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Abstract. The aim of this article is to prove strong convergence theorems by the hybrid
method and the shrinking projection method for finding common fixed points of families of
new nonlinear mappings in Banach spaces. We first deal with basic properties of new nonlinear
mappings. In particular, we prove that the common fixed point sets of new nonlinear mappings
are closed and convex. Using these results and the hybrid method introduced by Nakajo and
Takahashi [14], we prove a strong convergence theorem which solves the split common fixed
point problem in two Banach Spaces. Furthermore, using the shrinking projection method
introduced by Takahashi, Takeuchi and Kubota [28], we also prove another strong convergence
theorem. Moreover, using these results, we obtain well-known and new strong convergence
theorems in Hilbert spaces and Banach spaces.
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1 Introduction

Recently, Takahashi, Wen and Yao [29] introduced a new class of nonlinear mappings as
follows: Let E be a smooth Banach space, let C' be a nonempty, closed and convex subset of
E and let 1 and s be real numbers with € (—o0,1) and s € [0, 00), respectively. A mapping
T :C — E with F(T) # ( is called (5, s)-demigeneralized if, for any z € C and ¢ € F(T),

2z —q,Jx — JTz) > (1 —n)¢(z, Tx) + sé(Tz, ), (1.1
where F(T') is the set of fixed points of T, J is the duality mapping on E and
¢(z,y) = llal® - 2(z, Jy) + ly|®>, Vz,y € E.

Observe that, in a Hilbert space H, ¢(z,y) = ||z —y||* for all z,y € H. If s =0in (1.1), then
the mapping 7 is as follows:

2(x —qgJz — JTz) > (1 - n)¢(z,Tx), Vz€C, q€ F(T).
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Such (n,0)-demigeneralized mappings are important.
Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let k be
a real number with 0 < k£ < 1. A mapping U : C — H is called a k-strict pseudo-contraction
[5] if
[Uz - Uy|l® < ||z — y||* + kllz — Uz — (y = Uy)|?

for all z,y € C. If U is a k-strict pseudo-contraction and F(U) # @, then
Uz — gl < ||z — gl + kllz ~ Uz|®
for all z € C and q € F(U). From this, we have that
Uz - 2|* + ||z — ql|* + 2(Uz — 2,2 — q) < ||& — ql|* + kl|z - Uz||*.

Therefore, we get that
2z —Uz,z —q) > (1 - k)||lz — Uz|? (1.2)

for all z € C and q € F(U). Thus, from (1.2), a k-strict pseudo-contraction U with F(U) # 0
is (k,0)-demigeneralized. We also know that there exists such a mapping in a Banach space.
Let E be a uniformly convex and smooth Banach space and let B be a maximal monotone
operator on E. For each » > 0 and x € E, we consider the following equation

Jx € Jx, + rBzx,.

This equation has a unique solution z,.. We define J,. by z, = J,z. Such a J, is called the
generalized resolvent of B. The set of null points of B is defined by B~10={z € E: 0 € Bz}.
We know that B~10 is closed and convex; see [20]. The generalized resolvent has the following
property: for any x € E and g € F(J,) ={z € E: 0 € Bz},

2(Jpx — g, Jz — JJ,z) > 0.

Then we get
2z —z+ax—¢q,Jr—JJz) >0

and hence

2z — q,Jz — JJ,x) (1.3)
> 2z — Jpex, Jz — JJpz) = H(z, Jpx) + ¢(Jrz, ).

Thus, from (1.3), the generalized resolvent J,. with B~10 # 0 is (0, 1)-demigeneralized.

