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1 Introduction

This note is a summary of the paper [7]. In fluid mechanics, it is a basic subject to
understand the mathematical structure of flows near a solid wall with a rough surface. In
the following we consider the initial-boundary value problem of the Navier-Stokes system
in the two-dimensional rough boundary domain Qf = {(z1, z2) € R? | ew(%) < 3 < o0}

O — Auf +u°-Vu*+Vp =0, t>0, z€Q°,
V-uf =0, t>0, z€Q°,
) . v = (NSF)
u®(x1, z2) is 27-periodic in z,, t>0,
Ulimp = up, T €E€Q°.
The Dirichlet (no-slip) boundary condition is imposed on the rough boundary 6°.
vv=0 on OQF. (DiF)

The unknown functions u® = w®(t,z) = (u§(t,z),u5(t,z))" and p° = pf(t,z) are re-
spectively the velocity field and the pressure field of the fluid. The initial data g is
assumed to be given by the zero-extension of some velocity field a on the half-plane
R?2 = {z € R? | 2, > 0}. The boundary function w : R — (-1, —1) is assumed to be
smooth and 27-periodic. The parameter € = %, N € N, characterizes the amplitude and
the pulse width (namely the “roughness”) of the rough boundary 0.

A typical approach to describe the averaged effect from such an irregular boundary
on the fluid flow is to replace the actual rough boundary by an artificially flat one, but
instead, the new boundary condition on this flat boundary is imposed so as to reflect the
effect of the roughness of the original boundary. In our setting this process corresponds
to consider the Navier-Stokes system in the half-plane R2.

ou—Au+u-Vu+Vp =0, t>0, zeRi,
_ 2
V-u=0, t>0, ze€R, (NS%)

u(x1,z2)is 2m-periodicin z;, t>0,

U|t=0=a, IIJERi
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with a new condition on the line dR? which reflects the averaged effect of the rough
boundary. An immediate example of the condition is the no-slip boundary condition:

u=0 on OR?, (Di®%)

although it does not take the behavior of the flow near the rough boundary into account.
The new boundary conditions derived through the above process are called the wall laws,
and there is a lot of literature on the formal derivation in various settings. However, the
derivation of wall laws often relies on formal computations and it is therefore important
to justify the wall laws with a mathematical rigor. For the formal derivations of wall laws
and its numerical validations, we refer to Achdou, Pironneau, and Valentin [1].

So far the justification of wall laws is discussed mathematically mainly for the station-
ary viscous incompressible flows subject to the no-slip boundary condition on the rough
boundary. In the pioneering work of Jiger and Mikeli¢ [8], the mathematical justifica-
tion is given when the two-dimensional stationary channel flows are close to the small
Poiseuille flow «°. This result is extended for random rough boundaries and almost peri-
odic boundaries by Basson and Gérard-Varet [2] and by Gérard-Varet and Masmoudi [6],
respectively; see Dalibard and Gérard-Varet [4] for further generalization. In the papers
mentioned above, the derivation of the wall law relies on the next formal expansion

’11,5(_'1:) ~ uo(a':) + 621.1/(1)(.’121, 0) ’Ubl(g) ’ (*)

where vy is a boundary layer describing the influence from the roughness. The effective
wall law in this approach is shown to be the Navier-slip condition (Navier wall law):

u = eadauy , u;=0 on OR%, (Na¥)

where the constant o depends only on the boundary function w. In the periodic boundary
case, the Navier wall law for stationary flows is justified in the following sense ([2, 6]);
let ©Y be the stationary solution of the Navier-Stokes system with the condition (Nac).
Then it is shown that «Y is an 0(5%) approximation of u¢ in the L? space.

