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ABSTRACT. We give some new formulas about factorizations of  K-k\simSchur

functions  g_{ $\lambda$}^{(k)} , analogous to the k‐rectangle factorization formula s_{(t^{k+1-\mathrm{t}})\cup $\lambda$}^{(k)}=
s_{(t^{k+1-t})}^{(k)}s_{ $\lambda$}^{(k)} of k‐Schur functions. Although the formula of the same form does

not hold for K-k‐Schur functions, we can prove that g_{R_{t}}^{(k)} divides g_{R_{\mathrm{t}}\cup $\lambda$}^{(k)} , and

in fact more generally that g_{P}^{(k)} divides g_{P\cup $\lambda$}^{(k)} for any multiple k‐rectangles P

and any k‐bounded partition  $\lambda$ . We give the factorization formula of such  g_{P}^{(k)}
and the explicit formulas of g_{P\cup $\lambda$}^{(k)}/g_{P}^{(k)} in some cases.

1. INTRODUCTION

Let k be a positive integer. k‐Schur functions s_{ $\lambda$}^{(k)} and their K‐theoretic ana‐

logues g_{ $\lambda$}^{(k)} , which are called K‐k‐Schurfunctions, are symmetric functions parametrized
by k‐bounded partitions  $\lambda$ , namely by the weakly decreasing strictly positive integer
sequences  $\lambda$=($\lambda$_{1}, \ldots, $\lambda$_{l}) , l\in \mathbb{Z}_{\geq 0} , whose terms are all bounded by k.

Historically, k‐Schur functions were first introduced by Lascoux, Lapointe and

Morse [LLM03], and subsequent studies led to several (conjectually equivalent)
characterizations of s_{ $\lambda$}^{(k)} such as the Pieri‐like formula due to Lapointe and Morse

[LM07], and Lam proved that k‐Schur functions correspond to the Schubert basis

of homology of the affine Grassmannian [Lam08]. Moreover it was shown by Lam

and Shimozono that k‐Schur functions play a central role in the explicit description
of the Peterson isomorphism between quantum cohomology of the Grassmannian
and homology of the affine Grassmannian up to suitable localizations [LS12].

These developments have analogues in K‐theory. Lam, Schilling and Shimozono

[LSS10] characterized the K‐theoretic k‐Schur functions as the Schubert basis of K‐

homology of the affine Grassmannian, and Morse [Mor12] investigated them from

a conbinatorial viewpoint, giving their various properties including the Pieri‐like

formulas using affine set‐valued strips (the form using cyclically decreasing words

are also given in [LSS10]).
In this paper we start from this combinatorial characterization (see Definition

6) and show certain new factorization formulas of K‐k‐Schur functions.

Among the k‐bounded partitions, those of the form

(t^{k+1-t})=(t,\ldots,t\check{k+1-t}=:R_{d}) ,

1 \leq  t \leq  k , called k‐rectangle, play a special role. In particular, if a k‐bounded

partition has the form  R_{t}\cup $\lambda$ , where the symbol \mathrm{U} denotes the operation of concate‐

nating the two sequences and reordering the terms in the weakly decreasing order,
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then the corresponding k‐Schur function has the following factorization property
[LM07, Theorem 40]:

(1) s_{R_{t}\cup $\lambda$} = s_{R_{t}}S_{ $\lambda$} .

(k) (k) (k)

T. Ikeda suggested that the K‐k‐Schur functions should also possess similar prop‐

erties, including the divisibility of g_{R_{\{}\cup $\lambda$}^{(k)} by g_{R_{\mathrm{t}}}^{(k)} , and that it should be interesting
to explore such properties. The present work is an attempt to materialize his sug‐

gestion.
We do show that g_{R_{t}}^{(k)} divides g_{R_{\mathrm{t}}\cup $\lambda$}^{(k)} in the ring $\Lambda$^{(k)} =\mathbb{Z}[h_{1}, . .. , h_{k}] , where h_{i}

denotes the complete homogeneous symmetric functions of degree i , of which the K‐

k‐Schur functions form a basis. However, unlike the case of k‐Schur functions, the

quotient g_{R_{\mathrm{t}}\cup $\lambda$}^{(k)}/g_{R_{\mathrm{t}}}^{(k)} is not a single term g_{ $\lambda$}^{(k)} but, in general, a linear combination

of K‐k‐Schur functions with leading term g_{ $\lambda$}^{(k)} , namely in which g_{ $\lambda$}^{(k)} is the only
highest degree term. Even the simplest case where  $\lambda$ consists of a single part (r) ,

1\leq r\leq k , displays this phenomenon: we show that

(2) g_{R_{t}\cup(r)}^{(k)}=\left\{\begin{array}{ll}
(k) (k) & \\
g_{R_{\mathrm{t}}} . g_{(r)} & (\mathrm{i}\mathrm{f} t<r),\\
g_{R_{t}}^{(k)} . (g_{(r)}^{(k)}+g_{(r-1)}^{(k)}+\cdots+g_{\emptyset}^{(k)}) & (\mathrm{i}\mathrm{f} t\geq r)
\end{array}\right.
(actually we have g_{(s)}^{(k)}=h_{s} for 1\leq s\leq k , and g_{\emptyset}^{(k)}=h_{0}=1). So we may ask:

Question 1. Which g_{ $\mu$}^{(k)} , besides g_{ $\lambda$}^{(k)} , appear in the quotient g_{R_{t}\cup $\lambda$}^{(k)}/g_{R}^{(k)_{9}} With

what cofficients?