In this article, we first deal with basic properties of new demigeneralized mappings. In
particular, we prove that the common fixed point sets of new demigeneralized mappings are
closed and convex. Using these results and the hybrid method introduced by Nakajo and Taka-
hashi [14], we prove a strong convergence theorem which solves the split common fixed point
problem in Banach Spaces. Furthermore, using the shrinking projection method introduced
by Takahashi, Takeuchi and Kubota [28], we also prove another strong convergence theorem.
Moreover, using these results, we obtain well-known and new strong convergence theorems in
Hilbert spaces and Banach spaces.
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2 Preliminaries

Let E be a real Banach space with norm || - || and let E* be the dual space of E. We denote
the value of y* € E* at x € E by (z,y*). When {z,} is a sequence in E, we denote the strong
convergence of {z,} to z € F by z, — x and the weak convergence by =, — x. The modulus
6 of convexity of E is defined by

. T+
o0 =int {1 BEM oy < o < 1o >

for every € with 0 < ¢ < 2. A Banach space E is said to be uniformly convex if é(¢) > 0 for
every € > 0. It is known that a Banach space E is uniformly convex if and only if for any two
sequences {z,} and {y,} in E such that

Jim |z = lim [lys]| =1 and lim |z, +ya| =2,

limy, 00 ||Zn—yn|| = 0 holds. A uniformly convex Banach space is strictly convex and reflexive.
We also know that a uniformly convex Banach space has the Kadec-Klee property, i.e., 2, — u
and ||z || = ||u| imply 2, — u. The duality mapping J from E into 2€ is defined by

Jo={z" € E*: (x,2") = ||=|* = [|="[*}

for every z € E. Let U = {z € E : ||| = 1}. The norm of E is said to be Géteaux
differentiable if for each z,y € U, the limit

L ety | -
t—0 t

exists. In this case, F is called smooth. We know that E is smooth if and only if J is a single-
valued mapping of E into E*. The norm of E is said to be Fréchet differentiable if for each
z € U, the limit (2.1) is attained uniformly for y € U. The norm of E is said to be uniformly
smooth if the limit (2.1) is attained uniformly for z,y € U. We also know that E is reflexive if
and only if J is surjective, and F is strictly convex if and only if J is one-to-one. Therefore, if
E is a smooth, strictly convex and reflexive Banach space, then J is a single-valued bijection
and in this case, the inverse mapping J ! coincides with the duality mapping J. on E*. For
more details, see [19] and [20]. We know the following result.

Lemma 2.1 ([19]). Let E be a smooth Banach space and let J be the duality mapping on
E. Then, {x —y,Jz — Jy) > 0 for all z,y € E. Furthermore, if E is strictly conver and
(x—y,Jz—Jy) =0, thenxz =y.

Let E be a smooth Banach space and let J be the duality mapping on E. Define a function
¢:ExE—Rby
¢p(z,y) = l|z|* = 2z, Jy) + |yl*, Vz,y € E. (2:2)

In the case when F is clear, ¢g is simply denoted by ¢.

Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive
Banach space E. Then we know that for any z € E, there exists a unique element z € C such
that

¢(z,z) = min ¢(y, ).

yel
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The mapping II¢ : E — C defined by z = Il¢z is called the generalized projection of E onto
C. The following are well-known results. For example, see [1, 2, 7].

Lemma 2.2 ([1, 2, 7]). Let E be a smooth, strictly convex and reflezive Banach space. Let C
be a nonempty, closed and convex subset of E and let x € E and z € C. Then, the following
conditions are equivalent:

(1) z =¢gx;
(2) (z—y,Jz— Jz) >0, VyeC.

Let E be a Banach space and let A be a mapping of E into 28" The effective domain of A
is denoted by dom(A), that is, dom(A) = {x € E : Az # 0}. A multi-valued mapping 4 on E
is said to be monotone if (x — y,u* —v*) > 0 for all z,y € dom(A), u* € Az, and v* € Ay. A
monotone operator A on E is said to be maximal if its graph is not properly contained in the
graph of any other monotone operator on E. The following theorem is due to [4, 16]; see also
[20, Theorem 3.5.4]. ‘

Theorem 2.3 ([4, 16]). Let E be a uniformly convexr and smooth Banach space and let J
be the duality mapping of E into E*. Let A be a monotone operator of E into 2. Then A
is mazimal if and only if for any r > 0, R(J + rA) = E*, where R(J + rA) is the range of
J+rA.

