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ABSTRACT. Let H be a complex Hilbert space and [-,-] an inner-product on H. A
bounded linear operator T" on H is a Hermitian operator if [Tz, ] € R for each z € H.
In 1961, the Hermitian operator on a normed vector space was defined by means of the
semi-inner product defined by Lumer [6]. Hermitian operators and their applications
have been studied by many authors; a few of them are [1, 2, 5, 6, 7]. We exhibit forms
of Hermitian operators on certain semisimple commutative Banach algebras.

1. INTRODUCTION

The notion of a Hermitian operator on a Banach space dates back to the seminal
papers by Vidav [8] and Lumer [6]. Lumer considered a definition in terms of a semi-
inner product.

Definition 1. Let V' be a complex Banach space with the norm || - ||y. A semi-innner
product [+,-] on V is a function from V X V into C with the following properties;

D) [u+v,w] = [uvw] + [’U, w]’

[Au,v] = A[u,v] for u,v,w € V,A € C.

(2) [v,v] >0forallv eV and [v,v] #0if v #0.

(3) |[w,v]|? < [u,4][v,v] for u,v € V.
In addition, if [v,v] = ||v||? for every v in V/, then [-,-] is said to be a semi-inner product
compatible with the norm of V.

In this note we abbreviate a semi-inner product compatible with the norm as a semi-
inner product.

Definition 2. Let [-,-] be a semi-inner product on a complex Banach space V. Then a
bounded linear operator T on V is said to be a Hermitian operator if [Tv,v] € R for all
vEV.

It is well-known that any Banach space has a semi-inner product, which needs not to
be unique. We note that the above definition of a Hermitian operator is independent of
the semi-inner product chosen.

2. KNOWN RESULTS FOR HERMITIAN OPERATORS AND THE MAIN THEOREM

2.1. Known results. Let B be a unital Banach algebra. For each a € B, M, denotes the
‘multiplication  operator on B, which is defined by M, = a - I with the identity operator I
on B. We introduce a Hermitian element. '



Definition 3. Let B be a unital Banach algebra. The numerical range of a € B is

V(a) :=={f(a)lifll=f(1)=1,f € B’}.
Then a € B is said to be a Hermitian element if and only if V(a) C R.

First proposition in this section summarizes some of the properties of Hermitian op-
erators and Hermitian elements. In many situations this equivalent statements plays a
pivotal role. The following is due to Theorem 5.2.6 in [3].

Proposition 2.1. Let T be a bounded linear operator on a Banach space V. Then the
following are equivalent.

(1) T is a Hermitian operator

(2) ||exp(itT)||, = 1 for anyt € R

(3) exp(itT) is an isometry for any t € R

(4) T is a Hermitian element in B(V), which stands for the space of all bounded linear
operators on 'V equipped with the operator norm.

Proposition 2.2. Let B be a unital Banach algebra. If a € B is a Hermitian element,
then the multiplication operator M, is a Hermitian operator on B.

Proof. Let a € B be a Hermitian element. It is well-known that an element a € B is
Hermitian if and only if || exp(éta)||p = 1 for any ¢ € R. Thus, we deduce that

|| exp(ita- I)|| =1

for all ¢t € R. Applying Proposition 2.1, we conclude that M, is a Hermitian operator on
B. ]

We are interested in a problem that under which circumstances the converse statement
of Proposition 2.2 holds; when is a Hermitian operator on a unital Banach algebra a
multiplication operator? Our purpose of this note is to give a partial answer to the
problem. Now we recall two observations about Hermitian operators.

Theorem 4. [2, Theorem 4] Let X be a compact Hausdorff space and E a complex Banach
space. Suppose that C(X, E) is the Banach space of all continuous functions on X with
values in E with the supremum norm. A bounded linear operator T on C(X,E) is a
Hermitian operator if and only if for each x € X there is a Hermitian operator A(z) on
E such that for any F € C(X, E) we have

TF(z) = A(z)F(z) ze€X.

Theorem 5. [1, Theorem 3.1] Let X be a compact metric space and Lip(X) a complezx
Banach algebra of complez-valued Lipschitz functions with the norm L(-) + || - ||eo- 4
bounded linear operator T' on Lip(X) is a Hermitian operator if and only if T = \- I with
AER.

2.2. The main theorem. The following is the main theorem in this note.

Theorem 6. Let B be a unital semisimple commutative Banach algebra. Suppose that ev-
ery surjective unital isometry on B is multiplicative. If a bounded complez-linear operator
T is a Hermitian operator, then

T = MT(I)
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3. A PROOF OF THE MAIN THEOREM

Proposition 3.1. Let B be a unital Banach algebra. Suppose that T is a Hermitian
operator on B. Then T(1) is a Hermitian element in B.