A k‐bounded partition can always be written in the form R_{i_{1}} \cup\cdots\cup R_{4_{m}} \cup

 $\lambda$ with  $\lambda$ not having so many repetitions of any part as to form a  k‐rectangle.
In such an expression we temporarily call  $\lambda$ the remainder. Proceeding in the

direction of Question 1, one ultimate goal may be to give a factorization formula in

terms of the  k‐rectangles and the remainder. In the case of k‐Schur functions, the

straightforward factorization in (1) above leads to the formula s_{R_{t_{1}}\cup\cdots\cup R_{\ell_{m}}\cup $\lambda$}^{(k)} =

s_{R_{t_{1}}}^{(k)}\ldots s_{R_{t_{m}}}^{(k)}g_{ $\lambda$}^{(k)} . On the contrary, with K‐k‐Schur functions, the simplest case

having a multiple k‐rectangle gives

(3) g_{R_{t}\cup R_{\mathrm{t}}}^{(k)}=g_{R_{t}}^{(k)}\displaystyle \sum_{ $\lambda$\subset R_{t}}g_{ $\lambda$}^{(k)}.
Hence we cannot expect g_{R_{\mathrm{t}}\cup R_{\mathrm{t}}}^{(k)} to be divisible by g_{R_{\mathrm{t}}}^{(k)} twice. Instead, upon organiz‐
ing the part consisting of k‐rectangles in the form R_{t_{1}}^{a_{1}}\cup\cdots\cup R_{t_{m}}^{a_{m}} with t_{1}<\cdots<t_{m}
and a_{i}\geq 1 (1\leq i\leq m) , with R_{ $\tau$}^{a}=R_{4}\cup\cdots\cup R_{t} , actually we show that

a

g_{R_{\mathrm{s}_{1}}^{a_{1}}\cup\cdots\cup R}^{(k)}\mathfrak{X}^{\cup $\lambda$} is \acute{\mathrm{d}}ivisible by g_{R_{\mathrm{c}_{1}}^{a}\cup\cdots\cup R_{t_{m}}^{a_{m}}}^{(k)_{1}},
which actually holds whether or not  $\lambda$ is the remainder. Then we can subdivide

our goal as follows:

Question 1�. Which  g_{ $\mu$}^{(k)} , besides g_{ $\lambda$}^{(k)} , appear in the quotient g_{P\cup $\lambda$}^{(k)}/g_{P}^{(k)} where

P=R_{t_{1}}^{a_{1}}\cup\cdots\cup R_{t_{m}}^{a_{m}} , and with what coefficients 9

Question 2. How can g_{R_{\mathrm{t}_{1}}^{a_{1}}\cup\cdots\cup R_{\mathrm{r}_{m}^{m}}^{a}}^{(k)} be factorizedp
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In this paper, we give a reasonably complete answer to Question 2 (Theorem
12), and partial answers to Question 1� (Theorem 13, 14 and 15). The full paper
will be published elsewhere.

2. PRELIMINARIES

In this section we review some requisite combinatorial backgrounds. First recall

that the Pieri rule characterizes Schur functions. In the theory of (K-)k‐Schur

functions, the underlying combinatorial objects are the set of k‐bounded partitions
(instead of partitions), which is isomorphic to the set of (k+1) ‐cores, and we have

to consider weak strips instead of horizontal strips. For detailed definitions, see for

instance [\mathrm{L}\mathrm{L}\mathrm{M}^{+}14
, Chapter 2] or [Mac95, Chapter I].

2.1. Partitions and Schur functions. Let \mathcal{P} denote the set of partitions. \mathrm{A}

partition  $\lambda$=($\lambda$_{1}\geq$\lambda$_{2}\geq\ldots)\in P is identified with its Young diagram (or shape),
for which we use the French notation here.

the Young diagram of (4, 2)

 $\lambda$'.\mathrm{F}_{0} artitions  $\lambda,\ \lambda \mu \mu$_{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{a}11i. $\Gamma$ \mathrm{o}\mathrm{r}\mathrm{a} paxtition $\lambda$ \mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{I}\mathrm{l}\mathrm{w}_{\mathrm{e}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}size\mathrm{o}\mathrm{f}\mathrm{a}\mathrm{p}_{\mathfrak{N}}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} $\lambda$ \mathrm{b}\mathrm{y}\mathrm{A}_{i}^{ $\lambda$|_{\leq}\mathrm{t}\mathrm{h}\mathrm{e}length\mathrm{b}\mathrm{y}l( $\lambda$),\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{t}\mathrm{h}\mathrm{e}conjugate\mathrm{b}\mathrm{v}}},
c=(i,j) in  $\lambda$ , we denote the hook length of  c in  $\lambda$ by hookc ( $\lambda$)=$\lambda$_{\mathrm{t}}+$\lambda$_{j}'-i-j+1.

