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The unital commutative Banach algebra of all complex‐valued continuous functions on

a compact Hausdorff space K_{j} is denoted by C(K_{j}) . A map  $\psi$ :  C(K_{1}) \rightarrow  C(K_{2}) is a

unital homomorphism (a homomorphism which preserves identity) if and only if there is a

continuous map  $\varphi$ :  K_{2}\rightarrow K_{1} such that  $\psi$(f)=f\mathrm{o} $\varphi$ for every  f\in C(K_{1}) . In general Gelfand

theory asserts that a unital homomorphism between unital semisimple commutative Banach

algebras is represented by a composition operator induced by the associated continuous map
between maximal ideal spaces. The converse assertion is not always true; there is a restriction

on the continuous map between maximal ideal spaces which defines a unital homomorphism.
There can be a continuous map whose composition does not even define a map between

underlying algebras. For example a map  $\varphi$ : \overline{D}\rightarrow\overline{D} from the closed umit disk \overline{D} into itself

define a unital homomorphism (composition operator) from the disk algebra into itself if and

only if the map  $\varphi$ is analytic on the open disk.

Let  K be a compact metric space and E a unital commutative Banach algebra. We say
that a map F : K \rightarrow  E is a Lipschitz map from K into E if the Lipschitz constant is

finite; L(F)=\displaystyle \sup_{x\neq y}\frac{\Vert F(x)-F(y)\Vert_{E}}{d(x,y)} <\infty , where  d ) denotes the metric on K . The algebra
of all Lipschitz maps from K into E is denoted by Lip(K, E) . Then Lip(K, E) is a unital

commutative Banach algebra with the norm \Vert . \Vert_{L} = L + \Vert \Vert_{\infty(K)} . In this paper we

study Banach algebras between which a unital homomorphism always has a special form.

In particular, we study the case of the algebras of Lipschitz maps from compact metric

spaces into unital semisimple commutataive Banach algebras. The maximal ideal space of

Lip (K_{j}, E_{j}) is homeomorphic to K_{j}\times M(E_{j}) , where M(E_{j}) is the maximal ideal space of E_{j}.
If E_{j} is semisimple, then Lip (K_{j}, E_{j}) is semisimple, and we may suppose that

Lip (K_{j}, E_{j})\subset C(K_{j}, E_{j}) .

Suppose that

 $\psi$ : Lip (K_{1}, E_{1})\rightarrow \mathrm{L}\mathrm{i}\mathrm{p}(K_{2}, E_{2})
is a unital homomorphism. Then there exists a continuous map  $\Phi$ :  K_{2}\times M(E_{2}) \rightarrow K_{1} \times

 M(E_{1}) denoted by  $\Phi$(x,  $\phi$)=($\varphi$_{1}(x,  $\phi$), $\varphi$_{2}(x,  $\phi$)) such that

 $\psi$(F)(x,  $\phi$)=F($\varphi$_{1}(x,  $\phi$), $\varphi$_{2}(x,  $\phi$ \forall(x,  $\phi$)\in K_{2}\times M (E2).
In the case of E_{j} = \mathrm{L}\mathrm{i}\mathrm{p}(L_{j}, \mathbb{C}) for a compact metric space L_{j} , the maximal ideal space
of Lip (K_{j}, E_{j}) is homeomorphic to K_{j} \times  L_{j} and the induced composition operator de‐

fined by any Lipschitz map from K_{2} \times  L_{2} into K_{1} \times  L_{1} is a unital homomorphism from

Lip (K_{1}, E_{1}) into Lip (K_{2}, E_{2}) . On the other hand, an interesting observation was exhibited
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by Botelho and Jamison [1]; if K_{2} is connected and E_{j} is the algebra of convergent sequences

or the algebra of bounded sequences, then $\varphi$_{2} depends only on M(E_{2}) , not on K_{2} . Oi [6]
generalized their result by proving that it is the case where E_{j} is a unital commutative

C^{*} ‐algebra. We call a unital homomorphism represented by the composition operator in‐

duced by a continuous map  $\Phi$(x,  $\phi$) = ($\varphi$_{1}(x,  $\phi$), $\varphi$_{2}( $\phi$)) is of type BJ. Oi [6] in fact proved
that any unital homomorphisms between algebras of Lipsichtz maps on connected compact
metric spaces into unital commutative C^{*} ‐algebras are of type BJ; a unital homomorphism
 $\psi$ : Lip (K_{1}, C(K_{1}))\rightarrow \mathrm{L}\mathrm{i}\mathrm{p}(K_{2}, C(K_{2})) is represented by the form of

