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1 Introduction

A three-neighbor triangular partitioned cellular automaton (TPCA) is a CA such that cells are triangu-
lar, and each cell has three parts. A TPCA is called an elementary TPCA (ETPCA), if it is rotation-
symmetric, and each part of a cell has only two states. The class of ETPCAs is one of the simplest
subclasses of two-dimensional CAs, since the local function of each ETPCA is described by only four
local rules. There are 256 ETPCAs as in the case of one-dimensional elementary CAs [13]. Among them .
there are 36 reversible ETPCAs (RETPCAs), and 9 conservative RETPCAs. A particular conservative
RETPCA Tj;57, where 0157 is an identification number in the class of EPCAs, was first investigated in
[5], and its computational universality was shown. In [9], it was shown that 6 conservative RETPCAs
are computationally universal, while the remaining three are non-universal. Hence, universality of all the
conservative RETPCAs has been clarified. On the other hand, in [6], a non-conservative RETPCA Tp347
is studied. In spite of its extreme simplicity, it shows quite interesting behavior like the Game of Life
CA [3, 4]. In particular, a glider, which is a space-moving pattern, and glider guns exist in Tps47. Using
gliders to represent signals, computational universality of Tp347 is also proved. :

In this paper, after giving basic definitions on ETPCAs, we present three kinds of “dualities,” and
classify 256 ETPCAs. By this, we obtain 82 equivalence classes of ETPCAs.. We then give a survey on
the past results. In particular, it is explained how computational universality of ETPCAs is shown.

2 Preliminaries

We give several definitions that are needed in the later sections.

2.1 Triangular partitioned cellular automaton

A three-neighbor triangular partitioned cellular automaton (TPCA) is a CA defined on the cellular space
shown in Fig. 1. In a TPCA, each cell has three parts, and the next state of a cell is determined by the
states of the adjacent parts of the three neighbor cells as shown in Fig. 2.

Figure 1: Cellular space of a three-neighBor TPCA.

All the célls of a TPCA are identical copies of a finite state machine, and each cell has three parts,
i.e., the left, downward, and right parts, whqse state sets are L, D and R, respectively. However, the
directions of the cells are not the same, i.e., there are up-triangle cells, down-triangle cells.
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Figure 2: Pictorial representations of the local rule f(,d,r) = (I',d’,'), where (/,d,r), (l’ ,d,r')yeLx
D x R. They are (a) for up-triangle cells, and (b) for down-triangle cells.

- We now place cells of a TPCA on Z? as shown in Fig. 3. We assume that if the coordinates of an
up-triangle cell is (x,y), then x 4+ y must be even. It should be noted, if we define an TPCA on Z2,
tthere arises a problem that the neighborhood s slightly non-uniform. Namely, for an up-triangle cell,
its neighbors are the west, south and east adjacent cells (Fig. 2 (a)), while for a down-triangle cell, its
neighbors are the east, north and west adjacent cells (Fig. 2 (b)). Although such non-uniformity can be
dissolved by defining a TPCA on'a Cayley graph, here we define a TPCA on Z2.
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Figlire 3: The x-y coordinates in the cellular space of TPCA.

Definition 1 A4 deterministic triangular partitioned cellular automaton (TPCA) is a system defined by
T= (Zzi (L?D,R), ((—170)’ (0, - 1)7 (1’0))7 ((1,0), (Ov l), (_170))af’ (#7#7#))

Here, 7? is the set of all two-dimensional points with integer coordinates at which cells are placed.
Each cell has three parts, i.e., the left, downward and right parts, where L, D and R are non-empty
finite set of states of these parts. The state set Q of each cell is thus given by Q =L x D x R. The
triplet ((—1,0),(0,—1),(1,0)) is a neighborhood for up-triangle cells, and ((1,0),(0,1),(—1,0)) is a
neighborhood for down-triangle cells. The item f: Q — Q is a local function, and (#,#,#) € Q is a
quiescent state that satisfies f(#,#,#) = (#,#,#). We also allow a TPCA that has no quiescent state.

If f(I,d,r) = (I',d',”’) holds for (I,d,r),(I',d,r’) € O, then this relation is called a local rule of the
TPCA T (Fig. 2). Configurations of a TPCA, and the global function induced by the local function are
defined as below.