For a partition  $\lambda$ , a removable corner of  $\lambda$ (or  $\lambda$ ‐removable corner) is a cell

(i,j)\in $\lambda$ with (i,j+1) , (i+1,j) \not\in $\lambda$. (i,j) \in (\mathbb{Z}_{>0})^{2}\backslash  $\lambda$ is said to be an addable

corner of  $\lambda$ (or  $\lambda$ ‐addable corner) if (i,j-1) , (i-1,j)\in $\lambda$ with the understanding
that (0,j) , (j, 0)\in $\lambda$.

Let  $\Lambda$ = \mathbb{Z}[h_{1}, h_{2}, . . .] be the ring of symmetric functions, generated by the

complete symmetric functions h_{r}=\displaystyle \sum_{i_{1}\leq i_{2}\leq\cdots<i_{r}}x_{i_{1}}\ldots x_{i_{r}}.
The Schur functions \{s_{ $\lambda$}\}_{ $\lambda$\in p} are the family of symmetric functions satisfying

the Pieri rule: h_{r}s_{ $\lambda$}=\displaystyle \sum s_{ $\mu$} , summed over  $\mu$ such that  $\mu$/ $\lambda$ is a horizontal  r‐strip.

2.2. Bounded partitions, cores and k‐rectangles R_{4} . A partition  $\lambda$ is called
 k ‐bounded if $\lambda$_{1} \leq k . Let \mathcal{P}_{k} be the set of all k‐bounded partitions. An r‐core (or
simply a core if no confusion can arise) is a partition none of whose cells have a

hook length equal to r . We denote by C_{r} the set of all r‐core partitions.

Hereafter we fiư a positive integer k.

For a cell c=(i,j) , the content of c is j-i and the residue of c is \mathrm{r}\mathrm{e}\mathrm{s}(c)=j-i
\mathrm{m}\mathrm{o}\mathrm{d} (k+1)\in \mathbb{Z}/(k+1) . For a set X of cells, we write {\rm Res}(X)=\{\mathrm{r}\mathrm{e}\mathrm{s}(c)|c\in X\}.
We will write a  $\lambda$‐removable corner of residue  i simply a  $\lambda$‐removable  i‐corner. For

siMplicity of notation, we may use an integer to represent a residue, omitting �mod

(k+1
We denote by R_{t} the partition (t^{k+1-t})=(t, t, \ldots,t)\in \mathcal{P}_{k} for 1\leq t\leq k , which

is called a k‐rectangle. Naturally a k‐rectangle is \mathrm{a}(k+1)‐core.

Now we recall the bijection between the k‐bounded partitions in \mathcal{P}_{k} and the

(k+1)‐cores in C_{k+1} : The map \mathfrak{p}:C_{k+1} \rightarrow \mathcal{P}_{k}; $\kappa$\mapsto $\lambda$ is defined by  $\lambda$_{i} =\#\{j |
(i,j) \in $\kappa$ , hook (i,j)( $\kappa$) \leq k}. Then in fact \mathfrak{p} is bijective and we put \mathrm{c}=\mathrm{p}^{-1} . See

[LM05, Theorem 7] for details. Note that if  $\lambda$ is contained in a  k‐rectangle then

 $\lambda$\in\prime P_{k} and  $\lambda$\in C_{k+1} , and besides \mathfrak{p}( $\lambda$)= $\lambda$=\mathrm{c}( $\lambda$) .
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For i=0 , 1, . .. , k , an action s_{i} on C_{k+1} is defined as follows: For  $\kappa$\in C_{k+1},
\bullet if there is a  $\kappa$‐addable  i‐corner, then let  s_{i}\cdot $\kappa$ be  $\kappa$ with all  $\kappa$‐addable

 i‐corners added,
\bullet if there‐ is a  $\kappa$‐removable  i‐corner, then let  s_{i}\cdot $\kappa$ be rc with all  $\kappa$‐removable

 i‐corners removed,
\bullet otherwise, let  s_{t}\cdot $\kappa$ be  $\kappa$.

In fact first and second case never occur simultaneously and s_{i}\cdot $\kappa$\in C_{k+1}.

2.3. Weak order and weak strips. We review the weak order on C_{k+1}.

Definition 1. The weak order \prec on  C_{k+1} \hat{u} defined by the following covering
relation:

 $\tau$\prec\cdot $\kappa$ \Leftrightarrow \exists i such that s_{i} $\tau$= $\kappa$,  $\tau$\subseteq $\kappa$.

Definition 2. For (k+1) ‐cores  $\tau$\subset $\kappa$\in C_{k+1},  $\kappa$/ $\tau$ is called a weak strip of size  r

(or a weak r‐strip) when

 $\kappa$/ $\tau$ is horizontal strip and  $\tau$\prec\exists$\tau$^{(1)}\prec. . . \prec\cdot\exists$\tau$^{(r)}= $\kappa$.