Let E be a uniformly convex Banach space with a Géateaux differentiable norm and let B
be a maximal monotone operator of F into 28", For all z € E and r > 0, we consider the
following equation Jx € Jxz, +7Bz,. This equation has a unique solution z,. We define J, by
T = Jpz. Such J.,r > 0 are called the generalized resolvents of B. The set of null points of
B is defined by B™10 = {z € E : 0 € Bz}. We know that B0 is closed and convex; see [20].

Let E be a smooth and strictly convex Banach space and let J be the duality mapping on
E. Let n and s be real numbers with € (—00,1) and s € [0,00). Then a mappingU : C — E
with F(U) # 0 is called (7, s)-demigeneralized [29, 12] if, for any z € C and q € F(U),

2z — g, Jz — JUz) > (1 - n)¢(z,Uz) + s¢(Uz, z),
where F(U) is the set of fixed points of U.
Examples.

(1) Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. Let &
be a real number with 0 < k < 1. A mapping U : C — H is called a k-strict pseud-contraction
[5] if

Uz —Uy|? < ||z — yll* + kllz — Uz — (y - Uy)|1?

for all z,y € C. K U is a k-strict pseud-contraction and F(U) # 0, then U is (k,0)-
demigeneralized.

(2) Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. A
mapping U : C — H is called generalized hybrid [8] if there exist a, 8 € R such that

ollUz — Uyl|® + (1 = a)|lz — Uyl* < Bl|Uz — y||* + (1 - B)||z - y|>

for all z,y € C. Such a mapping U is called (a, B)-generalized hybrid. If U is generalized
hybrid and F(U) # @, then U is (0,0)-demigeneralized.
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(3) Let E be a strictly convex, reflexive and smooth Banach space and let C be a nonempty,
closed and convex subset of E. Let Il be the generalized projection of E onto C. Then Ig
is (0, 1)-demigeneralized.

(4) Let E be a uniformly convex and smooth Banach space and let B be a maximal mono-
tone operator with B710 # @. Let A > 0. Then the generalized resolvent Jy is (0,1)-
demigeneralized.

The following lemma is important and crucial in the proofs of our main results.

Lemma 2.4 ([29]). Let E be a smooth and strictly convex Banach space and let C be a
nonempty, closed and convex subset of E. Let 1) be a real number with n € (—oo,1). Let U be
an (n,0)-demigeneralized mapping of C into E. Then F(U) is closed and convez.

3 Main Results

In this section, using the hybrid method, we prove a strong convergence theorem for finding
a solution of the split common fixed point problem for families of new nonlinear mappings in
two Banach spaces. Let E be a Banach space and let C' be a nonempty, closed and convex
subset of E. Let {U,} be a sequence of mappings of C into E such that N3 ; F(U,) # 0. The
sequence {U,} is said to satisfy the condition (I) if for any bounded sequence {z,} of C such
that limy, o [[2n — Unzn|| = 0, every weak cluster point of {z,} belongs to NS, F(U,).

Theorem 3.1 ([27]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let Jg and Jr be the duality mappings on E and F, respectively. Let {r,} and {n,} be
sequences of real numbers with 7,,7m, € (—oo,1) and let {t,} and {s,} be sequences of real
numbers with t,, s, € [0,00). Let {T,,} be a family of (7,,t,)-demigeneralized mappings of E
into itself with NS>, F(Ty,) # 0 satisfying the condition (I) and let {U,} be a family of (M, sn)-
demigeneralized mappings of F into itself with N2, F(U,,) # 0 satisfying the condition (I).
Let A: E — F be a bounded linear operator such that A # 0 and let A* be the adjoint operator
of A. Suppose that F = N2, F(T,) N AYN, F(Uy)) # 0. Let z1 € E and let {x,} be a
sequence generated by

