ATTRACTIVE POINTS, ACUTE POINTS AND APPROXIMATION OF COMMON FIXED POINTS OF FAMILIES OF NONLINEAR MAPPINGS RELATED TO HYBRID MAPPINGS

SACHIKO ATSUSHIBA

ABSTRACT. In this paper, we prove an attractive points theorem and strong convergence theorems of Halpern's type [20] for uniformly asymptotically regular λ -hybrid mappings in a star-shaped subset of a Hilbert space. Using these results, we obtain a fixed point theorem and some strong convergence theorems.

1. INTRODUCTION

Let *H* be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$ and let *C* be a nonempty subset of *H*. For a mapping $T : C \to C$, we denote by F(T) the set of *fixed points* of *T* and by A(T) the set of *attractive points* [28] of *T*, i.e.,

(i)
$$F(T) = \{z \in C : Tz = z\};$$

(ii) $A(T) = \{z \in H : ||Tx - z|| \le ||x - z||, \forall x \in C\}.$

A mapping $T: C \to C$ is called *nonexpansive* if $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in C$. Kocourek, Takahashi and Yao [22] introduced a broad class of nonlinear mappings called *generalized hybrid* which containing nonexpansive mappings, nonspreading mappings, and hybrid mappings in a Hilbert space. They proved a mean convergence theorem for generalized hybrid mappings which generalizes Baillon's nonlinear ergodic theorem [13]. Aoyama, Iemoto, Kohsaka and Takahashi [4] introduced the class of λ -hybrid mappings in a Hilbert space. This class obtain the classes of nonexpansive mappings, nonspreading mappings, and hybrid mappings

²⁰¹⁰ Mathematics Subject Classification. Primary 47H09, 47H10.

Key words and phrases. Fixed point, attractive point, iteration, nonexpansive mapping, nonexpansive semigroup, strong convergence.

in a Hilbert space. They proved fixed point theorems and mean convergence theorems for such mappings. Motivated by Baillon [13], and Kocourek, Takahashi and Yao [22], Takahashi and Takeuchi [28] introduced the concept of attractive points of a nonlinear mapping in a Hilbert space and they proved a mean convergence theorem of Baillon's type without convexity for generalized hybrid mappings. In 1992, Wittmann [29] proved the following strong convergence theorems of Halpern's type [20] in a Hilbert space;

Theorem 1.1. Let C be a nonempty closed convex subset of a Hilbert space H. Let T be a nonexpansive mapping of C into itself with $F(T) \neq \emptyset$. For any $x_1 = x \in C$, define a sequence $\{x_n\}$ in C by

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) T x_n, \,\forall n \ge 1$$

where $\{\alpha_n\} \subset [0, 1]$ satisfies

$$\lim_{n \to \infty} \alpha_n = 0, \sum_{n=1}^{\infty} \alpha_n = \infty, \sum_{n=1}^{\infty} |\alpha_n - \alpha_{n+1}| < \infty.$$

Then, $\{x_n\}$ converges strongly to $P_{F(T)}x$, where $P_{F(T)}$ is the metric projection from H onto F(T).

Motivated by Takahashi and Takeuchi [28], Akashi and Takahashi [2] proved a strong convergence theorem of Halpern's type [20] for nonexpansive mappings in a star-shaped subset of a Hilbert space. On the other hand, Domingues Benavides, Acedo and Xu [17] proved strong convergence theorems of Halpern's type [20] for uniformly asymptotically regular one-parameter nonexpansive semigroups. The author [8] studied Halpern's type iterations for nonexpansive semigroups and proved strong convergence theorems for uniformly asymptotically regular nonexpansive semigroups in Hilbert spaces (see also [1, 7, 9, 17, 25, 26]).

In this paper, we prove an attractive points theorem and strong convergence theorems of Halpern's type [20] for uniformly asymptotically regular λ -hybrid mappings in a star-shaped subset of a Hilbert space. Using these results, we obtain a fixed point theorem and some strong convergence theorems.