 $\psi$(F)(x,  $\phi$)=F($\varphi$_{1}(x,  $\phi$), $\varphi$_{2}( $\phi$)) , \forall(x,  $\phi$)\in K_{2}\times K_{2}
if K_{2} is connected. In this paper, we further study homomorphisms of type BJ. It is interesting
to note that certain isometries between Banach algebras of vector‐valued Lipschitz maps

Lip(K, E) is of type BJ unless K is connected. We give a sufficient condition for admissible

quadruples between which unital homomorphisms are always of type BJ.

1. ADMISSIBLE QUADRUPLES

An admissible quadruple is defined by Nikou and O�Farrell in [5]. For a given Banach

algebra of complex‐valued continuous functions, the corresponding admissible quadruple is

a Banach algebra of vector‐valued continuous maps of the same kind as complex‐valued
continous functions in the give Banach algebra. Prior to define an admissible quadruple, we

define a vector‐valued function algebra.
Definition 1. We say that A is a E‐valued function algebra on a compact Hausdorff space X

in the strong sense if A is a subalgebra of C(X, E) for a unital commutative Banach algebra
E such that the following. conditions are satisfied.

(1) A is a Banach algebra with some norm \Vert\cdot\Vert_{A},
(2) For every a\in E the constant map on X defined by x\mapsto a is in A,
(3) A separates the points of X , that is, for every pair x and y of different points in X,

there exists f in A such that f(x)\neq f(y) ,

(4) for every x\in X the evaluation map e_{x} : A\rightarrow E defined by f\mapsto f(x) is continuous.

Note that a \mathbb{C}‐valued function algebra in the strong sense is a \mathbb{C}‐valued function algebra
in the sense of Nikou and O�Farrell. But E‐valued function algebra in the sense of Nikou

and O�Farrell need not be in the strong sense when E is of dimension 2 or more. Note also

that if E is semisimple, then the evaluation map e_{x} :  A\rightarrow  E defined by e_{x}(f) =f(x) for

f\in E is automatically continuous for every x\in X by a theorem of Šilov (cf. [7, Theorem

3.1.11]). The algebra C(X, E) is a E‐valued function algebra on X in the strong sense with

the supremum norm; \displaystyle \Vert f\Vert_{\infty(X)}=\sup\{\Vert f(x)\Vert_{E} : x\in X\} . We call a \mathbb{C}‐valued function algebra
A in the strong sense is natural if the map from X into M(A) defined by x\mapsto e_{x} is surjective,
to say simply X=M(A) .

Let A be a \mathbb{C}‐valued function algebra on a compact Hausdorff space in the strong sense

and E a unital commutative Banach algebra. For f\in A and b\in E, f\otimes b denotes the map
in C(X, E) such that (f\otimes b)(x)=f(x)b for x\in X . We denote

A\displaystyle \otimes E=\{\sum_{j=1}^{n}f_{j}\otimes b_{j} : n\in \mathbb{N}, f_{j}\in A, b_{j}\in E(j=1,2, \ldots, n)\},
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where \mathbb{N} is the set of all positive integers. We say that \mathbb{C}‐valued function algebra on X in

the strong sense is a uniform algebra on X if it is uniformly closed. See [2] for general theory
of uniform algebras. Note that the terminology

�
a function algebra� in [2] means a uniform

algebra. An admissible quadruple is a vector‐valued version of a given function algebra. It

was defined by Nikou and O�Farrell in [5]. The following is an essentially the same definition

as the one given in [5].
Definition 2. By an admissible quadruple we mean a quadruple (X, E, B, B where

(1) X is a compact Hausdorff space,

(2) E is a unital commutative Banach algebra,
(3) B\subset C(X) is a natural \mathbb{C}‐valued function algebra on X,

(4) \overline{B}\subset C(X, E) is an E‐valued function algebra on X in the strong sense,

(5) B\otimes E\subset\tilde{B} and

(6) \{ $\lambda$\circ f:f\in\tilde{B},  $\lambda$\in M(E)\}\subset B.
For a compact metric space K and a unital commutative Banach algebra E,

(K, E
, Lip (K), \mathrm{L}\mathrm{i}\mathrm{p}(K, E) ) is an admissible quadruple.