Proof. This proof is based on Lemma. 3.2 in [1]. For any f € B* with ||f|| = f(1) =1, we
define @5 : B(B) - C by
®4(5) = f(5(1)) (S €B(B)).
We infer that ®; is a bounded linear functional on B(B) and satisfies ||®|| = ®,() = 1.
Since T is a Hermitian element, this implies
f(T(1)) =24T)eR

for any f € B* with ||f|| = f(1) = 1. Thus, we obtain that T(1) is a Hermitian element
of B. O

Proposition 3.2. Let T be a bounded complex linear operator on a unital semisimple
commutative Banach algebra B. Then the following are equivalent.

(1) T = Mqrq)
(2) exp(it(T — Mrqy)) is multiplicative for every t € R
Proof. Suppose that T = Mrp(;). Clearly we have
exp(it(T - MT(I))) =17

for every ¢t € R.

In order to prove the converse, suppose that exp(it(T" — My(y))) is multiplicative for
every t € R. We define H = T'— My) and U; = exp(itH) for every ¢t € R. Differentiating
U; at t =0, we get

| Ulluco(ab) = iH (ab),
for any a,b € B. As U; is multiplicative, for any a,b € B, we get
U} |t=o(ab) = iaH(b) + iH(a)b.

It follows that H is a bounded derivation. By a theorem of Singer and Wermer, we observe
that H = 0. O

We now proceed with the details for the proof of our main theorem.

A proof of the main theorem. Let T be a Hermitian operator on B. Applying
Proposition 3.1, T'(1) is a Hermitian element of B. According to Proposition 2.2, we see
that Myy and T — Myp) are Hermitian operators on B. Therefore, expit(T — Mr(1))
is a unital surjective isometry for any ¢ € R. By the assumption, every surjective unital

isometry on B is multiplicative, thus exp it(T'— My)) is multiplicative. Hence Proposition-

3.2 provides that T' = Mp(j).
O

4. APPLICATIONS OF THE MAIN THEOREM

Let us begin with a definition of a vector-valued Lipschitz algebra. Let X be a compact
metric space and A a uniform algebra on a compact Hausdorff space Y. A map F from
X into A is said to be Lipschitz if it satisfies the following inequality

L(F) = sup M

< o0
xa#yeX d(.’E, y)
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The set of all Lipschitz maps is denoted by
Lip(X,A) :={F : X —» A; L(F) < o0}

and this is a unital semisimple commutative Banach algebra with the norm of || - || =
- o + L.

We exhibit a theorem of Jarosz in [4]. Let E be a linear subspace of C(X) which
separates the points in X and contains constants. We denote by Ch(E) the Choquet
boundary for E. We call E a regular subspace of C(X) if for any ¢ > 0, zo € Ch(FE),
and open neighborhood U of zg, there exists an f € E with ||fllee < 1+¢, f(zo) = 1,
|f(z)] <eforz e X\U.

Theorem 7. [4] Let X andY be compact Hausdorff spaces. Let A, B be complex linear
subspaces of C(X) and C(Y) respectively. We assume that A and B satisfy the following;

(1) A and B contain constant functions.

(2) A and B have || - ||a and || - || g:p-norm, g-norm.

(3) A and B are regular subspaces.
If a bounded linear operator T from (A, ||-||4) onto (B, ||-||5) with T(1) = 1 is a surjective
linear isometry, then T is an isometry from (A, || - |lo) onto (B, ]| - |loo)

Applying Theorem 7 by considering Lipschitz algebra Lip(X, A) to be a subspace of
- C(X xY), we get the following corollary.

Corollary 8. If U is a linear isometry from Lip(X, A) onto Lip(Y,B) with U(1) = 1
then U is also an isometry with the supremum norm.

Now, we give a characterization of Hermitian operators on vector-valued Lipschitz al-
gebras.

Theorem 9. Let X be a compact metric space and A be a uniform algebra. A bounded
linear operator T' : Lip(X, A) — Lip(X, A) is a Hermitian operator if and only if there
ezists a real-valued function a € A with T(1) =1 ® a such that

T = MT(I)-

Proof. Actually real-valued function a € A is a Hermitian element of A. Therefore, for a
real-valued function a € A, we see that 7(1) = 1 ®a is a Hermitian element of Lip(X, A).
Applying Proposition 2.2, we get T'= Mr(y) is a Hermitian operator.

Now we consider the converse. Using Corollary 8, every surjective unital isometry on
Lip(X, A) with the norm of || - || is an isometry with the supremum norm. Moreover,
Nagasawa’s theorem shows that it is also multiplicative. Thus, Theorem 6 follows every
Hermitian operator on Lip(X, A) is a multiplication operator. a

Remark 10. As corollaries of Theorem 6, we also have Theorem 4 in [2] and Theorem 3.1
in [1].
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