2.4. k‐Schur functions. We recall a characterization of k‐Schur functions given
in [LM07], since it is a model for and has a relationship with K‐k‐Schur functions.

Definition 3 (k‐Schur function via�weak Pieri rule k‐Schurfunctions \{s_{ $\lambda$}^{(k)}\}_{ $\lambda$\in P_{k}}
are the family of symmetric functions such that s_{\emptyset}^{(k)}=1 and

h_{r}s_{ $\lambda$}^{(k)}=\displaystyle \sum_{ $\mu$}s_{ $\mu$}^{(k\mathrm{J}} for r\leq k and  $\mu$\in \mathcal{P}_{k},

summed over  $\mu$\in P_{k} such that \mathrm{c}( $\mu$)/\mathrm{c}( $\lambda$) is a weak strip of size r.

In fact \{s_{ $\lambda$}^{(k)}\}_{ $\lambda$\in'P_{k}} forms a basis of  $\Lambda$^{(k)}=\mathbb{Z}[h_{1}, . .. , h_{k}]\subseteq $\Lambda$ . In addition  s_{ $\lambda$}^{(k)} is

homogeneous of degree | $\lambda$| . It is proved in [LM07, Theorem 40] that

Proposition 4 (k‐rectangle property). For 1 \leq  t \leq  k and  $\lambda$ \in \mathcal{P}_{k} , we have

s_{R_{\ell}\cup $\lambda$}^{(k)}=s_{R_{t}}^{(k)}s_{ $\lambda$}^{(k)}(=s_{R_{t}}s_{ $\lambda$}^{(k)}) .

2.5. K-k‐Schur functions g_{ $\lambda$}^{(k)} . In [Mor12] a combinatorial characterization of

K‐k‐Schur functions is given via an analogue of the Pieri rule, using some kind of

strips called affine set‐valued strips.

For a partition  $\lambda$, (i,j)\in(\mathbb{Z}_{>0})^{2} is called  $\lambda$ ‐blocked if (i+1,j)\in $\lambda$.

Definition 5 (affine set‐valued strip). For r\leq k, ( $\gamma$/ $\beta$,  $\rho$) is called an affine set‐

valued strip of size r (or an affine set‐valued r‐stnp) if  $\rho$ is a partition and  $\beta$\subset $\gamma$
are cores both containing  $\rho$ such that

(1)  $\gamma$/ $\beta$ is a weak (r-m) ‐stnp where we put m=\#{\rm Res}( $\beta$/ $\rho$) ,
(2)  $\beta$/ $\rho$ is a subset of  $\beta$ ‐removable corners,

(3)  $\gamma$/ $\rho$ ts a horizontal strip,
(4) For \forall i\in{\rm Res}( $\beta$/ $\rho$) , all  $\beta$ ‐removable  i ‐corners which are not  $\gamma$ ‐blocked are

in  $\beta$/ $\rho$.

In this paper we employ the following characterization [Mor12, Theorem 48] of

the K‐k‐Schur function as its definition.
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Definition 6 (K‐k‐Schur function via an �affine set‐valued� Pieri rule). K‐k‐Schur

functions \{g_{ $\lambda$}^{(k)}\}_{ $\lambda$\in'P_{k}} are the family of symmetric functions such that g_{\emptyset}^{(k)}=1 and

for  $\lambda$\in P_{k} and 0\leq r\leq k,

(4) h_{r}\displaystyle \cdot g_{ $\lambda$}^{(k)}=\sum_{( $\mu,\ \rho$)}(-1)^{| $\lambda$|+r-| $\mu$|}g_{ $\mu$}^{(k)},
summed over ( $\mu$,  $\rho$) such that (\mathrm{c}( $\mu$)/\mathrm{c}( $\lambda$),  $\rho$) is an affine set‐valued strip of size r.

In fact \{g_{ $\lambda$}^{(k)}\}_{ $\lambda$\in P_{k}} forms a basis of $\Lambda$^{(k)} . Moreover, though g_{ $\lambda$}^{(k)} is an inhomoge‐
neous symmetric function in general, the degree of g_{ $\lambda$}^{(k)} is | $\lambda$| and its homogeneous
part of highest degree is equal to s_{ $\lambda$}^{(k)}.

3. RESULTS

3.1. Possibility of factoring out g_{R_{t_{1}}^{a_{1}}\cup\cdot\cdot\cup R_{\mathrm{c}_{m}^{m}}^{a}}^{(k)} and some other general re‐

sults. As discussed above, it does not hold that g_{R_{4}\cup $\lambda$}^{(k)}=g_{R_{t}}^{(k)}g_{ $\lambda$}^{(k)} for any  $\lambda$\in \mathcal{P}_{k}.

However, it holds that g_{R_{t}}^{(k)} divides g_{R_{t}\cup $\lambda$}^{(k)} . We prove it in a slightly more general
form.