Definition 3. Let (X, E, B,\tilde{B}) be an admissible quadruple. Let  $\pi$ :  X\times M(E)\rightarrow M(\tilde{B}) be

given by  $\pi$(x,  $\phi$) = $\phi$\circ e_{x} , where  $\phi$ \mathrm{o}e_{x}(F) = $\phi$(F(x)) for every F \in \tilde{B} . Then by a routine

argument  $\pi$ is a continuous injection. We say that an admissible quadruple (X, E, B,\tilde{B})
is natural if the associated map  $\pi$ is bijective. In this case  $\pi$ is a homeomorphsims from

 X\times M(E) onto \{ $\phi$\circ e_{x} : (x,  $\phi$)\in X\times M(E)\}=M(\overline{B}) .

Suppose that (X, E, B,\overline{B}) is semisimple and natural;  $\pi$ :  X\times M(E)\rightarrow M(\tilde{B}) is surjection.
Then we may suppose that

(1.1) \tilde{B}\subset C(X\times M(E)) .

Proposition 4. Let (X, \underline{E}, B,\overline{B}) be an admissible quadruple. Suppose that B is dense in

C(X) . Suppose also that B is inverse‐closed; F\in B with $\Gamma$_{\overline{B}}(F)( $\phi$\circ e_{x})\neq 0 for every pair
x\in X and  $\phi$\in M(E) implies F^{-1}\in\tilde{B} . Then (X, E, B

, Ẽ) is natural.

By Proposition 4 we easily see that (K, E, \mathrm{L}\mathrm{i}\mathrm{p}(K, \mathbb{C}), \mathrm{L}\mathrm{i}\mathrm{p}(K, E)) is a natural admissible

quadruple.

Proposition 5. An admissible quadruple (X, E, B,\tilde{B}) is semisimple if and only if E w

semisimple.

If E is semisimple, then (K, E, \mathrm{L}\mathrm{i}\mathrm{p}(K, \mathbb{C}), \mathrm{L}\mathrm{i}\mathrm{p}(K, E)) is semisimple and natural. Hence we

may suppose that

(1.2) Lip (K, E)\subset C(K\times M(E))

2. ALGEBRA HOMOMORPHISMS

In this section we show that a unital homomorphism between admissible quadruples has

a peculiar form under certain topological assumptions on maximal ideal spaces. Just for

simplicity we assme that a commutative Banach algebra E_{j} is semisimple; see [3] for a genral
case. We omit proofs of Theorems 6 and 7; precise proofs are given in [3].
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Theorem 6. Suppose that E_{j} is semisimple and (X_{j}, E_{j}\underline{B}_{j},,\overline{B_{j}}) is natural. Suppose that

\overline{B_{1}}\subset\overline{B_{1}\otimes E_{1}}, where
-

denotes the uniform closure on M(B_{1}) . Suppose that X_{2}\dot{u} connected

with respect to the relative topology induced by the metric inherited from the dual space of
B_{2} and that M(E_{1}) is totally disconnected with respect to the relative topology induced by the

metric inherited from the dual space ofE_{1} . Let  $\psi$ :  B_{1}\rightarrow\overline{B_{2}} be a unital homomorphism. Then

there exists a continuous map  $\tau$ :  M(E_{2})\rightarrow M(E_{1}) and a continuous map  $\varphi$ :  X_{2}\times M(E_{2})\rightarrow
 X_{1} which satisfies that

 $\psi$(x,  $\phi$)=F( $\varphi$(x,  $\phi$),  $\tau$( $\phi$)) , (x,  $\phi$)\in X_{2}\times M(E_{2})

for every  F\in\overline{B_{1)}}\cdot $\psi$ is of type  BJ.

Theorem 7. Suppose that E_{j} \dot{\uparrow}s semisimple and (X_{j}, E_{j}\underline{B}_{j},,\overline{B_{j}}) is natural. Suppose that

\overline{B_{1}}\subset\overline{B_{1}\otimes E_{1}}, where
-

denotes the uniform closure on M (B1). Suppose that X_{2} is connected

and M(E_{1}) is totally disconnected. Let  $\psi$ : \overline{B_{1}}\rightarrow\overline{B_{2}} be a unital homomorphism. Then there

exists a continuous map  $\tau$ :  M(E_{2})\rightarrow M(E_{1}) and a continuous map  $\varphi$ :  X_{2}\times M(E_{2})\rightarrow X_{1}
which satisfies that

 $\psi$(F)(x,  $\phi$)=F( $\varphi$(x,  $\phi$),  $\tau$( $\phi$)) , (x,  $\phi$)\in X_{2}\times M(E_{2})

for every  F\in\overline{B_{1}}; $\psi$ ts of type  BJ.