In the justification of the Navier wall law [8, 2, 6, 4], the structure of the Poiseuille
flow is essentially used. In view of applications, it is important to verify the Navier wall
law also for the initial boundary value problem in order to show the generality of the
method of the wall law. Nevertheless, in the nonstationary case, one naturally needs the
high regularity of the e-zero limit flow to make the formal expansion (x) rigorous. In our
case the e-zero limit flow u° is characterized as the solution to the Navier-Stokes system
with the no-slip boundary condition (NS°)-(Di%). However, even if we take a smooth
and compactly supported initial data, the solution u° of (NS°)-(Di?) is not of C'-class
including the initial time ¢ = 0 as a space-time function. This regularity loss of the
limit flow u°, arising from the compatibility boundary condition on initial data, provides
a central difficulty in the mathematical justification of the Navier wall law. Although
recently Mikeli¢, Nedasovd, and Neuss-Radu [10] discusses the Navier wall law for the
nonstationary flow with an external force, its argument is based on the assumptions that
the initial data is zero, and that the external force is smooth and identically zero near
t = 0. Thus in [10] the regularity problem of the e-zero limit flow is essentially avoided
by these special assumptions, and it is still in question what condition, particularly for
the initial data, is actually enough in order to verify the Navier wall law for (NS¢)-(Di¢).
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The paper [7] is aimed to obtain a sufficient condition on the initial data, which
should be reasonable and checkable, for the justification of the Navier wall law to (NS¢)-
(Die) Before introducing the main theorem of [7], let us introduce some notations. Set

= (R/27Z) x Ry and % = {(z1,22) € (R/27Z) x R | ew(%) < 23 < 0o}. We denote
by L2(99) and H'(Q) the function spaces defined as follows.

LX) = {v € L,(R}) | v(z1,22) is 2n-periodic in 27,

27 o0 %
[vllzegag) = (/ / [v|? dz, dx1> < oo},
0 0

H'(QD) = {ve L) | Ivlm@y = (/0 ﬂ/om (lvl* + [Vol?) dcczdarrl)i < oo},
Hy(Qp) = {ve H'(M); yv=0},

where 7 is the trace operator to the boundary dR%. By L2(Q9) and Hg () we denote
the completion of the C5% () in the norm || - [|z2(g) and || - ||z (ag) respectively, where

oo () = {ve C®R2)? | v(z1,2s) is 2n-periodicin z;, V-v =0in RZ,
v = 0 in a neighborhood of OR? ,
v = Oinz2>RforsomeR>0}.

The inner product in L*(£29) is denoted by (u, v)ag = fo Jo” u-v dzp dz;. We analogically
define the function spaces LQ(QE) HY(), H, 1(QE) 0o (), L2(x), and Hj (%), and
the inner product (u,v)q in I 2(€%). Moreover we denote by BC’I(]Rz) the space of
bounded continuous funotlons in lR2 having bounded continuous derivatives. In addition,
for a function ¢ : R2 - R, we denote its zero extension to the domain Q° by ep.

Since the problem is two-dimensional, the unique and global solvability of (NS¢)-(Di¢)
in the L? framework is well known; cf. Sohr [12]. For a given data a € L2 (QO) let u
be the weak solution of (NS°)-(Dif) with the initial data ug = ea, and let u* and ul
respectively be the weak solutions of (NS°)-(Di%) and (NS°)-(Na) with the same 1n1tlal
data a. For the regularity of u®, u°, and v’ with a € Hj ,(Q0), see Propositions 3, 4, and
5 below. The main result of the paper [7] is stated as follows.

Theorem 1. If a € H;,(99) N BC'(R%)?, then there exists a positive number T' inde-
pendent of ¢ € (0,e7Y] such that

luf(t) = u ®)l2@p < Crefllogel?,  0<t<T, (1)
where the constant Cr is independent of t and €, and depends on a and T

Remark 2. In the setting of [10] we see that the order O(3|log EI%) can be improved to
O(e%). However, we need the special assumptions in [10], as is explained above.

We note that the assumption of Theorem 1 is easily checked for a given initial data.
Moreover, our proof indicates that the condition a € BC*(R2)? is optimal to obtain the

convergence rate c3 (with a logarithmic correction) in the topology of L>(0, T} L*( 9)?).
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The proof of Theorem 1 is carried out with the same spirit as in [10]. Indeed, based
on the boundary layer analysis we construct a flow ug,, which approximates both u® and
the Navier-slip solution uY. The key point is to introduce the boundary layer corrector
of the form s'vbl(f) in the approximation ug,,, where vy is the solution to the boundary
layer system (BL) in Section 2.2, which is analyzed in [6] in details.