Definition 2 Let T be a TPCA. A configuration of T is a function o : Z* — Q. The set of all con-
figurations of T is denoted by Conf(T), i.e, Conf(T) = {a|ax: Z* — Q}. Let pry i Q — L be the
projection function such that pr(1,d,r) =1 for all (I,d,r) € Q. The projection functions prp : Q — D
and pry : Q — R are also defined similarly. The global function F : Conf(T) — Conf(T) of T is defined
as the one that satisfies the following condition.

Vo € Conf(T),V(x,y) € Z*:

F(a)(x y) _ {f(prL(a(x'— 1,J’)),PTD(“(xay— 1))ver(a(x+ lvy))) ifx+y is even
’ Fprz(alx+1,p)),prp(e(x,y+ 1)), pre(a(x — 1,))) ifx+yis odd
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From this definition, we can see that the next state of the up-triangle cell is determined by the present
states of the left part of the west neighbor cell, the downward part of the south neighbor cell, and the right
ppart of the east neighbor cell. On the other hand, the next state of the down-triangle cell is determined by
the present states of the left part of the east neighbor cell, the downward part of the north neighbor cell,
and the right part of the west neighbor cell. Therefore, for a local rule f(/,d,r) = (I',d’,#'), there are
two kinds of pictorial representations as shown in Fig. 2 (a) and (b). Namely, Fig. 2 (a) is for up-triangle
cells, while Fig. 2 (b) is for down-triangle cells.

In [11], it is shown injectivity of the global function is equivalent to that of the local function in
one-dimensional PCAs. The following lemma is proved in a similar manner as this.

Lemma 1 [10] Let T be a TPCA, f be its local function, and F be its. global function, Then, F is
injective iff f is injective.

Definition 3 Let T be a TPCA. The TPCA T is called reversible if its-local (or equivalently global)

function is injective.

Definition 4 Let T = (ZZ, (L,D,R), ((_1,0-), (0, —1),’(1,0)), ((1’0), (0? 1): (_ 1’0))afr(#>#v#)) be a
TPCA. The TPCA T is called rotation-symmetric (or isotropic) if the conditions (1) and (2) holds.

(1) L=D=R

(2) v(l,d,r),(!',d,F)eLxDxR: f(l,dry=1,d,r) = fdnrl)=d,nrl)

2.2 Elementary triangular partitioned cellular automaton (ETPCAs)

Definition 5 Ler T = (Z?,(L,D,R),((—1,0),(0,—1),(1,0)),((1,0),(0,1),(—1,0)), £,(0,0,0)). be a
TPCA. 1t is called an elementary triangular partitioned cellular automaton (ETPCA), if L=D =R =
{0,1}, and it is rotation-symmetric.

The set of states of a cell of an ETPCA is L x D x R = {0, 1}3, and thus a cell has eight states. When
drawing figures of T"s local rules and configurations, we indicate the states 0 and 1 of each part of by a
blank and a particle (i.e., ®), respectively.

Since ETPCA is rotation-symmetric, and each part of a cell has the state set {0, 1}, its local function
is defined by only four local rules. Hence, an ETPCA can be specified by a four-digit number wxyz, as
shown in Fig. 4, such that w,z € {0,7} and x,y € {0, 1,...,7}. Thus, there are 256 ETPCAs. Note that w
and z must be 0 or 7 because an ETPCA is deterministic and rotation-symmetric. The ETPCA with the
number wxyz is denoted by T,yy,.
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Figure 4: Representing an ETPCA by a four-digit number wxyz, where w,z € {0,7} and x,y €
{0,1,...,7}. Vertical bars indicate alternatives of a right-hand side of a rule.
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‘ A reversible ETPCA (RETPCA) is an ETPCA whose local function is injective. (Definition 3). Thus, .

it is easy to show the following.
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Lemma 2 Let T,yy, be an ETPCA. It is reversible iff the following conditions (1) and (2) hold.

(1) (mz) € {(0,7),(7,0)} ,
(2) (x,p)ye{1,2,4} x {3,5,6}U{3,5,6} x {1,2,4}

A conservative ETPCA is a one such that the total number of particles (i.e., ®’s) is conserved in each
local rule. Hence, it is defined as follows.