The following notation is often referred later:

(NP) Let 1 \leq  t_{1} , . . .
, t_{m} \leq  k be distinct integers and a_{ $\iota$} \in \mathbb{Z}_{>0} (1 \leq i \leq m) ,

where m\in \mathbb{Z}_{>0} . Then we put

P=R_{t_{1}}^{a_{1}}\cup\cdots\cup R_{t_{m}}^{a_{m}},
 $\alpha$ P(u)=\#\{t_{v}|1\leq v\leq m, t_{v}\geq u\} for each u\in \mathbb{Z}_{>0}.

Proposition 7. Let P be as in the above (NP). Then, for  $\lambda$=($\lambda$_{1}, \cdots, $\lambda$_{l})\in \mathcal{P}_{k},
we have g_{P}^{(k)}|g_{ $\lambda$\cup P}^{(k)} in the ring $\Lambda$^{(k)}.

Remark. Note that  $\lambda$ may still have the form  $\lambda$=R_{4}\cup $\mu$ . Hereafter we will not

repeat the same remark in similar statements.

Since the homogeneous part of highest degree of  g_{ $\lambda$}^{(k)} is equal to s_{ $\lambda$}^{(k)} for any  $\lambda$,
it follows from Propositions 4 and 7 that

Corollary 8. Let P be as in (NP). Then, for any  $\lambda$\in \mathcal{P}_{k} , we can write

g_{P\cup $\lambda$}^{(k)}=g_{P}^{(k)} (g_{ $\lambda$}^{(k)}+\displaystyle \sum_{ $\mu$}a_{ $\lambda \mu$}g_{ $\mu$}^{(k)}) ,

summing over  $\mu$\in \mathcal{P}_{k} such that | $\mu$|< | $\lambda$| , for some coefficients a_{ $\lambda \mu$} (depending on

P) .

Now we are interested in finding a explicit description of g_{P\cup $\lambda$}^{(k)}/g_{P}^{(k)} . Let us

consider the case P=R_{t} for simplicity.
As noted above, a linear map  $\Theta$ extending  g_{ $\lambda$}^{(k)} \mapsto  g_{\mathrm{R}\cup $\lambda$}^{(k)} (\forall $\lambda$ \in \mathcal{P}_{k}) does not

coincide with the multiplication of g_{R_{\mathrm{t}}}^{(k)} because it does not commute with the

multiplication by h_{r} in the first place.
However, we can prove that the restriction of  $\Theta$ to the subspace spanned by

\{g_{R_{4}\cup $\mu$}^{(k)}\}_{ $\mu$\in P_{k}} (in fact this is the principal ideal generated by g_{R}^{(k)} ) commutes with the

multiplication by h_{r} , and thus it coincides with the multiplication of  $\Theta$(g_{R_{\mathrm{t}}}^{(k)})/g_{R_{2}}^{(k)}=
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g_{R_{t}\cup R_{4}}^{(k)}/g_{R_{t}}^{(k)} on that ideal (Proposition 9). Thus it is of interest to describe the value

of g_{R_{t}\cup R_{t}}^{(k)}/g_{R_{\mathrm{t}-}}^{(k)} , which is shown to be \displaystyle \sum_{ $\nu$ \mathrm{C}R_{t}}g_{ $\nu$}^{(k)} later.

Proposition 9. For  $\lambda$\in \mathcal{P}_{k} and 1\leq t\leq k , we have g_{ $\lambda$\cup R_{t}\cup R_{\mathrm{t}}}^{(k)}=g_{ $\lambda$\cup R_{\mathrm{t}}}^{(k)}\displaystyle \cdot\frac{g_{R_{\mathrm{t}}\cup R_{t}}^{(k)}}{g_{R_{\mathrm{t}}}^{(k)}}.
As a corollary, it turns out that the value of g_{P\cup $\lambda$}^{(k)}/g_{P}^{(k)} is independent of a_{1} , \cdots ,  a_{m},

the �multiplicities� of k‐rectangles.

Theorem 10. Let P=R_{f_{1}}^{a_{1}}\cup\cdots\cup R_{t_{m}}^{a_{m}} be as in (NP), and put Q=R_{t_{1}}\cup\cdots\cup R_{t_{n}}.
Then, for  $\lambda$\in P_{k} we have

\displaystyle \frac{g_{P\cup $\lambda$}^{(k)}}{g_{P}^{(k)}}=\frac{g_{Q\cup $\lambda$}^{(k)}}{g_{Q}^{(k)}}.
Thus we can reduce Question 1� to the case where the k‐rectangles are of all

different sizes.