As is already mentioned, the regularity of the e-zero limit flow u°, which is the solution
to the system (NS°)-(Di%), should be investigated carefully. In fact, for the validity of the
Navier wall law, we reveal that the next is a sufficient estimate:

th 0] )| porge) + Y £ |0F VIO (t)| pomr) < Cr, 0<t<T, (2)
k,1=0,1

which is naturally expected for the initial data of C! class. However, contrary to the proof
of [10], the estimate (1) does not follow from a simple use of the Gronwall inequality on
[0,T] due to the singularity in the derivatives of the e-zero limit flow u® near t = 0.
To overcome this difficulty, we divide the time interval as [0,T] = [0,7,] U [r,,T] with
7y = 2| loge|”, v > 0, and derive the estimates of the difference |[u®(t) — ul (t)||z2(ag) on
each interval, which have different dependences on v and &:

1
sup [[uf(t) — ul (8)|12(ag) < Ce?|loge[F+1eleee ™4,
t€[0,7] v
sup [[uf(t) — u (t)|z2@g) < Ce?(|loge|ii + |loge[~#)e Clioge¥~%
t€[1y,T)

Then the approximation (2) follows from finding the power 7 to optimize the orders of ¢
in these two bounds, which is obviously v = 1.

The important point is that, for the existence of the limit flow u° satisfying the estimate
(2), there is no additional requirements for the compatibility boundary condition on initial
data except for a = 0 on OR?. The key tool for the proof of the estimate (2) is the
derivative estimates of the Stokes semigroup {e **};>o in the L* space and we apply the
results of Solonnikov [13], Desch, Heiber, and Priiss [5], and Bae and Jin [3]. Moreover,
under the condition f € BC*(R3)?, V- f =0in Ri, and f = 0 on OR%, we will show
the next homogeneous estimate; ||Ve~ tAfHLm(Rz) +t3]|8se~ A fllremz) < ClIVSLo@z)
which seems to have its own interest and is not found in the hterature We note that the
L theory as above is a robust tool in verifying the Navier wall law systematically for
the nonstationary problem within the natural compatibility condition.

2 Preliminaries

In this section we summarize the results which are needed in Section 3. In Section 2.1 we
recall the results of L? regularity theory for the Navier-Stokes system in two dimensions.
In Section 2.2 we give some remarks on the slip length of the Navier slip condition. In
Section 2.3 we prove the estimate (2) by the L* theory in the half-space.

2.1 L? regularity theory

In this section we collect the results for the unique solvability of the two-dimensional
Navier-Stokes systems (NS¢)-(Di¢), (NS°)-(Di?), and (NS%)-(Na¥).
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Proposition 3. Let the initial data ug € Hj, (). Then there exists a unique weak
solution (uf,p?) of (NS¢)-(Dif) satisfying

u® € L®(0,00; Hy (%)), dyus, V< , Vp© € L(0,00; L* (X))
Proposition 4. Let the initial data a € H;,(99). Then there erists a unique weak
solution (u®,p°) of (NS°)-(Di%) satisfying

u® € L%(0,00; Hy (), Ou® , V2, Vp° € L*(0,00; L*(£2))) -
Proposition 5. Let the initial data a € L2(Q)) N H'(Q)). Then there exists a unique
weak solution (uY,pY) of (NS°)-(Naf) satisfying

Vul € L=(0,00; L* (D)), 8wl , V), VpY € L*(0,00; L*(2))).
We note that the assumption in Theorem 1 implies ug = ea € Hg,(€). For the proofs
of Propositions 3 and 4, we refer to [12]. For the unique solvability of (NS°)-(Na®), we

refer to Saal [11] when the domain is the half space. Since we are working in the space of
periodic L2-functions, Proposition 5 can be proved in the same manner as [11].

