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ABSTRACT. Let H be a complex Hilbert space and ] an inner‐product on H. \mathrm{A}

bounded linear operator T on \mathrm{H} is a Hermitian operator if [Tx, x] \in \mathbb{R} for each x\in H.

IJn 1961, the Hermitian operator on a normed vector space was defined by means of the

semi‐inner product defined by Lumer [6]. Hermitian operators and their applications
have been studied by many authors; a few of them are [1, 2, 5, 6, 7]. We exhibit forms

of Hermitian operators on certain semisimple commutative Banach algebras.

1. INTRODUCTION

The notion of a Hermitian operator on a Banach space dates back to the seminal

papers by Vidav [8] and Lumer [6]. Lumer considered a definition in terms of a semi‐

inner product.

Definition 1. Let V be a complex Banach space with the norm \Vert\cdot\Vert_{V} . A semi‐innner

product ] on V is a function from V\times V into \mathbb{C} with the following properties;

(1) [u+v, w]=[u, w]+[v, w],
[ $\lambda$ u, v]= $\lambda$[u, v] for u,.v, w\in V,  $\lambda$\in \mathbb{C}.

(2) [v, v]\geq 0 for all v\in V and [v, v]\neq 0 if v\neq 0.
(3) |[u, v]|^{2}\leq[u, u][v, v] for u, v\in V.

In addition, if [v, v]=\Vert v\Vert_{v}^{2} for every v in V , then ] is said to be a semi‐inner product
compatible with the norm of V.

In this note we abbreviate a semi‐inner product compatible with the norm as a semi‐

inner product.

Definition 2. Let ] be a semi‐inner product on a complex Banach space V . Then a

bounded linear operator T on V is said to be a Hermitian operator if [Tv, v] \in \mathbb{R} for all

v\in V.

It is well‐known that any Banach space has a semi‐inner product, which needs not to

be unique. We note that the above definition of a Hermitian operator is independent of

the semi‐inner product chosen.

2. KNOWN RESULTS FOR HERMITIAN OPERATORS AND THE MAIN THEOREM

2.1. Known results. Let B be a unital Banach algebra. For each a\in B, M_{a} denotes the

multiplication \cdot

operator on  B , which is defined by  M_{a}=a\cdot  I with the identity operator I

on B . We introduce a Hermitian element.
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Definition 3. Let B be a unital Banach algebra. The numerical range of a\in B is

V(a):=\{f(a);\Vert f\Vert=f(1)=1, f\in B^{*}\}.
Then a\in B is said to be a Hermitian element if and only if V(a)\subset \mathbb{R}.

First proposition in this section summarizes some of the properties of Hermitian op‐
erators and Hermitian elements. In many situations this equivalent statements plays a

pivotal role. The following is due to Theorem 5.2.6 in [3].

Proposition 2.1. Let T be a bounded linear operator on a Banach space V. Then the

following are equivalent.

(1) T is a Hermitian operator
(2) \Vert\exp(itT)\Vert_{v}=1 for any t\in \mathbb{R}

(3) \exp(itT) is an \dot{u}ometw for any t\in \mathbb{R}

(4) T is a Hermitian element in \mathfrak{B}(V) , which stands for the space of all bounded linear

operators on V equipped with the operator norm.

Proposition 2.2. Let B be a unital Banach algebra. If a\in B is a Hermitian element,
then the multiplication operator M_{a} is a Hermitian operator on B.

Proof. Let a \in  B be a Hermitian element. It is well‐known that an element a \in  B is

Hermitian if and only if \Vert\exp(ita)\Vert_{B}=1 for any t\in \mathbb{R} . Thus, we deduce that

\Vert\exp(ita\cdot I =1

for all t\in \mathbb{R} . Applying Proposition 2.1, we conclude that M_{a} is a Hermitian operator on

B. \square 

We are interested in a problem that under which circumstances the converse statement

of Proposition 2.2 holds; when is a Hermitian operator on a unital Banach algebra a

multiplication operator? Our purpose of this note is to give a partial answer to the

problem. Now we recall two observations about Hermitian operators.

Theorem 4. [2, Theorem 4] Let X be a compact Hausdorff space and E a complex Banach

space. Suppose that C(X, E) is the Banach space of all continuous functions on X with

values in E with the supremum norm. A bounded linear operator T on C(X, E) is a

Hermitian operator if and only if for each x\in X there is a Hermitian operator A(x) on

E such that for any F\in C(X, E) we have

TF(x)=A(x)F(x) x\in X.

Theorem 5. [1, Theorem 3.1] Let X be a compact metric space and Lip(X) a complex
Banach algebra of complex‐valued Lipschitz functions with the norm L + \Vert \Vert_{\infty}. A

bounded linear operator T on Lip(X) is a Hermitian operator if and only if  T= $\lambda$\cdot I with

 $\lambda$\in \mathbb{R}.

2.2. The main theorem. The following is the main theorem in this note.

Theorem 6. Let B be a unital semisimple commutative Banach algebra. Suppose that ev‐

ery surjective unital isometry on B is multiplicative. If a bounded complete‐linear operator
T\dot{u} a Hermitian operator, then

T=M_{T(1)}
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3. A PROOF OF THE MAIN THEOREM

Proposition 3.1. Let B be a unital Banach algebra. Suppose that T is a Hermitian

operator on B. Then T(1) is a Hermitian element in B.

Proof. This proof is based on Lemma 3.2 in [1]. For any f\in B^{*} with \Vert f\Vert =f(1)=1 , we

define $\Phi$_{f} : \mathfrak{B}(B)\rightarrow \mathbb{C} by

$\Phi$_{f}(S)=f(S(1)) (S\in \mathfrak{B}(B)) .