3.2. Answer to Question 2. For Question 2, we first show that multiple k‐

rectangles of different sizes entirely splìt, namely,

Theorem 11. For 1\leq t_{1}<\cdots<t_{m}\leq k and a_{1} , . . . , a_{m}>0,

(k) (k) (k)

g_{R_{$\iota$_{1}}^{a_{1}}\cup\cdots\cup R_{*m}^{a_{m}}} =g_{R_{\mathrm{t}_{1}}^{a})}
. . .

g_{R_{t_{m}}^{a_{m}}}.
Then we show that for each 1\leq t\leq k and a> 1 , we have a nice factorization

generalizing the formula (3):

Theorem 12. For 1\leq t\leq k and a>0 , we have

g_{R_{\mathrm{r}}^{a}}^{(k)}=g_{R_{t}}^{(k)} (\displaystyle \sum_{ $\lambda$\subset R_{\mathrm{t}}}g_{ $\lambda$}^{(k)})^{a-1}
Thus, substituting this into Theorem 11, we have

g_{R_{t_{1}}^{a_{1}}\cup\cdots\cup R}^{(k)}\mathfrak{X}=g_{R_{\mathrm{t}_{1}}}^{(k)} (_{ $\lambda$(1)}\displaystyle \sum_{\subset R_{\ell_{1}}}g_{ $\lambda$(1)}^{(k)})^{a_{1}-1}\ldots g_{R_{t_{n}}}^{(k)} (_{ $\lambda$(n)}\displaystyle \sum_{\subset R_{t_{n}}}g_{ $\lambda$(n)}^{(k)})^{a_{n}-1}
3.3. (Partial) Answer to Question 1�. An easiest case is where  $\lambda$=(r) consists

of a single part, which generalizes the case (2) in Introduction. Namely we show

that

Theorem 13. Let P, a_{P}(u) be as in (NP)and1\leq r\leq k . Then we have

\displaystyle \frac{g_{P\cup(r)}^{(k)}}{g_{P}^{(k)}}=\sum_{s=0}^{r}(^{$\alpha$_{P}(r)+r-s-1}r-s)h_{s}.
In particular, if t_{7n}<r , which means  $\alpha$ p(r)=0 , we have

\displaystyle \frac{g_{P\cup(r)}^{(k)}}{g_{P}^{(k)}}=h_{r}=g_{(r)}^{(k)}
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On the other hand, when m=1,

\displaystyle \frac{g_{R_{t}\cup(r)}^{(k)}}{g_{R_{t}}^{(k)}}=\left\{\begin{array}{ll}
h_{r} & (\mathrm{i}\mathrm{f} r>t),\\
h_{r}+h_{r-1}+\cdots+h_{0} & (\mathrm{i}\mathrm{f} r\leq t).
\end{array}\right.
Then generalizing this case, we derive explicit formulas in the cases where  $\lambda$=

($\lambda$_{1}, \ldots, $\lambda$_{l}) satisfies the following condition (\mathrm{N} $\lambda$)\mathrm{a}\mathrm{n}\mathrm{d} that the parts of  $\lambda$ except for

 $\lambda$_{l} are all larger than the widths of the k‐rectangles.

(\mathrm{N} $\lambda$) Let (\emptyset\neq) $\lambda$\in \mathcal{P}_{k} with satisfying \overline{ $\lambda$}\subset R_{l} where we write \overline{ $\lambda$}=($\lambda$_{1}, $\lambda$_{2}, \ldots, $\lambda$_{l( $\lambda$)-1}) ,
l=l( $\lambda$) and \overline{l}=l(\overline{ $\lambda$})=l-1 . (Here we consider R. to be \emptyset unless  1\leq t\leq k)

(Note: when l( $\lambda$)=1 , we have \overline{l}=0 and \displaystyle \overline{ $\lambda$}=\emptyset=R\frac{\prime}{l} thus  $\lambda$ satisfies (\mathrm{N} $\lambda$) . When

l( $\lambda$)>k+1 , we have \overline{l}>k and \overline{ $\lambda$}\neq\emptyset=R_{\overline{l}}' thus  $\lambda$ does not satisfy (\mathrm{N} $\lambda$) . )

Namely, we prove that

Theorem 14. Let P and $\alpha$_{P}(u) (for u\in \mathbb{Z}>0) be as in (\mathrm{N}\mathrm{P})in Section 3.1, before
Proposition 7. Let  $\lambda$, l, \overline{ $\lambda$},\overline{l} be as in (\mathrm{N} $\lambda$)above . Assume \displaystyle \max_{ $\iota$}\{t_{i}\} <\overline{ $\lambda$}_{\overline{l}} . Then we

have

(1) g^{(k)}g_{ $\lambda$}^{(k)}=\displaystyle \sum_{ $\epsilon$=0}^{$\lambda$_{l}}(-1)^{s}(^{$\alpha$_{P}($\lambda$_{l}+1-s)}s)g_{P\cup\overline{ $\lambda$}\cup($\lambda$_{1}- $\epsilon$)}^{(k)}.
(2) g_{P\cup $\lambda$}^{(k)}=g_{P}^{(k)}\displaystyle \sum_{s=0}^{$\lambda$_{l}}(^{$\alpha$_{P}($\lambda$_{l})_{S}+s-1})g_{\cup($\lambda$_{\mathrm{t}}- $\epsilon$)}^{k)}\frac{(}{ $\lambda$}.
In particular, if t_{n}<$\lambda$_{l} then $\alpha$_{P}($\lambda$_{l})=0 and

(k) (k) (k)
.g_{P\cup $\lambda$} =g_{P} g_{ $\lambda$}

In this figure p = m-$\alpha$_{P}($\lambda$_{l})
and a_{i}=1 for all i.