2.2 Slip length of the Navier wall law

We recall the results for the constant o in Navier-slip boundary condition (Na). In [6] it
is defined as the (uniform) limit of the boundary layer corrector vy:

(5) = Jim ot m). ©

Here vy, is the solution to the boundary layer system (BL) below

{—Avbl-i-V(Ibl =0, Voo =0, y>w(n), (BL)

’Ubl(w(yl),yz) = (_w(y1)70)>
in the class f027r ijl) |Vupi(y1, ¥2)|? dyadys < oo. See [6] for the unique existence of the

boundary layer. As is pointed out in [4], one can derive the upper and lower bounds of
a. The positivity of « in the next lemma plays a fundamental role in our argument.

Lemma 6. Let the boundary function w : R — (—1,0) be smooth and 2w-periodic. Then
the constant a in (3) satisfies
0<ax<l.

Proof. We refer to Theorem 3.2 in [1] for the proof. O

2.3 Navier-Stokes system for non-decaying data in R’}

The purpose of this section is to construct the mild solutions of the systems (NS°)-(Di?),
which have a sufficient regularity for the justification of the Navier wall law to (NS¢)-(Di¢).
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We consider the Navier-Stokes system in the n-dimensional half space R7}, n > 2, subject
to the no-slip boundary condition:

o’ — A’ +u°-Vu® +Vp’ =0, t>0, zeR%,

V-ud=0, t>0, z € R}, NS

UOlB]RZ{, =0, t>0, ( )

wW)mo = a, z€RY.

Throughout this section we use the standard notations for n-dimensional differential op-
erators. In the analysis of (NS) the following notations are adopted: for an n-dimensional
vector u = (u1,...,u,)" in R, u' denotes its tangential part u' = (u1,...,un—1)". The
tangential derivative V' = (94, ...,0,-1) is used in addition. Moreover, we denote by
BC*(R?) the space of bounded continuous functions in R? having bounded continuous
derivatives. We write || ||oo and ||-|| pc: instead of ||- || ®n) and ||-||Bor(ry) for simplicity.
Firstly we recall the basic L™ estimates of the Stokes semigroup for bounded functions
in R%. Let {e7*},> denote the Stokes semigroup in R%, and let P denote the Helmholtz
projection. We refer to [5] and [13] for these definitions in the L™ setting. Set

LE[RY) = {f e L®R)" | / f-Vodr =0 forall o€ WY (R},
R}

where /I/I?l*l(R’j,) is the usual homogeneous Sobolev space.

Proposition 7. For f € LP(R?}) we have

le™* flloo + £V~ flloo + 1™ fllos < Cllflloo, >0 (4)
For F € BCY(R%)™™ satisfying F = 0 on ORY, we have
le" APV - Fllo < Ct73||Floo,  ¢>0, (5)
|Ve APV - F||o, < Ct%|VF|lw, t>0. (6)
Here all the constants C above are independent of t.

Proof. For the estimate (4) we refer to [5]. The estimates (5) and (6) are proved in [13]
and [3], respectively. O

The homogeneous L™ estimates of the Stoke semigroup are provided in the next.
Proposition 8. For f € BCY(R%)" satisfying V - f =0 in R} and f = 0 on R}, we

have .
Ve ™  flloo + t2[|8e ™ fllo < ClIVfllow, t>0, (7

where the constant C is independent of t.
Proof. By the definition of the Stokes semigroup, w(t) = e~*A f solves the Stokes system:
ow—-Aw+Vr=0, t>0, zecR},
V-w=0, t>0, zeR},

‘wla]]m =0, t>0,

w|t=0=fa JIERZ,

(S)
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(see [5] for the convergence lim;yg || f — f|lo = 0 with f € BC*(R%)"). Since w(t) can
be interpreted as the solution of the inhomogeneous heat equations, w(t) satisfies

w(t) = P f — /Ot ety (s)ds . (8)

Here and in the following, we denote by e*A? (resp. e*A¥) the solution operator of the
heat equation in R7 with the zero Dirichlet (resp. zero Neumann) boundary condition.
To estimate the right-hand side of (8) we express the pressure r in terms of f. Taking the
divergence of (S)1, and using the condition d,w, = —V’-w’ in R7}, we see that r satisfies
the Laplace equation with the inhomogeneous Neumann boundary condition:

Ar =0, z e R},
Butlomy, = —V' -0,

where 7 is the trace operator to the boundary R%. Then Vr(t) is given by

Vr(t) = V(=A) 3= ATy 8001
= gon(-A)} SoV' - YO w'(t) )
~V () )

where (—A’)z is the half Laplacian in R"?, {6_”"(_N)%}mnzo is the Poisson semigroup,
and S, denotes the Riesz operator in R"~! defined as Sy = V/(—A’)~%. Then by the Ukai
formula (see [14] for the details) we have

V0w (8) = 70ne'®2 (f' + Sofa) - (10)
Inserting (9) and (10) to (8) we find

¢ _ant [ SoV' - 8e® 22 (f' + Sofn)
—tA p __ — oA _ (t—s)Ap ,—zn(—A")2 0 n 0Jn
e f = 'w(t) e Df /;) e De 7( —V,'anESAD(f"{‘Sofn) ) ds.

We only prove the estimate |[Ve ™™ f|l < C||Vf|lo- The estimate t3|8e A flloo <
C||V ||l is proved in the same way. The relation 8,e’2Pg = e*A¥§,g for g € BC*(R")

’ 1
with g = 0 on OR?, and the maximum principle |le=*"(=4)? yg|l, < |lg||o yield

IVe ™ fllow < ClIV oo

t
+ C/ (t - S)—% (”SOVI ) eSANanf’“oo + “SOV’ : SoesAN6nfn||w) ds
0

¢
+ C/ (t—s)7 (IV" - €290, f'l|oo + [V - Soe* By fulo) ds .
0

Then the claim follows from the next estimate
1SV’ - eSANanf’lloo + ||SeV’ - SoeSANann“oo
F V250, F lloo + IV - S0 By falloo < C57F || fllaos 8> 0.

We can show this estimate by the derivative estimates of the Gauss kernel. The details
are omitted; see Proposition 3.2 and Appendix C in [7]. This completes the proof. O
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Remark 9. The semigroup property of {e~*A};>¢ yields the next estimates. For f €
LY (R7) we have
2 j+1 3
S TNV Ve  flloo + 2 |V'Oe ™ flloo < Ol fllow, > 0.

=1

For f € BCY(R")" satisfying V- f = 0 in R} and f = 0 on JR?, we have

3 j 2
S (VY Ve A fllo+ > EENV) VO flloo < CVfl|loo,  t>0.

=1 k=0,1

For F € BC'(R%)™*" satisfying F' = 0 on OR?}, we have

3
D tF(VPVE APV - Flle
7=1
+ 3 2 (V) VI8 PY - Fllo < C|VFllw, ¢ 0.
k

Here all the constants C' above are independent of t.

Finally we prove the existence of the mild solution to (NS) which has a sufficient
regularity for the proof of Theorem 1. The time-local existence for the mild solution of
(NS) in the L™ space is already proved by [13], Maremonti [9], and [3]. But we revisit
this problem here in order to study the derivative estimates of solutions near ¢ = 0,
under the assumption for the initial data as in Theorem 1. We also note that, under
the compatibility condition of Theorem 1, the L? solution of (NS°)-(Di%) in Proposition
4 satisfies the estimates stated in Theorems 10 with n = 2.

Theorem 10. Let the initial data a satisfy a € BC’l(]R" ), V-a=0in R}, and a =
0 on OR™. Then there exists a unique mild solution (u°,p°) of (NS) satisfying the following
property; there ezists a positive number Th < 1 such that

3

S AV @+ Yo ¢

=0 k,i=0,1

8tu°(t)||oo+t2 IVP’(t)||lw < C, 0<t<Ti,

where the constant C' depends only on ||a||pcr-

Proof. The proof is a simple application of the fixed point theorem, using the linear
estimates in Remark 9. We omit the details here; see Theorem 3.6 in [7]. O

3 Outlined proof of Theorem 1

In this section we give an outlined proof of Theorem 1. As is explained in the introduction,
we divide a time interval as [0,7] = [0, £?|loge|] U [¢?|loge|, T], and derive the estimates
of the difference [|uf(¢) — ul(t)||z2(ag) on each interval. In Section 3.1 we show the short
time estimate of the dlﬁerence In Section 3.2 the finite time estimate is established.
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3.1 Navier wall law near the initial time

The next proposition corresponds to Theorem 1 near the initial time ¢ € [0, 2| logé|].

