function f : W — C with a continuous extension to
the closure of W, we have that || fllco = SUpyy; peasy | [y f dpul-

" Theorem 2.5. (cf. [10]) Let A be a closed subspace of C(2) and let P be a contractive
projection on A. Then there exist:

(1) A family F = {u; : i € I} of extreme points of P*(A}) with the mazimal support
property,
(2) A function ¢; : Q — S such that, for everyi € I,
¢i € ASM;

with S,, denoting the support of p;, and an operator Q : A = P(A)|s, with
S = UierSy,;, such that, for every x € S, and f € A,

AN@ = ([ 1) o)

(3) An operator T : P(A)|s — A such that ||T(Q(f))lleo = 1Q(f)lleo = [IP(f)llo and
P(f)=T(P(f)|s), if A has the S°-norming property.
Proof. The proof provided for the Proposition 2.2 and follow-up considerations show the
existence of a family of measures {j;}ic; which are extreme points of P*(A3) with the
maximal support property, as formulated in (1). For this collection of measures, and
taking ¢; = ﬁ%, for a given g € A such that fn gdu; # 0, we have

PO@ = ([ 1dus) o),

for every f € A and z € S,,. By the definition of ¢; we infer that ¢; € As,,. We set
Q : A— P(A)|s defined by Q(f) = P(f)|s. This proves (2).

The space A is isometrically embedded in A**, via the canonical embedding ij‘or a
function f in A we denote its image in A* by f. We observe that P**(f) = P(f), for
every f € A. This observation can be shown as follows: If 7 € A*, then

P (f)(r) = f[P* ()] = P*(7)(f) = 7(P(f)) = P(f)(7)-
We recall the Goldstine Theorem: The closed unit ball of J(A) is weak-* dense in the
closed unit ball of A**. ,
We set P(f)|s = xs - P(f), with xs denoting the characteristic function on S. This
function is continuous on S but not necessarily on the topological boundary of S, this
leads to considering the operator @) on A** defined by

Q&) = xs - (P™(€)),
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for every £ € A**. For u € A*, we set xs - (P**(§))~(,u) = ¢§(P*(p)ls), where Pj(p)lg(f) =
Js FdP*(u) (f € A). In particular, for f € A, Q(f) = xs- Pf = Pfls. Let R be defined
as follows:

R(g) = P () - Q(¢), £ €A™
Hence, for f € A,
R(f) = P*(f) — xs - P*(f) = xsc - P (f).
We show that
@) RQ=R.

Remark 2.3 implies that P**(xs - f) = P**(f), since the support of any measure in A* is
contained in S. The weak-* density of J(A), in Aj* implies that P**(xs - §) = P*(§),
for every £ € A**. Furthermore, P**(xs - P™*(¢ )) = P**(¢). We should recall that xs - f

is given by xs - f(u) = f(uls) with p € A*.
Towards the proof of the equation displayed in (2) we have

RQ=(P"-QQ=P"Q-Q=P"-Q=Fk

Therefore RQ = R and, for every f € A, we have

) IR = 1RGN < 1G] = sup xs - (P (7))
= ap / P(f)du’ < QU)o

We now define the operator T : Q(A) — A given by T(Q(f)) = P(f). First, we show
that T' is well defined. If fo and fi, functions in A, are such that Q(fo) = Q( fi) then

Q(fo) = Q(J1) and R[Q(fo) — Q(J1)] = 0. This implies that R(fo) = R(/1). Hence
P™(fo) = P*(f1) or P(fo) = P(f1).

Now, we prove that, for every f € A,

IP(H)llo = Q) -

For each function f we extend'Q( f) to the entire Q by assigning zero to those points in
2\ S. We denote this new function by Q(f) for simplicity of notation. Since Q(f) and
(P — Q)(f) have disjoint supports then ||P(f)lco = max{[|Q(f)lloo, (P — @)(f)llec}. We
have shown that ||R(f)|| < |Q(f)lleo = llxs - P(f)|lcc and we also have

IP(H)lleo = IP (Al = max{llxs - P(f)lloo, Ix5e - Pf)lloo}-



FERNANDA BOTELHO AND TAKESHI MIURA

The space A has the S°-norming property, then applying this property to the function
(P - Q)f we have

Ixse + P(f)lloo = (P = @)(Flleo = sup

{p: uea

/SC P(f)du

f (P-Q)f) dﬂ’

= sup
HEA*;|ul=1

= sup fd(P*u)
BEA*;|pf=1

= lIxse - (P**( = 1P () = QAN
= Rl

Thus
IP(H)lleo = QU 1o

Then T is an isometric simultaneous extension and completes the proof. 0

We now derive some results for bi-contractive projections on a closed subspace of C'(£2).
We start with a definition.