3. THE CASE OF ALGEBRAS OF VECTOR VALUED LIPSCHITZ MAPS

If E is semisimple we have

Lip (K, \mathbb{C})\otimes E\subset \mathrm{L}\mathrm{i}\mathrm{p}(K, E)\subset\overline{\mathrm{L}\mathrm{i}\mathrm{p}(K,\mathbb{C})\otimes E}.
Hence we have the following as a corollary of Theorems 6 and 7. Note that the original
topology on K , the Gelfand topology induced by Lip (K;\mathbb{C}) , and the relative topology induced

by the metric induced by operator norm topology on the dual space of Lip (K, \mathbb{C}) all coincide

with each other

Corollary 8. Let K_{j} be a compact metric space and E_{j} a unital semisimple commutative

Banach algebra for j = 1
,
2. Suppose that K_{2} is connected. Suppose that M(E_{1}) is totally

disconnected with respect to either the Gelfand topology (the original topology as the maximal

ideal space) or the relative topology induced by the metric inherited from the dual space of
E_{1} . Let  $\psi$ : Lip (K_{1}, E_{1}) \rightarrow \mathrm{L}\mathrm{i}\mathrm{p}(K_{2}, E_{2}) be a unital homomorphism. Then there exists a

continuous map  $\tau$ :  M(E_{2}) \rightarrow  M(E_{1}) and a continuous map  $\varphi$ :  K_{2}\times M(E_{2}) \rightarrow  K_{1} such

that the map  $\varphi$  $\phi$) :  K_{2}\rightarrow K_{1} is a Lipschitz map for each  $\phi$\in M(E_{2}) , which satisfies that

( $\psi$(F))(x,  $\phi$)=F( $\varphi$(x,  $\phi$),  $\tau$( $\phi$)) , (x,  $\phi$)\in K_{2}\times M(E_{2})

for every  F\in \mathrm{L}\mathrm{i}\mathrm{p}(K_{1}, E_{1})_{f}\cdot $\psi$ is of type  BJ,

We show several examples of unital semisimple commutative Banach algebras E such that

the maximal ideal spaces are totally disconnecte with respect to corresponding topologies
desicribed in Cororally 8.

176



Example 9 (cf. [3]). (1) Let M be a compact Hausdorff space. The Banach algebra
C(M) of all complex‐valued continuous functions on M . Then M is homeomorphic
to the maximal ideal space of C(M) . By the Urysohn�s lemma we infer that M is

discrete with respect to the relative topology induced by the metric inherited from

the dual space of C(M) .

(2) Let  $\Gamma$ be the unit circle in the complex plane. Recall that the Wiener algebra is

the algebra of all complex‐valued continuous functions on  $\Gamma$ which have absolute

converging Fourier series;  W( $\Gamma$) = \displaystyle \{f \in C( $\Gamma$) : \sum|\hat{f}(n)| < \infty\} with the norm

\Vert f\Vert_{W} = \displaystyle \sum_{m}|\hat{f}(m)| for f \in  W( $\Gamma$) . The maximal ideal space of W( $\Gamma$) is homeo‐

morphic to  $\Gamma$ . By a simple calculation we see that  $\Gamma$ is discrete with respect to the

relative topology induced by the metric inherited from the dual space of  W( $\Gamma$) .

(3) Let A be a uniform algebra such that the maximal ideal space coincides with the

Choquet boundary. The Choquet boundary for a uniform algebra A is discrete with

respect to the relative topology.induced by the metric inherited from the dual space

of A . It is known as the Cole�s counter example to the peak point conjecture [2] that

such a uniform algebra which is not a C�‐algebra exists.

(4) Let G be a compact Abelian group and  $\Gamma$ its dual group. Suppose that  $\Gamma$ is a discrete

group of bounded order. Then  G is a totally disconnected compact Abelian group [8,
Example 2.5.7. (iii)]. The group algebra A(G) of all Fourier transforms of functions

in L^{1}( $\Gamma$) is a unital semisimple commutative Banach algebra whose maximal ideal

space is G . See the paper of Katznelson and Rudin [4] and a book of Rudin [8] for

further examples and informations.
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