Proposition 11. Let the initial data a satisfy the assumption in Theorem 1. Then we

have \ )
llus(8) — u (8) || 2y < Ce2|logel?,  0<t < e?|logel,

where the constant C is independent of t and €.

Proof. Let u® be the solution of (NS°)-(Di®) in Proposition 4 satisfying the estimate in

Theorem 10. We deduce the estimate of [ju®(t) — ul (t)||L2(ag) from the triangle inequality
[lu(t) = ul (D)l 2(ag) < Iluf(t) — ew’®)llzxag) + 1l () — v’ O)llr2y, (1)

where and in the following (eu, ep®) denotes the zero extension of (u,p°).
Firstly we estimate the term |[u®(t) — eu®(t)||L2(qg)- From the integration by parts we
see that w®(t) = u®(t) — eu(t) satisfies

d 0, ~
-('l'z”’we(t)niz(ng) = —2(’!1}6 - Vu® +uwf - Vuo + UO . V'we, ’LUs)QIeI - 2”V'we||iz(n;)

27 27
-2 0ou®(21,0) - w¥(z1,0) dz1 — 2/ p°(1, 0)ws(xy,0)2 dz;.
0 0

Noticing (w* - Vw®, w®)qs = 0 and (@° - Vu®,w®)q; = 0, we have

d £
a”w (0”%2(9;) + 2||Vw6(t)||%2(n;)

= —2(w’ - V@’ w)qg
2

27
-2 Oou’(z1,0) - we(z1,0) dz; — 2/ p°(z1, 0)ws(z1,0) dz;.
0 0
Then by a direct computation and the the Gronwall inequality we have
2 ' 2
0 Ol + [ 1996 e ds
<ol (19626 oo g+ N0l IVl o0 a2 ) o

t i
< (& [ 19O ey a5+ ogelt [ 199wy ds) - £20,
0 0

where we have used the condition w®(0) = 0, and the constant C is independent of ¢ and
€. Then the estimates of (u°, p°) in Theorem 10 with n = 2 yield the short-time estimate

uf(t) — eu®(t)||z2(e §05%|10g£|%, 0<t<elogel. 12
( ;1)
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Next we estimate the term [[ul () —u®(#)|| 12(ag) in (11). From the integration by parts
we see that 2(t) = ulY (t) — u®(t) satisfies

d
a“ze(t)”iz(ng) + 2||V25(t)“%2(ng)
27
= —=2(2° V2 + 2 Vil +4° - V25, Z)ag — 2 0225 (21, 0) 25 (21,0) dzy
0
27

= —2<ZE . VUO, Z€>Qg -2 82zf(x1, O)zf(zl, 0) d.’L'1 .
0

From a direct computation and the the Gronwall inequality again, we obtain
t ¢
||z5(t)||%2(92) + 2/0 ||Vz5(3)”%2(ng) ds + 50‘/0 ”8211’5,,1('?O)(S)”§42(0,27r) ds

C [EIVEO()] s 00z« d t
< 0BT ey S(Ea / ||V“0(8)l|im(ﬂi)ds)
| IV
< CeCeat, 0<t<Ti,

where we have used the condition 2°(0) = 0, and the constant C' does not depend on ¢
and e. Hence we obtain the short-time estimate

uN () — u°(t) || 220 SCegloge%, 0<t<e?logel. 13
(3 (p)

Inserting (12) and (13) to (11) we obtain the desired estimate. The proof is completed. O

3.2 Navier wall law in a finite time period

This section is devoted to the outlined proof of Theorem 1. In virtue of Proposition 11,
it suffices to show the estimate (1) for t € [c?|loge|, T] with some finite T > 0.