2. Preliminaries and notations

Throughout this paper, we denote by \mathbb{N} and \mathbb{R} the set of all positive integers and the set of all real numbers, respectively. We also denote by

 \mathbb{Z}^+ and \mathbb{R}^+ the set of all nonnegative integers and the set of all nonnegative real numbers, respectively. Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. We know the following basic equality from [26]. For $x, y \in H$ and $\lambda \in \mathbb{R}$, we have

$$||x+y||^{2} \le ||x||^{2} + 2\langle y, x+y \rangle$$
(2.1)

and

$$\|\lambda x + (1-\lambda)y\|^2 = \lambda \|x\|^2 + (1-\lambda)\|y\|^2 - \lambda(1-\lambda)\|x-y\|^2.$$
(2.2)

Furthermore, we obtain that for all $x, y, w \in H$,

$$\langle (x-y) + (x-w), y-w \rangle = ||x-w||^2 - ||x-y||^2.$$
 (2.3)

In fact, we have that

$$\begin{aligned} &\langle (x-y) + (x-w), y-w \rangle \\ &= \langle (x-y) + (x-w), (y-x) + (x-w) \rangle \\ &= \|x-w\|^2 - \|x-y\|^2 + \langle x-y, x-w \rangle + \langle x-w, y-x \rangle \\ &= \|x-w\|^2 - \|x-y\|^2. \end{aligned}$$

Let C be a closed and convex subset of H. For every point $x \in H$, there exists a unique nearest point in C, denoted by $P_C x$, such that

$$\|x - P_C x\| \le \|x - y\|$$

for all $y \in C$. The mapping P_C is called the *metric projection* of H onto C. It is characterized by

$$\langle P_C x - y, x - P_C x \rangle \ge 0$$

for all $y \in C$. See [26] for more details. The following result is well-known (see [26]).

Lemma 2.1. Let C be a nonempty, bounded, closed and convex subset of a Hilbert space H and let T be a nonexpansive mapping of C into itself. Then, $F(T) \neq \emptyset$.

We write $x_n \to x$ (or $\lim_{n \to \infty} x_n = x$) to indicate that the sequence $\{x_n\}$ of vectors in H converges strongly to x. We also write $x_n \to x$ (or w- $\lim_{n \to \infty} x_n = x$) to indicate that the sequence $\{x_n\}$ of vectors in H converges weakly to x. In a Hilbert space, it is well known that $x_n \to x$ and $||x_n|| \to ||x||$ imply $x_n \to x$.

A mapping $T: C \to C$ is called *nonexpansive* if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. Let $\lambda \in \mathbb{R}$ be given. Following [4], we say that a mapping $T: C \to C$ is λ -hybrid if

$$\|Tx - Ty\|^2 \le \|x - y\|^2 + 2(1 - \lambda)\langle x - Tx, y - Ty\rangle$$

for all $x, y \in C$. It is obvious that T is 1-hybrid if and only if T is nonexpansive; T is 0-hybrid if and only if T is nonspreading [23]; T is 1/2-hybrid if and only if T is hybrid [27]); If $\lambda > 1$, then T is λ -hybrid if and only if T = I. It is known [3, Proposition 2.2] that if $\lambda < 2$ and $\alpha = (1-\lambda)/(2-\lambda)$, then T is λ -hybrid if and only if it is α -nonexpansive [3], i.e.,

$$||Tx - Ty||^{2} \le \alpha (||x - Ty||^{2} + ||Tx - y||^{2} + (1 - 2\alpha)||x - y||^{2}$$

for all $x, y \in C$. In general, nonspreading and hybrid mappings are not continuous mappings. A mapping $T : C \to C$ is called *quasinonexpansive* if F(T) is nonempty and $||w - Tx|| \leq ||w - y||$ for all $w \in F(T)$ and $x \in C$. By Dotson [16, Theorem 1] and Ithoh and Takahashi [21, Corollary 1], we know that F(T) is closed convex whenever Tis quasi-nonexpansive. Every λ -hybrid with a fixed point is cleary quasinonexpansive. Thus, the set of fixed point of each λ -hybrid mapping is closed convex. The mapping T is said to be firmly nenexpansive if

$$||Tx - Ty||^2 + ||(I - T)x - (I - T)y||^2 \le ||x - y||^2$$

for all $x, y \in C$ (see [14, 15, 18, 19]. It is known [4, Lemma 3.1] that if T is firmly nenexpansive, then T is λ -hybrid for each $\lambda \in [0, 1]$.