Definition 2.6. Given a contractive projection P on A, let F; be a mazimal family as
defined in Theorem 2.5-1. Then A has the support extension property iff for every Borel
subset W of S, the union of the supports of the measures in Fy, every point x ¢ W,
A € S! and every f € Al|g there exists a function g € A such that glw = flw and

9(@) = llgllec = 1.
Proposition 2.7. Let A be a closed subspace of C(Q2) with the support extension property.

Let P be a bi-contractive projection on A and p an extreme point of P*(A}). Then the
support of u has at most two points.

Proof. Let W be an open subset of S,. We claim that [u|(W) > i. Suppose that

0 < |u|(W) < 1/2. Then, for every open subset W, of W such that Wy ¢ W ¢ W
we have that 0 < |u|(Wo) < 3. Theorem 2.5 implies that for every f € A, P(f)(z) =

(fg fdp) ¢(z), for every w E S We recall that ¢ € Ag, and p = ¢ - |u|. We select

z € S, \ Wo such that P(f)(z) = ([, fdp) ¢(z).
The support extenswn property implies the existence of f € A such that

f(z) = —¢(z) - ¢(z)a forz €S, \ Wo, and ||flle = f(z) =1
Since P(f)(z) = (fs fdp,) #(z), we have

PG =0C) [ faut [ —pdp.

u\Wo
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We observe that |¢(2) - fy,,, fdp| < |ul(Wo) < 3, which implies that Re ( Jwo £ - ¢(z)d,u) <
1. On the other hand,

_ 1
/ —¢du=/ —¢-ddlu| = —[pl(Su \ Wo) < =3
SM\WO Su\WO

Then Re(P(f)(z)) < 0 and

|(T = P)()(2)| 2 1 —Re(P(f)(2)) > 1,
which contradicts the assumption that I — P is contractive. This proves that, for every
W, an open subset of S, [u|[(W) > 1. Hence S, = {z} or S, = {z, y}. In the first case

S, is a singleton and the measure is the Dirac measure concentrated on z. In the second
case, [p|({z}) = [u|({y}) = 1. This completes the proof. O

The next result shows that under the sé,me hypotheses of the Proposition 2.7, we have
(P—Q)(f)(x)=0, for every f€ Aand z ¢ S.

Proposition 2.8. Let A be a closed subspace of C(Q2) with the support extension property.
Let P be a bi-contractive projection on A. Then for every f € A, the support of P(f) is
contained in S.

Proof. Suppose (P ~ Q)(f)(z) # 0, for some f € A and some point z ¢ S. We may
assume that ||f||cc = 1. Since A has the support extension property there exists g such
that gls = f[s and g(z) =1 = ||g|e.

If the real part of (P — Q)(f)(z) is negative then we shall prove that the real part of
(I — P)(g)(z) is greater than 1. We observe that '

@ (I-P)g)(z)=1-Pg)(ay=1-[Q+(P-Q)(9)(2) =1~ (P Q(f)z).

We claim that (P—@Q)(g) = (P—Q)(f) on S°. To justify this claim we revisit the operator
R defined for the proof of Theorem 2.5. Since R = P** — @, then

R(g) = P*(3) — Q(§) = xs¢ - P™()-
On the other hand, we also have ‘
R(§) = RA(§) = RQ(F) = R(f) = xs- - P™(]).

Since Q(g) and Q(f) at any point in S° are equal to zero then we have (P — Q)(g) =
(P—Q)(f) on S°. Hence, Q(g9)(z) =0and (P—Q)(f)(z) = (P—Q)(9)(z). This explains
the equalities displayed in (4).

Therefore, Re ((I — P){(g)(z)) = Re((1 — (P — Q)(f)(z))) > 1. This contradicts the
assumption that I — P is contractive. If Re ((P — Q)(f)(z)) >0 then we consider g such
that g|ls = — f|s and g(z) = 1 = ||g|leo t0 get a contradiction. A similar reasoning applies
if the imaginary part of (P — Q)(f)(z) is nonzero. This completes the proof. O
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Remark 2.9. If P is a bi-contractive projection on a subspace of C(Q2), satisfying the
hypotheses of Proposition 2.7 then P is given as the average of the identity with an iso-
metric reflection. It is not clear which subspaces of C(Q) satisfy the support extension
property.