We follow the strategy in [10]. Using the boundary layer corrector, we construct a
function u$__ which approximates both »f and u in the domain QF. In the first step of

app
the construction we define the next approximation function:

ez 0)((( ) +em(3)

(

0
+aa<p(%)(— UO(t, 1, —22) + ( 32U1(t(;x1,0) )) , 2, <0,

uw0(t, z) + ealUO(t, z)

0 Ty, (@ T2
reond(t,a1,0)(on(2) ( ° ))X(—4E|loga|)’ 2> 0.

ﬂ’gpp (ta CL‘) = 3

\
Here vy, is the boundary layer corrector introduced in Section 2.2. The new vector field
U°(t,z) = (UP(t, z),U(t,z)) 7 is the (mild) solution to the perturbed Stokes system (PS):
U’ — AU +u® - VU +U° - VW' + VP® =0, ¢t>0, zeRi,
V-U'=0, t>0, z€R},
UL(x1,0) = 8yul(1,0), UL(z:.0) =0, t>0,
U= = 0, wGRi.

(PS)
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In fact, we have the next estimates for (U, P?) (Theorem 3.9 and Lemma 2.6 in [7]);
there exists a positive number T3, which is smaller than 7; in Theorem 10, such that

2
_1 1
3] U° () |2y + 1U° ()] oo mzy + St 0] VU (t) || Loz
7=0 (14)
k
+ Z t7+1||a{catU0(t)|le(Ri) + t“VPO(t)”Loc(]Ri) S C, 0 < t S T2 3
k=0,1

where the constant C' depends only on [|al|m(ag) and ||al|pc:gz). The smooth cut-off
functions ¢ and y satisfy the next conditions; ¢(X) = 0if X < —1 and p(X) = 1 if
X >0,and x(X)=1if X <2and x(X) =0if X > 3, respectively.

Next we summarize the properties of the approximation function %,,. By the choice
of the cut-off function ¢ and x we have

€
app

@ploas = 0,  t>0.

lim @

z210 app(t7 1’) - }clz%u

RPN Y .
(t,z), 51012%32%@(@ z) = 3151213(1] Oatis,, (t, ), t>0,

However, 4, is not divergence free in general. To recover this condition, let us introduce

the Bogovskil corrector. Set D = {z € R? | 0 < z; < 2w, ew(%) < x5 < 12¢|logel}.
Lemma 12. There exists 2° = 2°(t,x) € Wy (D) (1 < p < 00) satisfying
V- 25(t) = V- g, (), 0<t< Ty,
and . . .
tEHZE(t)le,p(Ds) + t5||3tz5(t)||W1,p(De) S OTz,p51+;1 0<t S T2 . (15)

Here the constant Cr, p is independent of € and t, and depends on Ty and p.
Proof. See Appendix B in [7] for the proof. O

Let Z¢ = Z¢(t,z) denote the periodic extension of 2¢. Namely Z° is 2m-periodic in z; and
Z&(t,z) = 25(t, ) if 0 < 21 < 27. Finally we set the divergence free approximation

W (t) = @ ()~ Z5(t), 0<t<T;.

app app

satisfies the no-slip condition u¢__ = 0 on 0§ in the trace sense.

We note that u app

app

Outlined proof of Theorem 1. As is stated in the beginning of this section, it remains to
estimate the difference u® and uY for t € [¢?|loge|, T| with T = T5, where T is the
number in (14). To obtain this estimate, we start from the triangle inequality

llu®() = ulf ()l z2cag) < Nu(2) = ugpp B2y + llu’ () — ufpp@)llzzogy - (16)

For the difference |[ul () — ug,, ()] 12(09), the next bound is an immediate consequence

from the construction of ug,,(t) (Lemma 2.9 in [7]):

[ (£) — ulpp (B)llz2(any < Ce?llogelt,  e?|loge| <t < T,
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where the constant C' is independent of ¢ and €. Hence it suffices to estimate ||u®(t) —
Uzpp ()| z2(ag) in the right-hand side of (16). Setting W*(t) = u(t) — ug,,(t), from the
integration by parts we see that

dy. . d
a‘t'“W (t)H%Z(n;) = Zfz’(t)»
i=1

where each I; is defined below.