Zn = JEI (JExn — rnA*(Jp Az, — JpUnAxn)),
Yn = Tnzn,
Crn={z€ E: 2z, — 2z,Jgxn — Jpzs)

> rp(1 — nn)or(Azn, UnAzy) + 10 8n¢r (Un Ay, Azy)},
D,={2€ E:2(zy — 2,Jg2n — Jgyn)

> (1= 7)¢E(2n,yn) + tn®E(Yn, 2n) },

Qn={2€ E:(zn— 2,Jpz1 — JET) > 0},
ZTnt1 = lc,np.n@. %1, YR EN,

where a,b € R, {rp,} C (0,00) and {7, },{nn} C (—00,1) satisfy the following inequalities

O0<a<

1
< — <1- - .
<r,< 34 and 0<b<1—7,,1—1, VneN

Then the sequence {x,} converges strongly to zo € NS F(T,) N A=Y F(U,)), where
20 = lne | p(T)nA-1 (N5, F(U))T1-



Next, using the shrinking projection method [28], we prove a strong convergence theorem
for finding a solution of the split common fixed point problem with families of mappings in
Banach spaces.

For a sequence {C,} of nonempty, closed and convex subsets of a Banach space E, define
s-Li,, Cy, and w-Ls,, C, as follows: z € s-Li, Cy, if and only if there exists {z,} C E such that
{zn} converges strongly to x and z,, € C, for all n € N. Similarly, y € w-Ls, C,, if and only
if there exist a subsequence {Cy,} of {C,} and a sequence {y;} C E such that {y;} converges
weakly to y and y; € Cy,, for all ¢ € N. If Cj satisfies

Co = s-LiC, = w-LsCp, (3.1)
n n

it is said that {C,} converges to Cp in the sense of Mosco [13] and we write Cp =
M-lim,,_, o Cy,. It is easy to show that if {C),} is nonincreasing with respect to inclusion, then
{Cr} converges to - ; Cy, in the sense of Mosco. For more details, see [13]. The following
lemma was proved by Ibaraki, Kimura and Takahashi [6].

Lemma 3.2 ([6]). Let E be a smooth Banach space such that E* has a Fréchet differentiable
norm. Let {C,} be a sequence of nonempty, closed and convex subsets of E. If Cy =M-
limy, o Cy ezists and nonempty, then for each x € E, {Ilg, x} converges strongly to Ilg,z,
where Ilg, and Ilc, are the generalized projections of E onto C,, and Cy, respectively.

Theorem 3.3 ([27]). Let E and F' be uniformly convex and uniformly smooth Banach spaces
and let Jg and Jp be the duality mappings on E and F, respectively. Let {r,} and {n,} be
sequences of real numbers with 7,1, € (—o00,1) and let {t,} and {s,} be sequences of real
numbers with t,, s, € [0,00). Let {T,,} be a family of (Tn,t,)-demigeneralized mappings of E
into itself with NS, F(T,,) # 0 satisfying the condition (I) and let {U,} be a family of (1, sn)-
demigeneralized mappings of F into itself with NS, F(U,) # 0 satisfying the condition (I).
Let A: E — F be a bounded linear operator such that A # 0 and let A* be the adjoint operator
of A. Suppose that F = N F(T,) N A~Y (N, F(Uy,)) # 0. Forx; € E and C; = E, let
{zn} be a sequence generated by

zn = J5" (Jean — raA*(Jp Az, — JpU, Ay)),
Yn = Tnzn,
Crot1 ={2€Cph:2(zp — 2z, Jgxn — Jpz,)
> (1 — nn) o (Azy, Uy Azy) + 1n8n¢p (Un Azp, Azy,) }
N{z € Cp : 2{zp, — 2, Jg 20 — JEYn)
2> (1 - Tn)¢E(zna yn) + tn¢E(yn; zn)}s
Znt1 =g, 71, Vn €N,

where a,b € R and {rp,} C (0,00) satisfy the following inequalities

O<a<mr, and 0<b<1l-—7,,1—17, VnelN.