Definition 6 Let Ty, be an ETPCA. It is called a conservative ETPCA if the following condition holds.
w=0Ax€e{l,2,4} Aye{3,56} Az=17
From Lemma 2 and Definition 6, it is clear the following holds.

Lemma 3 Let T be an ETPCA. If T is conservative, then it is reversible.

By the above lemma, conservative ETPCAs are called conservative RETPCAS hereafter. We can see
that there are 36 RETPCAS (by Lemma 2), and among them there are nine conservative RETPCAs (by
Definition 6).

2.3 Dualities in ETPCAs

As seen above, there are 256 ETPCAs. However, there are some “equivalent” ETPCAs, and thus the
number of essentially different ETPCAs is much smaller. Here, we introduce three kinds of dualities,
and classify the ETPCAs based on them [10].

2.3.1 Duality under reflection

Definition 7 Let T and T be ETPCA4s, and f and 7 be their local functions. We say T and T are dual
under reflection, if the following holds, and it is written as T« T.

N, dr), (d' ) € {0,133 f(ld,r)=(I',d,F) & f(rndl)=(".d,l)

By this definition, we can see that the local rules of 7 areihe mirror images of those of T. Therefore,
an evolution process of 7’s configurations is simulated in a straightforward manner by the mirror images
of the T’s configurations in 7. For example, To1374g Toae7 holds (Fig. 5).
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Figure 5: The local functions of Ty137 and Tpag7 that are duél under reflection

2.3.2 Duality under complementation
Forx € {0, 1}, let X denote 1 —x; i.e., the complement of x.

Definition 8 Let T and T be ETPCAs, and f and f be their local functions. We say T and T are dual

under complementation, if the following holds, and it is written as Tm T.

V(t,d,r), (1, d,r) €{0,1Y: f(Ldr)=('\d V) & fldr)=(,d,7))

By this, we can see that the local rules of T are the 0-1 exchange (i.e., taking their complenients) of
those of T'. Therefore, an evolution process of 7’s configurations is simulated in a straightforward manner

by the complemented images of the T’s configurations in 7. For examiple, 76157%’ Toae7 (Fig. 6).
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Figure 6: The local functions of T;57 and Tpye7 that are dual under complementation
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2.3.3 Duality under odd-step complementation

Definition 9 Let T' be an ETPCA such that its local function f satisfies the following.

(1) V(l,d,r),(I,d,r") e {0,1}3: f(l,d,r)=(I',d',V") = f(I,d,r) = (T,d,F)

Let T be another ETPCA, and f be its local function. We say T and T are dual under odd-step comple-
mentation, if the following holds, and it is written as T« T.

Y(l,d,r),(I,d, 7)€ {0,1Y3: f(l,d,r)=(',d,¥) & f(l,d;r)=T,d,7)

Since the. ETPCA T satisfies the condition (1) in Definition 9, we can see that for each local rule
fl,d,r)=(I',d',r") of T, there are two local rules f(/,d,r) = (V,d,r") andf(? d,r)=(,dr)of T
(hence T also satisfies (1)). Let F and ¥ be the global function of T and T, respectively. If the initial
configuration of T is o : Z2 — {0,1}?, then we assume o is also given to 7' as its initial configuration.
Since there is a local rule 7(1,d,r) = (F,d,7") for each f(I,d,r) = (I',d","), the configuration F(a) 1s
the complement of the configuration F(cx). Furthermore, since there is a local rule f(7,d,7) = (I',d’,”
for each f(I,d,r) = (I',d',’), the configuration £?(c) is the same as F2(ax). In this way, at an even step
T gives the same configuration as 7', while at an odd step 7' gives the complemented configuration of T.

For examiple, Ty347 > T30 holds (Fig. 7). Figure 8 shows an example of their evolution processes.
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Figure 7: The local functions of Ty347 and Tr430, which are dual under odd-step complementation
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Figure 8: Example of evolution processes in (a) Tp347, and (b) Th439, which are dual under odd-sfep
complementation

Note that, in Definition 9, the ETPCA T vI“IlllSt satisfy the condition (1). Therefére, the relation «»
is defined on the ETPCASs of the form T,,), such that w+z =7 and x+y = 7. Hence, only the following
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16 ETPCAs have their dual counterparts under odd-step complementation.