L= 2| VWb + 2( — WE - VW — iy, - VWS = W° - Vi,
1 L2 e € € €
+ 282’114(1)(.’1/‘1, )(qul)( ) (M) — 6‘tz ,W >Q§§n + 2<VZ ,VW )Q‘E’ ,

I = 2(820,0(zr, 0)( ( o ) +ea(2)) + 20,0508(a2,0) Brow) (2)

2
+eap(Z2) (- 0% e, —m) + ( FOAE0 Y
o g, T O uO z ,0
+ v <§><—U°<x1,-x2>+( (e 0)))
* 2a<p ( )82 (xl, —.’Ez) - ECZSO( )62 Uo(wli )7 WE)%\Q,‘% ’
13 - 2(_( aPP vuame >Qg

+ (u* - Vi + ea(u’ - VU + U° - Vu0)), W€>QO),
2({53%32U(1)($1,0)X(

+ £(4e|log g]) ~20,ul (z,, O)X"(

)

I

2 T
4e|logg| 4e| log6|

- Eatazu(f(m,o)x(zdﬁ—gd)}(v (g) - ( (3 >)’W6>ng’

Is = 2(20,8,u0 (1, 0)x( )(alvbl)(g) W) g

4e |log€|

Is = 2(2(4¢| loge]) "Bl (21, 0)X’ (o %), we
6 = 2(2(4e|logel) 0l (21, 0)x (4€|10g5|)(32vb1)(8),W o0’
Ir = 2V (p° + eaP’), W), .
P
In the above (., -)n;\gg is the inner product <U,‘U>Q§\Qg = 02" fs c;(zl ey UV dzy dz;, and in

the following we use the notation ||u|z2@s\ag) = (v, u):{f\no We note that the pressure
ld

term p° in (NS?) is eliminated by the identity (Vp, W*¢ )gs = 0, which follows from the
We|ags = 0 and V- W€ = 0 in Q¢. Then, applying the estimates of (u,p°) and (U°, P?),
by the direct calculation and the Gronwall inequality on [%|log e[, t] we obtam

1
WO+ [, ITW g ds
£2|loge|
2 2 T 5 3
< C| ||We(e |10g5|)“L2(9§,)+/2|1 !EillOgEls_§||W€($)"L2(Q§)ds
e2|loge

T2
+/ (@ +e3s 1+ e%57%)ds |, e’lloge| <t < Ty,
e2|loge|



where C is independent of both ¢ and . By the Young inequality we observe

sup ||Ws(t)||%2(n;, < C(||W€(52|108§5|)||%2(n;) + %|logel) .

e?|loge|<t<T>

The estimate of the term ||W*(¢?[loge|)||32(qe) = [I(u® — uflpp)(52|logs|)||iz(ng) is as follows.
P

Using the zero extension eu® of u°, which is already introduced in the proof of Proposition
11, we have the next bound of ||W*(¢*|loge|)17(qx)-
P

W< (e loge]) lzzag) < II(w* — eu®)(e[loge]) | z2(ag) + Il (ugpp — eu”) (€% loge]) |2 o)
< |l(wf - @UO)(52|1085D“L2(05) + ||a§pp(52|10€5|)||L2(Q;,\ng)
+ (@5, — u” — £aU”) (e [loge]) || 22(ag)

+ [lea®(e2 loge])lz2(ag) + [12°(€ logel) Lz -

By the short time estimate (12) in Proposition 11, and Lemma 12 with the the Poincaré
inequality, we have

||W5(52|10ga|)||L2(95) < C’E%|logs|%.
Finally we obtain

[ (6) ~ upp(Ollzsiag) < Cetllogel?, e?llogel <E<Ts.

Now we have the estimate (1). This completes the proof of Theorem 1. |
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