o1
~ 24

Then the sequence {z,} converges strongly to zy € N F(T,) N A=Y (N2, F(U,)), where
20 = Tlnze | F(T,)nA- (a2, F(UR)B1-
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4 Applicationss

In this section, using Theorems 3.1 and 3.3, we get well-known and new strong convergence
theorems which are connected with the split common fixed point problem for families of
demigeneralized mappings in Banach spaces. We know the following result obtained by Marino
and Xu [11].

Lemma 4.1 ([11]). Let H be a Hilbert space and let C be a nonempty, closed and convex subset
of H. Let k be a real number with0 <k <1 and U : C — H be a k-strict pseudo-contraction.
If xp — z and 2, — Uxy, — 0, then z € F(U).

We also know the following result from Plubtieng and Takahashi [15].

Lemma 4.2 ([15]). Let Hy and H> be Hilbert spaces and let o > 0. Let G : Hy — 2H1 be a
mazimal monotone mapping and let Jy = (I + AG)™! be the resolvent of G for A > 0. Let
T : Hy — Hjy be an a-inverse strongly monotone mapping and let A : Hy — Hs be a bounded
linear operator. Suppose that G710 N A1 (T~10) # 0. Let \,r > 0 and z € Hy. Then the
following are equivalent:

(i) z=J\(I —rA*TA)z;
(11) 0 € A*T Az + Gz;
(i) z € G0N A~L(T~10).
Using Theorem 3.1 and Lemmas 4.1 and 4.2, we obtain the following theorem.

Theorem 4.3. Let Hy and Hy be Hilbert spaces. Let k € [0,1) and o € (0,00). Let T : Hy —
Hy be an a-inverse strongly monotone mapping with T~10 # 0 and let U : Hy — H, be a
k-strict pseudo-contraction such that F(U) # 0. Let G be a mazimal monotone operator of
Hy into Hy and Jy be the resolvent of G for A > 0. Define T, = Jy, (I — A\,T) for allm e N
such that A, € (0,00) and define U, = anl + (1 — an)U for alln € N such that 0 < oy, < 1
and sup,cyan < 1. Let A: Hy — Hy be a bounded linear operator such that A # 0 and let
A* be the adjoint operator of A. Suppose that T10NG 0N ATLF(U) # 0. Let 21 € Hy and
let {z,} be a sequence generated by

(2p = T, — rnA*(Azy, — Uy Azy),
Yn = Tnzn,
Cp={2€ Hy:2{zn — 2,20 — 2) > (1 — k)||Azy, — UpAzp|?},
Dp={z € H1:2(zn — 2,20 — Yn) > |20 — ?/n”z};
Qn={z€ Hy: (zn — 2,71 — z,) > 0},
\Zn+1 = Po,nD,.n@,T1, Vn €N,

where {rp},{An} C (0,00) and a,b € R satisfy the following inequalities

0<a<r,<

1
<—— and 0<b< A, <2a, VneN.
2||A|12

Then the sequence {x,} converges strongly to a point zo € T 0N G0N A LF(U), where
20 = Pr-10ng-10nA-1F(1)Z1-

Using Theorem 3.1, we get the following result [24].
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Theorem 4.4 ([24]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let Jg and Jp be the duality mappings on E and F, respectively. Let G and B be mazimal
monotone operators of E into E* and F into F*, respectively. Let Jy and Q, be the generalized
resolvents of G for A > 0 and B for p > 0, respectively. Let A: E — F be a bounded linear
operator such that A # 0 and let A* be the adjoint operator of A. Suppose that G~10 N
A~YB710) #0. Let z; € E and let {x,} be a sequence generated by

zn = Jg5" (JpTn — T A*(JpAzn — JrQu, Axy)),
Yn = JAnZn;
Cn={z€E: 2z, — 2,Jgzn — JEzm)