Toor74555> Trr00,  Toner+550> Tr610,  Toa574550 17520,
To3a7555> T30, Toa374550> Tr3a0,  Tos27555> Taso,

To6174555* Tr60,  To7074555> Tro70

2.3.4 Equivalence classes of ETPCAs

IfETPCAs T and 7" are dual under reflection, complementation, or odd-step complementation, then they
can be regarded as essentially the same ETPCAs.. Here, we classify the 256 ETPCAs into equivalence
classes based on the three dualities. We define the relation «— as follows: For any ETPCAs T and 77,

Te—T' & TepT' VTeaT' VITeT)

refl comp [y
holds. Now, let «—* be the reflexive and transitive closure of «——. Then, «—"* is an equivalence
relation, since «—— is symmetric. By this, 256 ETPCAs are classified into 82 equivalence classes.
Table'1 shows the classification result.

Table 1: Total numbers and numbers of equivalence classes of ETPCAs, RETPCAs, and conservative
RETPCAs '

Total number Equivalence classes

ETPCAs 256 82
RETPCAs 36 12

Conservative RETPCAs 9 4

3 Conservative RETPCAs

There are nine conservative RETPCAs (Definition 6). We have the following four equivalence classes
under the relation ——*.

{To157, Toas7, Toas7, Tozer} { To137, Toas7} { Tor67, Toasr }> { Tozs7}

It has been proved that the RETPCAs in the first two classes are computationally universal, while those
in the last two classes are non-universal [5, 9].

To prove computational universality of a reversible CA, it is sufficient to show that-any reversible
logic circuit composed of switch gates (Fig. 9 (a)), inverse switch gates (Fig. 9 (b)), and delay elements
can be simulated in it (Lemma 8).

c - J1=¢ 3 ¢ ¢ x=c
. — V2 =CXx Y2 —» P y=cp+tq
* = - — q z=cq+7Tp
y3=cx  y3
(@ (b - ©

Figure 9: (a) Switch gate. (b) Inverse switch gate, where ¢ = y1 and x = y; + y3 under the assumption
(72 — 1) A (y3 = ¥1). (c) Fredkin gate.

Lemma 8 can be derived, e.g., in the following way. First, a Fredkin gate (Fig. 9 (c)) can be con-
structed out of switch gates and inverse switch gates (Lemma 4). Second, any reversible sequential
machine (RSM), in particular, a rotary element (RE), which is a 2-state 4-symbol RSM, is composed -
only of Fredkin gates and delay elements (Lemma 5). Third, any reversible Turing machine is con-
structed out of REs (Lemma 6). Finally, any (irreversible) Turing machine is simulated by a reversible
one (Lemma 7). Thus, Lemma 8 follows. Note that the circuit that realizes a reversible Turing machine
constructed by this method becomes an infinite (but ultimately periodic) circuit.
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Figure 10: Local function of T;s7

Figure 11: Switch gate module implemented in ;57 [10]. Two signals from ¢ and x interact at the cell
indicated by bold lines.

Lemma 4 [2] 4 Fredkin gate can be simulated by a circuit composed of switch gates and inverse switch
gates, which produces no garbage signals.

Lemma 5 [10].Any RSM (in particular RE) can be simulated by a circuit composed of Fredkin gates
and delay elements, which produces no garbage signals.

Lemma 6 [10] Any reversible Turmg machine can be simulated by a garbage-less circuit composed only
of REs.
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Leéemma 7 [1] Any (zrreverszble) Turing machine can be simulated by a garbage-less reversible Turmg '

machine.

Lemma 8 A reversible CAis cbmputationally universal, if any circuit composed of switch gates, inverse
switch gates, and delay elements is simulated in it.

. First, consider the conservative RETPCA Tp;57 (Fig. 10). Its universality was first proved in [5] by
showing that switch gate and inverse switch gate modules, delay elements, and signal crossing modules
are implemented in its cellular space. Hence, by Lemma 8, it is computationally universal. Figure 11
shows a switch gate module in 7pis7. There, a single particle works as a signal, which moves along a
wire. Two signals coming from the input potts ¢ and x interact at the cell indicated by bold lines.

Second, qonsfder the RETPCA Tp137 (Fig. 12). In [9] it is shown that switch gate and inverse switch
gate modules, delay elements, and signal crossing modules are implemented in its cellular space. Hence,
it is also computationally universal. Figure 13 gives a switch gate module in Tp;37.