3. Lemmas

In this section, we give some lemmas which are used in the proofs of our main theorems. We have basic properties of attractive points of nonlinear mappings in a Hilbert space (see [28]).

Lemma 3.1 ([28]). Let H be a Hilbert space, let C be a nonempty, closed and convex subset of H. Let T be a mappings of C into itself. If $A(T) \neq \emptyset$, then $F(T) \neq \emptyset$.

Lemma 3.2 ([28]). Let H be a Hilbert space, let C be a nonempty subset of H. Let T be a mappings of C into H. Then, A(T) is a closed and convex subset of H.

We also have the following lemma (see also [12, 28]).

Lemma 3.3 ([28]). Let H be a Hilbert space, let C be a nonempty subset of H. Let T be a mappings of C into H. Let $\{u_n\}$ be a sequence in Hsuch that

$$\overline{\lim_{n \to \infty}} \left\langle (u_n - y) + (u_n - Ty), y - Ty \right\rangle \le 0$$

for all $y \in C$. If a subsequence $\{u_{n_i}\}$ of $\{u_n\}$ converges weakly to $u \in H$, then $u \in A(T)$.

To prove our main results, we need the following lemma (see [5]; see also [30]).

Lemma 3.4. Let $\{s_n\}$ be a sequence of nonnegative real numbers, let $\{\alpha_n\}$ be a sequence of [0,1] with $\sum_{n=1}^{\infty} \alpha_n = \infty$. Let $\{\beta_n\}$ be a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} \beta_n < \infty$ and let $\{\gamma_n\}$ be a sequence of real numbers with $\overline{\lim}_{n\to\infty} \gamma_n \leq 0$. Suppose that

$$s_{n+1} \le (1 - \alpha_n)s_n + \alpha_n\gamma_n + \beta_n$$

for all $n \in \mathbb{N}$. Then, $\lim_{n \to \infty} s_n = 0$.

4. MAIN THEOREMS

In this section, we prove an attractive points theorem and strong convergence to common attractive points of uniformly asymptotically regular λ -hybrid mappings in Hilbert spaces (see also [2, 7, 12, 17, 24, 25, 26, 28]).

Let C be a nonempty subset of H. Then, C is called star-shaped if there exists $z \in C$ such that for any $x \in C$ and any $\gamma \in (0, 1)$,

$$\gamma z + (1 - \gamma)x \in C.$$

We say that a mapping T of C into itself is asymptotically regular if

$$\lim_{n \to \infty} \|T^{n+1}x - T^nx\| = 0$$

for all $x \in C$ (see also [26]). We also say that a mapping T of C into itself is uniformly asymptotically regular if for every bounded subset K of C,

$$\lim_{n \to \infty} \sup_{x \in K} \|T^{n+1}x - T^n x\| = 0$$

holds.

Lemma 4.1 ([6]). Let C be a nonempty subset of a Hilbert space H. Let $\lambda \in \mathbb{R}$ be given. Let T be a λ -hybrid mapping of C into itself. If $A(T) \neq \emptyset$, $\{T^nx\}$ is bounded for each $x \in C$.

We also get the following attractive point theorems (see also [12, 28]).

Theorem 4.2 ([6]). Let H be a Hilbert space and let C be a nonempty subset of H. Let λ be a real number. Let T be a uniformly asymptotically regular λ -hybrid mapping of C into itself. Suppose that $\{T^nx\}$ is bounded for some $x \in C$. Then, $A(T) \neq \emptyset$.

We obtain a strong convergence theorem of Halpern's [20] type for λ -hybrd mappings on a star-shaped subset of H (see [6]).