We infer that $\Phi$_{f} is a bounded linear functional on \mathfrak{B}(B) and satisfies \Vert$\Phi$_{f}\Vert=$\Phi$_{f}(I)=1.
Since T is a Hermitian element, this implies

f(T(1))=$\Phi$_{f}(T)\in \mathbb{R}
for any f\in B^{*} with \Vert f\Vert=f(1)=1 . Thus, we obtain that T(1) is a Hermitian element

of B. \square 

Proposition 3.2. Let T be a bounded complex linear operator on a unital semisimple
commutative Banach algebra B. Then the following are equivalent.

(1) T=M_{T(1)}
(2) \exp(it(T-M_{T(1)})) is multiplicative for every t\in \mathbb{R}

Proof. Suppose that T=M_{T(1)} . Clearly we have

\exp(it(T-M_{T(1)}))=I
for every t\in \mathbb{R}.

In order to prove the converse, suppose that \exp(it(T-M_{T(1)})) is multiplicative for

every t\in \mathbb{R} . We define H=T-M_{T(1)} and U_{t}=\exp(itH) for every t\in \mathbb{R} . Differentiating
U_{t} at t=0 , we get

U_{t}'|_{t=0}(ab)=iH (ab),
for any a, b\in B . As U_{t} is multiplicative, for any a, b\in B ,

we get

U_{t}'|_{t=0}(ab)=iaH(b)+iH(a)b.
It follows that H is a bounded derivation. By a theorem of Singer and Wermer, we observe

that H=0. \square 

We now proceed with the details for the proof of our main theorem.

A proof of the main theorem. Let T be a Hermitian operator on B . Applying
Proposition 3.1, T(1) is a Hermitian element of B . According to Proposition 2.2, we see

that M_{T(1)} and T-M_{T(1)} are Hermitian operators on B . Therefore, \exp it(T-M_{T(1)})
is a unital surjective isometry for any t\in \mathbb{R} . By the assumption, every surjective unital

isometry on B is multiplicative, thus \exp it(T-M_{T(1)}) is multiplicative. Hence Proposition
3.2 provides that T=M_{T(1)}.

\square 

4. APPLICATIONS oF THE MAIN THEOREM

Let us begin with a definition of a vector‐valued Lipschitz algebra. Let X be a compact
metric space and A a uniform algebra on a compact Hausdorff space Y . A map F from

X into A is said to be Lipschitz if it satisfies the following inequality

L(F):=\displaystyle \sup_{x\neq y\in X}\frac{\Vert f(x)-f(y)\Vert_{\infty}}{d(x,y)}<\infty.
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The set of all Lipschitz maps is denoted by

Lip(X, A) :=\{F : X\rightarrow A; L(F)<\infty\}
and this is a unital semisimple commutative Banach algebra with the norm of \Vert\cdot\Vert_{L} =

\Vert\cdot\Vert_{\infty}+L
We exhibit a theorem of Jarosz in [4]. Let E be a linear subspace of C(X) which

separates the points in X and contains constants. We denote by \mathrm{C}\mathrm{h}(E) the Choquet
boundary for E . We call E a regular subspace of C(X) if for any  $\epsilon$ > 0, x_{0} \in \mathrm{C}\mathrm{h}(E) ,

and open neighborhood U of x_{0} , there exists an f \in  E with \Vert f\Vert_{\infty} \leq  1+ $\epsilon$, f(x_{0}) = 1,
|f(x)|< $\epsilon$ for  x\in X\backslash U.

Theorem 7. [4] Let X and Y be compact Hausdorff spaces. Let A, B be complex linear

subspaces of C(X) and C(Y) respectively. We assume that A and B satisfy the following;

(1) A and B contain constant functions.
(2) A and B have \Vert\cdot\Vert_{A} and \Vert\cdot\Vert_{B}:p‐norm, q‐norm.

(3) A and B are regular subspaces.

If a bounded linear operator T from (A, \Vert\cdot\Vert_{A}) onto (B, \Vert\cdot\Vert_{B}) with T(1)=1 is a surjective
linear isometry, then T is an isometry from (A, \Vert\cdot\Vert_{\infty}) onto (B, \Vert\cdot\Vert_{\infty})

Applying Theorem 7 by considering Lipschitz algebra Lip(X, A) to be a subspace of

C(X\times Y) , we get the following corollary.

Corollary 8. If U is a linear isometry from Lip(X, A) onto Lip(Y, B) with U(1) = 1

then U is also an isometry with the supremum norm.

Now, we give a characterization of Hermitian operators on vector‐valued Lipschitz al‐

gebras.

Theorem 9. Let X be a compact metric space and A be a uniform algebra. A bounded

linear operator T : Lip(X, A) \rightarrow \mathrm{L}\mathrm{i}\mathrm{p}(X, A) is a Hermitian operator if and only if there

exists a real‐valued function a\in A with T(1)=1\otimes a such that

T=M_{T(1)}.

Proof. Actually real‐valued function a\in A is a Hermitian element of A . Therefore, for a

real‐valued function a\in A ,
we see that T(1)=1\otimes a is a Hermitian element of Lip(X, A).

Applying Proposition 2.2, we get T=M_{T(1)} is a Hermitian operator.
Now we consider the converse. Using Corollary 8, every surjective unital isometry on

Lip(X, A) with the norm of \Vert . \Vert_{L} is an isometry with the supremum norm. Moreover,
Nagasawa�s theorem shows that it is also multiplicative. Thus, Theorem 6 follows every
Hermitian operator on Lip(X, A) is a multiplication operator. \square 

Remark 10. As corollaries of Theorem 6, we also have Theorem 4 in [2] and Theorem 3.1

in [1].
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