Moreover, we show a formula in a slightly different case where P is a single k-

rectangle R_{f} and  $\lambda$=($\lambda$_{1}, \ldots, $\lambda$_{l}) satisfies (\mathrm{N} $\lambda$)\mathrm{a}\mathrm{n}\mathrm{d} that the parts of  $\lambda$ except for

 $\lambda$_{l} are all larger than or equal to the widths of the k‐rectangles.

Notation. For any partition  $\lambda$ , let  $\lambda$^{\mathrm{o}}=($\lambda$_{1}, \ldots, $\lambda$_{i}) if $\lambda$_{i}>t\geq$\lambda$_{i+1} (we set $\lambda$^{\mathrm{o}}=\emptyset

if  t\geq$\lambda$_{1}) .

Theorem 15. Let  $\lambda$, l, \overline{ $\lambda$}, \overline{l} be as in (\mathrm{N} $\lambda$) . Assume \overline{ $\lambda$}_{\overline{l}}\geq t\geq$\lambda$_{l} . Then we have

g_{\mathrm{r}\cup $\lambda$}^{(k)}=g_{R_{\mathrm{t}}}^{(k)}\displaystyle \sum_{\mathrm{c}($\lambda$^{\circ})\subset \mathrm{c}(\mathrm{v})\mathrm{C}\mathrm{c}( $\lambda$)}g_{ $\nu$}^{(k)}.
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3.4. Example. Let us illustrate the sketch of the proof of Theorem 14 with a small

example.
Consider the case P=R_{t} : we shall show that g_{R_{\mathrm{t}}\cup $\lambda$}^{(k)}=g_{R_{t}}^{(k)}g_{ $\lambda$}^{(k)} if $\lambda$_{l}>t and $\lambda$_{1}+l\leq

 k+2 . Let us assume Theorem 13 (the case l = 1 ) and consider the case l = 2 . Set

 $\lambda$=(a, b) with k\geq a\geq b>t.

Step (A): Expand g_{(a,b)}^{(k)} into a linear combination of products of complete symmetric func‐

tions and K‐k‐Schur functions labeled by partitions with fewer rows:

By using the Pieri rule (4) we have

g_{(a)}^{(k)}h_{l}= (g_{(a,i)}^{(k)}-g_{(a,i-1)}^{(k)})
+(g_{(a+1, $\iota$-1)}^{(k)}-g_{(a+1,i-2)}^{(k)})
+\ldots

\{
. . . + (g_{(a+}^{(k)}1‐1,1 ) -g_{(a+ $\iota$-1,0)}^{(k)}) (if a+i\leq k)

+g_{(a+i,0)}^{(k)}
. . . +(g_{(k-1,a+i-k+1)}^{(k)}-g_{(k-1,a+ $\iota$-k)}^{(k)}) (if a+i>k)

+(g_{(k,a+i-k)}^{(k)}-g_{(k,a+i-k-1)}^{(k)})
for i\leq a , and summing this over 0\leq i\leq b , we have

(5)  g_{(a)}^{(k)}(h_{b}+ \cdot\cdot \cdot +h_{0})=g_{(a,b)}^{(k)}+g_{(a+1,b-1)}^{(k)}+\cdot \cdot\cdot \left\{\begin{array}{ll}
g^{(k)}l_{k)}^{a+b,0)} & (\mathrm{i}\mathrm{f} a+b\leq k)\\
g_{(k,a+b-k)} & (\mathrm{i}\mathrm{f} a+b\geq k)
\end{array}\right.
=\displaystyle \sum_{$\mu$_{1}\leq k} $\mu$/(a):\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}1| $\mu$|=a+b strip

g_{ $\mu$}^{(k)}.

Similarly we have

g_{(a+1)}^{(k)}

(h_{b-1} + \cdot\cdot \cdot +h_{0})
=g_{(a+1,b-1)}^{(k)} +g_{(a+2,b-2)}^{(k)} + \cdot \cdot\cdot=

 $\mu$/(a+1):\displaystyle \mathrm{h}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}1| $\mu$|=a+b\sum_{$\mu$_{1}\leq k} strip

g_{ $\mu$}^{(k)},

hence

g_{(a,b)}^{(k)}=g_{(a)}^{(k)}(h_{b}+\cdots+h_{0})-g_{(a+1)}^{(k)}(h_{b-1}+\cdots+h_{0}) .

Step (B): Multiply g_{(a,b)}^{(k)} by g_{R_{\mathrm{t}}}^{(k)} . Then we have

g_{R_{t}}^{(k)}g_{(a,b)}^{(k)}=g_{R_{t}}^{(k)}g_{(a)}^{(k)}(h_{b}+\cdots+h_{0})-g_{R_{t}}^{(k)}g_{(a+1)}^{(k)}(h_{b-1}+\cdots+h_{0})
=g_{R_{t}\cup(a)}^{(k)}(h_{b}+\cdots+h_{0})-g_{R_{t}\cup(a+1)}^{(k)}(h_{b-1}+\cdots+h_{0})

because g_{R_{\mathrm{t}}}^{(k)}g_{(a)}^{(k)}=g_{R_{\mathrm{t}}\cup(a)}^{(k)} since t<a.