Theorem 4.3 ([6]). Let H be a Hilbert space, let C be a star-shaped subset of H with center $z \in C$. Let λ be a real number. Let T be a uniformly asymptotically regular λ -hybrid mapping of C into itself such that $A(T) \neq \emptyset$. Let $\{m_n\}$ be a sequence in \mathbb{N} such that $m_n \to \infty$. Let $\{x_n\}$ be a sequence in C defined by $x_1 \in C$ and

$$x_{n+1} = \alpha_n z + (1 - \alpha_n) T^{m_n} x_n$$

for each $n \in \mathbb{N}$, where $\{\alpha_n\} \subset [0,1]$ satisfies

$$\lim_{n \to \infty} \alpha_n = 0, \sum_{n=1}^{\infty} \alpha_n = \infty.$$

Then, $\{x_n\}$ converges strongly to $P_{A(T)}z$, where $P_{A(T)}$ is the metric projection from H onto A(T).

Using Theorem 4.2, we obtain the following fixed point theorem.

Theorem 4.4 ([6]). Let H be a Hilbert space and let C be a closed and star-shaped subset of H. Let λ be a real number. Let T be a uniformly asymptotically regular λ -hybrid mapping of C into itself. Suppose that $\{T^nx\}$ is bounded for some $x \in C$. Then, $F(T) \neq \emptyset$.

Using Theorem 4.3, we also get the following strong convergence theorem for λ -hybrid mappings on a star-shaped subset of H (see [20, 29, 30]).

Theorem 4.5 ([6]). Let H be a Hilbert space, let C be a closed and starshaped subset of H with center $z \in C$. Let λ be a real number. Let Tbe a uniformly asymptotically regular λ -hybrid mapping of C into itself such that $F(T) \neq \emptyset$. Let $\{m_n\}$ be a sequence in \mathbb{N} such that $m_n \to \infty$. Let $\{x_n\}$ be a sequence in C defined by $x_1 \in C$ and

$$x_{n+1} = \alpha_n z + (1 - \alpha_n) T^{m_n} x_n$$

for each $n \in \mathbb{N}$, where $\{\alpha_n\} \subset [0, 1]$ satisfies

$$\lim_{n \to \infty} \alpha_n = 0, \sum_{n=1}^{\infty} \alpha_n = \infty.$$

Then, $\{x_n\}$ converges strongly to u_0 , where $||u_0 - z|| = \min\{||u - z|| : u \in F(T)\}$

We also have the following strong convergence theorem.

Theorem 4.6 ([6]). Let H be a Hilbert space, let C be a nonempty subset of H. Let λ be a real number. Let T be a uniformly asymptotically regular λ -hybrid mapping of C into itself such that $A(T) \neq \emptyset$. Let $\{m_n\}$ be a sequence in \mathbb{N} such that $m_n \to \infty$. Let $\{x_n\}$ be a sequence in C defined by $x_1 \in C$ and

$$x_{n+1} = \alpha_n z + (1 - \alpha_n) T^{m_n} x_n$$

for each $n \in \mathbb{N}$, where $\{\alpha_n\} \subset [0, 1]$ satisfies

$$\lim_{n \to \infty} \alpha_n = 0, \sum_{n=1}^{\infty} \alpha_n = \infty.$$

If $\{x_n\}$ is in C, then $\{x_n\}$ converges strongly to $u_0 \in A(T)$, where $u_0 = P_{A(T)}$.

ACKNOWLEDGEMENTS

The author is supported by Grand-in-Aid for Scientific Research No. 26400196 from Japan Society for the Promotion of Science.

References

- 1. G. Lopez Acedo and T. Suzuki, Browder's convergence for uniformly asymptotically regular nonexpansive semigroups in Hilbert spaces, Fixed Point Theory and Applications Volume 2010, Article ID 418030.
- S. Akashi, W.Takahashi, Strong convergence theorem for nonexpansive mappings on star-shaped sets in Hilbert spaces, Applied Mathematics and Computation 219 (2012), 2035–2040.
- K. Aoyama & Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces., Nonlinear Anal. 74 (2011), 4387–4391.
- K. Aoyama, S. Iemoto, F. Kohsaka & W. Takahashi, Fixed point and ergodic theorems for λ-hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 11 (2010), 335–343.