3. SOME REMARKS ON THE GBPs=BCPs

A generalized bi-circular projection P on a Banach space is an idempotent bounded
‘operator P for which there exists a modulus 1 complex number ), different from 1, such
that P + A(I — P) is an isometry. If we set T'= P + A\(I — P), then T is a surjective
isometry since

(P+XI—-P)(P+XI-P)=1
It is a known result that generalized bi-circular projections are bi-contractive, see [14].
For completeness of exposition we include a proof of this fact. For every n € N, we have

T" = P+ "I - P).

If the sequence {\"} is dense and by considering a subsequence that converges to —1
we conclude that 2P — I is an isometry. Therefore 2||P]| — 1 < 1 or P is contractive.
Moreover, we also have that 2(|I — P|| — 1 < ||2(P — I) + I|| = 1, which implies that P is
bi-contractive. If there exists n (the smallest positive integer) such that A" =1, then

nP+i)\i (I-P)= Xn::rz
i=1 i=1

The sum Y1, A =0 and n||P|| = || Xi, T < 3o, |IT%]| = n, hence P is contractive.
A similar proof applied to the complement projection /— P implies that P is bi-contractive.

Generalized bi-circular projections on a Hilbert space are the hermitian projections,
see Proposition 3.1 in [6]. Hermitian projections on a Hilbert space are the orthogonal
projections, see [11]. Therefore the bi-contractive projections on a Hilbert space are the
generalized bi-circular projections. Hilbert spaces have GBPs=BCPs.

We now recall Kawamura-Koshimizu-Miura spaces of continuously differentiable func-
tions defined on the unit interval [0, 1] endowed with any of the norms defined as follows:

- oy,

where D is a connected and compact subset of [0,1]® such that the union of the two
canonical projections (D) Umy(D) = [0,1], then

I£lkpy = sup |F(@®]+]1f(s)]-
(t,8)eD

These spaces can be isometrically embedded in C(D x S'). Each such space can be
identified to a subspace of C(2) with & = D x S'.

We observe that for those sets D such that m1(D) = me(D) = [0, 1], the corresponding
KKM space is a commutative Banach algebra, then the Gelfand transform is a contraction.
These spaces are not closed under conjugacy. Towards this claim we observe that for
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F' such that F(s,t,2) = f(s) + zf'(t) with f € C'[0,1], the complex conjugate of I,
F(s,t,z) = f(s) + Zf'(t). If we assume that F is a function in the subspace of C(Q)
isometric to C'[0,1], then there exists g € C*[0,1] such that for every (s,t,2) € Q we
have

F(s,t,2) = f(s) + 2f'(t) = g(s) + 24/ (¢).
In particular, for z = +1 we conclude that g(s) = f(s) for every s, hence ¢'(s) = f/(s).

Now setting z = 7 we have —if/(t) = ig’(¢t) = i f'(¢). This leads to contradiction.
Surjective linear isometries on KKM spaces were characterized in [13]. From this char-

acterization we can describe the generalized bi-circular projections. As mentioned before

generalized bi-circular projections are bi-contractive but it is not clear if those are the

"bi-contractive projections on these settings.

4. B1-CONTRACTIVE PROJECTIONS ON VECTOR VALUED SPACES OF CONTINUOUS
FUNCTIONS

In this section we give a brief outline on how to extend the methods and results pre-
sented before to spaces of vector valued continuous functions. As before, 2 is a compact
Hausdorff space and E is a uniformly convex Banach space with norm || - ||z. Under
these conditions we can extend the techniques of the scalar case to this new setting. We
give a characterization for the bi-contractive projections and conditions under which the
class of the generalized bi-circular projections coincide with the class of the bi-contractive
projections, the details are available in a forthcoming paper, see [4].

We observe that for the space of all continuous functions f : @ — E endowed with
the infinite norm, i.e. || f|lc = Sup,eq || f(z)||z With E a selfadjoint commutative Banach
algebra, the space C(2, E) is also a selfadjoint commutative Banach algebra. Under
this condition the Gelfand theory applies and C(X, E) is isometrically isomorphic to
the space of continuous functions on the carrier space of C(, F). It is-known that the
carrier space of C(€, E) or the space of nontrivial multiplicative functionals on C(£2, E)
is homeomorphic to Q x A(E), where A(FE) is the carrier space of E. This space endowed
with the weak-* topology is a compact Hausdorff space. Contractive and bi-contractive
projections can transfer to projections of the same type on a space of continuous functions
on a compact Hausdorff space. Then we conclude that GBPs=BCPs.
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