> rndr(Azn, Qu, Azy) + rndr(Qu, Azn, Azy)},
D, ={2€ E:2(z, — 2,J52n — JEYn)

> ¢E(Zm yn) + ¢E(yna Zn)}a

Qn={z€ E:(zy, — z,Jgz1 — Jgz,) > 0},
Zn+1 = le,np,n@.T1, YnEN,

where a,b € R and {rn}, {\n}, {pn} C (0,00) satisfy the following inequalities
1
< < — < .
O<a<r,< 24T and 0<b< Ay, tbn, VneN

Then {x,} converges strongly to zg € G'0N A~*(B~0), where 20 = Ig-10na-1(B-10)%1-
Similarly, using Theorem 3.3, we have the following results.

Theorem 4.5. Let Hy and Hy be Hilbert spaces. Let k € [0,1) and a € (0,00). Let T : H; —
H;y be an a-inverse strongly monotone mapping with T~10 # § and let U : Hy — Ho be a
k-strict pseudo-contraction such that F(U) # 0. Let G be a mazimal monotone operator of
H; into Hy and Jy be the resolvent of G for A > 0. Define T,, = Jx, (I — A\, T) for alln € N
such that A\, € (0,00) and define U, = anI + (1 — a,)U for alln € N such that 0 < o, < 1
and sup,eyon < 1. Let A : Hi — Hy be a bounded linear operator such that A # 0 and let
A* be the adjoint operator of A. Suppose that T"*0NG 10N A" F(U) # 0. For x; € H; and
Cy = Hy, let {z,} be a sequence generated by

2n = T — rA* (A, — U, Azy),
Yn = Thzn,
Cny1=1{2€Cpn: 2zn — 2,80 — 25) > rn(1 — np)|| Az, — Up Az, |?
and  2(zn — 2,20 — Yn) > (1 — ) |20 — vnl*}
Tnt+1 = Po,., %1, Vn €N,

where {rn},{An} C (0,00) and a,b € R satisfy the following inequalities

0<a<rmr, and 0<b< A, <2a VneNl.

o1
— 24

Then the sequence {z,} converges strongly to a point zg € T-'0N G0N A~LF(U), where
z0 = Pr-10ng-10nA-1F(U)%1-

Furthermore, using Theorem 3.3, we get the following result [17].
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Theorem 4.6 ([17]). Let E and F' be uniformly convex and uniformly smooth Banach spaces
and let Jg and Jr be the duality mappings on E and F, respectively. Let G and B be mazimal
monotone operators of E into E* and F into F*, respectively. Let Jy and Q,, be the generalized
resolvents of G for A > 0 and B for p > 0, respectively. Let A: E — F be a bounded linear
operator such that A # 0 and let A* be the adjoint operator of A. Suppose that G0N
A~Y(B710)#0. For x; € E and Cy = E, let {z,} be a sequence generated by

zn = J5 (JEZn — TnA*(JpAzn — JFQu, ATy)),

Yn = I, Zn,

Cot1={2€Cy: 2z, — 2,Jgzn — JEZn)

4 > 7'n¢F(A37n, Q,unAzn) + "'n¢F(QunA$m A‘T’n)
and 2(zn — z,Jgzn — JEYR)

> ¢5(zn, yn) + ¢E(ynazn)}>
Tn+1 = HCn+1I1¢ Vn € N7

where a,b € R and {r,.}, {\n},{pn} C (0,00) satisfy the following inequalities

O0<a<r, and 0 <b< Ap, b, Vn €N

< 1
- 2ll4)

Then {z,} converges strongly to zo € G='0N A~Y(B~10), where zg = llg-190na-1(B-10)%1-
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