- K. Aoyama, Y. Kimura, W. Takahashi and M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007) 2350–2360.
- 6. S. Atsushiba, Attractive point and strong convergence theorems for families of uniformly asymptotically regular λ -hybrid mappings, to appear.
- S. Atsushiba, Strong convergence theorems for uniformly asymptotically regular nonexpansive semigroups by Browder's type iterations, Nonlinear Analysis and Convex Analysis 4 (I), Yokohana Publishers, Yokohama, (2013), 11-19.
- S. Atsushiba, Strong convergence to common attractive points of uniformly asymptotically regular nonexpansive semigroups, J. Nonlinear Convex Anal. 16 (2015), 69-78.
- 9. S. Atsushiba, Strong convergence theorems for uniformly asymptotically regular nonexpansive semigroups in Banach spaces, Proceedings of Banach and Function Spaces IV, Yokohana Publishers, Yokohama, 2015, 265–278.
- S. Atsushiba, Strong convergence to common attractive points for nonexpansive semigroups by Halpern's type iterations, Nonlinear Analysis and Convex Analysis, 9, (2016), 41-52.
- 11. S. Atsushiba and W. Takahashi, Nonlinear ergodic theorems in a Banach space satisfying Opial's condition, Tokyo J. Math. **21** (1998), 61–81.
- S. Atsushiba and W.Takahashi, Nonlinear ergodic theorems without convexity for nonexpansive semigroups in Hilbert spaces, J. Nonlinear Conv. Anal., 14 (2013), 209-219.
- J.-B. Baillon, Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert, C. R. Acad. Sei. Paris Ser. A-B 280 (1975), 1511 -1514.
- 14. F.E. Browder, Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch. Rational Mech. Anal. 24 (1967) 82–90.
- R.E. Bruck, Jr., Nonexpansive projections on subsets of Banach spaces., Pacific J. Math. 47 (1973), 341–355.
- W. G. Dotson. Jr., Fixed points of quasi-nonexpansive mappings., J. Austral. Math. Soc. 13 (1972), 167–170.
- T. Dominguez Benavides, G. L. Acedo, and H.-K. Xu, Construction of sunny nonexpansive retractions in Banach spaces, Bull. Austral. Math. Soc., 66 (2002) 9–16.
- 18. K. Goebel & W.A. Kirk, *Topics in metric fixed point theory.*, Cambridge University Press, Cambridge, 1990.
- 19. K. Goebel & S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker, Inc., New York, 1984.
- 20. B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 73 (1967), 957–961.
- 21. S. Itoh & W. Takahashi The common fixed point theory of singlevalued mappings and multivalued mappings., Pacific J. Math., **79** (1978), 493–508.

- P. Kocourek, W. Takahashi, and J.-C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math. 14 (2010), 2497–2511.
- 23. F. Kohsaka & W.Takahashi, Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces, Archiv der Math.
 81 (2008), 91, 166 ⊠-177.
- 24. T. Suzuki, Browder's convergence for (uniformly asymptotically regular) oneparameter nonexpansive semigroups in Banach spaces, Fixed point theory and its applications, 131–143, Yokohama Publ., Yokohama, 2010.
- 25. W. Takahashi, The asymptotic behavior of nonlinear semigroups and invariant means, J. Math. Anal. Appl., **109** (1985), 130–139.
- 26. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- 27. W. Takahashi, Fixed point theorems for new nonlinear mappings in a Hilbert space, J. Nonlinear Convex Anal. 11 (2010), 79–88.
- W. Takahashi and Y. Takeuchi, Nonlinear ergodic theorem without convexity for generalized hybrid mappings in a Hilbert space, J. Nonlinear Conv. Anal. 12 (2011), 399-406.
- R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486-491.
- H.K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Aust. Math. Soc. 65 (2002), 109–113.

(S. Atsushiba) Department of Mathematics, Graduate School of Education, University of Yamanashi, 4-4-37, Takeda Kofu, Yamanashi 400-8510, Japan

E-mail address: asachiko@yamanashi.ac.jp