Then carry out calculations similar to Step (A).
Notation. For a proposition P , we shall write 6 [F]=1 if P is true and  $\delta$[P]=0
if P is false.

Since the number of residues of \mathrm{c}(R_{t}\cup(a,j))‐nonblocked \mathrm{c}(R_{t}\cup(a))‐removable

corners is 1+ $\delta$[t>j],

g_{R_{\ell}\cup(a)}^{(k)}h_{i}= (g_{R_{t}\cup(a,0)}^{(k)}- \left(\begin{array}{ll}
1+ &  $\delta$[t>i-1]\\
 & \mathrm{l}
\end{array}\right)g_{R_{{\$}}\cup(a,\mathrm{c}-1)}^{(k)}+\left(\begin{array}{ll}
1+ &  $\delta$[t>i-2]\\
 & 2
\end{array}\right)g_{R_{\mathrm{t}}\cup(a,i-2)}^{(k)})
+ (g_{R_{\mathrm{t}}\cup(a+1,i-1)}^{(k)}- \left(\begin{array}{ll}
1+ &  $\delta$[t>i-2]\\
 & 1
\end{array}\right)g_{R_{t}\cup(a+1,i-2)}^{(k)}+ \left(\begin{array}{ll}
1+ &  $\delta$[t>i-3]\\
 & 2
\end{array}\right)g_{R_{t}\cup(a+1,i-3))}^{(k)}
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+\ldots .

Summing this over  0\leq i\leq b , we have

g_{R_{l}\cup(a)}^{(k)} (h_{b}+ \cdots +h_{0})= (g_{R_{\ell}\cup(a,b)}^{(k)}- $\delta$[t>b-1]g_{R_{i}\cup(a,b-1)}^{(k)})
+(g_{R_{t}\cup(a+1,b-1)}^{(k)}- $\delta$[t>b-2]g_{R_{\mathrm{t}}\cup(a+1,b-2)}^{(k)})
+. .. .

Similarly we have

g_{R_{\mathrm{f}}\cup(a+1)}^{(k)} (h_{b-1}+ \cdot\cdot \cdot +h_{0})= (g_{R_{t}\cup(a+1,b-1)}^{(k\rangle}- $\delta$[t>b-2]g_{R_{t}\cup(a+1,b-2)}^{(k)})
+(g_{R\mathrm{e}\cup(a+2,b-2)}^{(k)'}- $\delta$[t>b-3]g_{R_{t}\cup(a+2,b-3)}^{(k)})
+\cdots ,

hence we have

 g_{\mathrm{t}}^{(k)}g_{(a,b)}^{(k)}=g_{R_{t}\cup(a,b)}^{(k)}- $\delta$[t>b-1]_{9_{R\ell\cup(a,b-1)}^{(k)}}
=g_{R_{t}\cup(a,b)}^{(k)}

since we have assumed b>t.

4. DISCUSSIONS

It is worth noting that, in any cases we have seen, g_{P\cup $\lambda$}^{(k)}/g_{P}^{(k)} is written as a

linear combination with positive coefficients of K‐k‐Schur functions:

Conjecture 16. For \forall $\lambda$\in\prime P_{k} and P=Rỉ11\cup\cdots\cup Rỉmm, write

g_{P\cup $\lambda$}^{(k)}=g_{P}^{(k)}\displaystyle \sum_{ $\mu$}a_{P, $\lambda,\ \mu$}g_{ $\mu$}^{(k)}.
Then a_{P, $\lambda,\ \mu$}\geq 0 for any  $\mu$.

In the case P=R_{t} , it is observed that a_{R_{t}, $\lambda,\ \mu$}=0 or 1. Moreover, the set of  $\mu$
such that  a_{R_{i}, $\lambda,\ \mu$}=1 is expected to be an �interval�, but we have to consider the

strong order on P_{k} \simeq \mathcal{C}_{k+1} , which can be seen as just inclusion as shapes in the

poset of cores. Namely, the strong order  $\lambda$ \leq  $\mu$ on  P_{k} is defined by \mathrm{c}( $\lambda$) \subset \mathrm{c}( $\mu$) .

Notice that  $\lambda$\preceq $\mu$\Rightarrow $\lambda$\subset $\mu$\Rightarrow $\lambda$\leq $\mu$ for  $\lambda$,  $\mu$\in P_{k} . Then,

Conjecture 17. For \forall $\lambda$\in \mathcal{P}_{k} and 1\leq\forall t\leq k , there exists \exists $\mu$\in P_{k} such that

g_{R_{t}\cup $\lambda$}^{(k)}=g_{R_{\mathrm{t}}}^{(k)}\displaystyle \sum_{ $\mu$\leq $\nu$\leq $\lambda$}g_{ $\nu$}^{(k)}.
ỉt should be interesting to study the geometric meaning of these results and

conjectures.
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