Next, consider Tgzs7. From Fig. 14, we caninterpret that in each local rule, all the coming particles
make U-turns. Hence, every configuration of 72)257 is of period 2. Therefore, it is trivially non-universal.

DB (- B4 T34

Figure 12: Local function of To137



~ Figure 13: Switch gate module implemented in 75137 [9]

DB -4 -5 £3-4
Figure 14: Local function of Tjs7

Likewise in Tp167 (To437, tespectively), all the coming particles make right-turns (left-turns). Hence,
" every configuration is of period 6, and thus Tg167 and Tp437 are non-universal.

By above, and by the dualities, we have the following.

Theorem 1 /5, 9] The conservative RETPCAs To157, Tosst, Toozz, Tozer, To131, and Toaey are computa-
tionally universal: On the other hand, Ty¢7, Toss7, and Tyys7 are non-universal.

4 Non-conservative RETPCA Ty347

Here, we focus on a specific non-conservative RETPCA Tj347 [6]. Its local function is given in Fig. 15.
In spite of its extreme simplicity of the local function, it exhibits quite interesting behavior similar the
case of the Game of Life CA [3, 4].

DL DD ADA

Figure 15: Local function of Tp347

" There are several useful patterns in- Toz47. The most useful pattern in Tyz47 is a glider shown in
Fig. 16 (a). It swims in the cellular space like a fish or an eel. It travels a unit distance, the side-length
of a triangle, in 6 steps. By rotating it appropriately, it can move in any of the six directions. A block is
a pattern shown in Fig. 16 (b). It is a stable pattern. Combining several blocks, right-turn, U-turn, and
left-turn of a glider will be implemented. A fin is a pattern that simply rotates with period 6 (Fig. 16 (c)).
It can also travel around a block, or a sequence of blocks. A rotator is a pattern shown in Fig. 16 (d).
Like a fin, it rotates around some point, and its period is 42.
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Figuré 16: Useful patterns in Toz47. (a) Glider, 0] blvock,v(c) fin, and (d) rotator. A fin and a rotator go
around the point o. '
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Figure 17: Turn modules in Tp347 [6]. (a) Right-turn module coinposed of two blocks, (b) backward—tqm
module, (c) U-turn module, and (d) left-turn module.



We can see that the move direction of a glider is controlled by such interactions of these objects. We
first collide a glider with two blocks (Fig. 17 (a)). Then, the glider is split into a rotator and a fin (¢ = 56).
The fin travels around the blocks three times without interacting with the rotator. At the end of the fourth
round, they meet to form a glider, which goes to the south-west direction (# = 334). Hence, two blocks
act as a 120°-right-turn module. 1t is also possible to make a right-turn module with a different delay
time using three or five blocks. If we collide a glider with a single block as shown in Fig. 17 (b), then the
~glider makes backward turn. Hence, a single block acts as a backward-turn module. Figure 17 (c) shows
a U-turn module. A lefi-turn module is given in Fig. 17 (d).

We now show computational universality of Tp3s7. It is possible to implement a switch gate and an
inverse switch gate in Th347 using gliders as signals. The operation of a switch gate itself is realized by
colliding two gliders as shown in Fig. 18. Using many turn modules to adjust the collision timing and
the directions of the input gliders, we can construct a switch gate as shown in Fig. 19.

1=48 ¢

Figure 18: Switch operation realized by collision of two gliders

Figure 19: Switch gate module implemented in Ty347 [6]

By above, and by the dualities, we have the following.

Theorem 2 [6] The non-conservative RETPCAs Tysa7, Tos17, Trzo and Tyigy are computationally uni-
versal.
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5 Concluding remarks

In this paper, we studied the class of ETPCAs. So far, we had ten corputationally universal RETP-
CAs. However, there are 256 ETPCAs in total, and thus investigation of other universal or interesting
(R)ETPCA:s is left for the future study.

Generally, it is difficult to follow evolution processes of ETPCAs using only paper and pencil. In
[7, 8] evolution processes of configurations of Tp157, To267, Z0137, and Tp347 can be seen by simulation
_ movies. As for Tpz47, an emulator file (Reversible_World.zip) on the CA simulator Golly [12] is also
available at the Rule Table Repository of Golly (http://github.com/GollyGang/ruletablerepository).
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