
The Split Common Fixed Point Problem for New Classes

of Nonlinear Operators in Banach Spaces

慶応義塾大学自然科学研究教育センター,高雄医学大学基礎科学センター
高橋渉 (Wataru Takahashi)

Keio Research and Education Center for Natural Sciences, Keio University, Japan and

Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 80702, Taiwan

Email: wataru@is.titech.ac.jp; wataru@a00.itscom.net

Abstract. The aim of this article is to prove strong convergence theorems by the hybrid
method and the shrinking projection method for finding common fixed points of families of

new nonlinear mappings in Banach spaces. We first deal with basic properties of new nonlinear

mappings. In particular, we prove that the common fixed point sets of new nonlinear mappings
are closed and convex. Using these results and the hybrid method introduced by Nakajo and

Takahashi [14], we prove a strong convergence theorem which solves the split common fixed

point problem in two Banach Spaces. Furthermore, using the shrinking projection method

introduced by Takahashi, Takeuchi and Kubota [28], we also prove another strong convergence
theorem. Moreover, using these results, we obtain well‐known and new strong convergence
theorems in Hilbert spaces and Banach spaces.

2010 Mathematics Subject Classification: 47\mathrm{H}10

Keywords and phrases: Maximal monotone mapping, hybrid method, shrinking projection
method, generalized projection, generalized resolvent, split common fixed point problem.

1 Introduction

Recently, Takahashi, Wen and Yao [29] introduced a new class of nonlinear mappings as

follows: Let E be a smooth Banach space, let C be a nonempty, closed and convex subset of
E and let  $\eta$ and  s be real numbers with  $\eta$\in(-\infty, 1) and  s\in [0, \infty), respectively. A mapping
 T : C\rightarrow E with  F(T)\neq\emptyset is called ( $\eta$, s)‐demigeneralized if, for any x\in C and q\in F(T) ,

2\langle x-q, Jx-JTx\rangle\geq(1- $\eta$) $\phi$(x, Tx)+s $\phi$(Tx, x) , (1.1)

where F(T) is the set of fixed points of T, J is the duality mapping on E and

 $\phi$(x, y)=\Vert x\Vert^{2}-2\langle x, Jy\rangle+\Vert y\Vert^{2}, \forall x, y\in E.
Observe that, in a Hilbert space H,  $\phi$(x, y)=\Vert x-y\Vert^{2} for all x, y\in H . If s=0 in (1.1), then
the mapping T is as follows:

2\{x-qJx —JTx \} \geq (1- $\eta$) $\phi$ (  x
, Tx), \forall x\in C, q\in F(T) .
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Such ( $\eta$, 0) ‐demigeneralized mappings are important.
Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H . Let k be

a real number with 0\leq k<1 . A mapping U:C\rightarrow H is called a k‐strict pseudo‐contraction
[5] if

\Vert Ux-Uy\Vert^{2}\leq \Vert x-y\Vert^{2}+k\Vert x-Ux-(y-Uy)\Vert^{2}

for all x, y\in C . If U is a k‐strict pseudo‐contraction and  F(U)\neq\emptyset ,
then

\Vert Ux-q\Vert^{2}\leq \Vert x-q\Vert^{2}+k\Vert x-Ux\Vert^{2}

for all x\in C and q\in F(U) . From this, we have that

\Vert Ux-x\Vert^{2}+\Vert x-q\Vert^{2}+2 {Ux — x ,  x-q\rangle\leq \Vert x-q\Vert^{2}+k\Vert x-Ux\Vert^{2}.

Therefore, we get that

2\{x-Ux, x-q\rangle \geq(1-k)\Vert x-Ux\Vert^{2} (1.2)

for all x\in C and q\in F(U) . Thus, from (1.2), a k‐strict pseudo‐contraction U with  F(U)\neq\emptyset
is (k, 0) ‐demigeneralized. We also know that there exists such a mapping in a Banach space.

Let E be a uniformly convex and smooth Banach space and let B be a maximal monotone

operator on E . For each r>0 and x\in E ,
we consider the following equation

Jx\in Jx_{r}+rBx_{r}.

This equation has a unique solution x_{r} . We define J_{r} by x_{r} = J_{r}x . Such a J_{r} is called the

generalized resolvent of B . The set of null points of B is defined by B^{-1}0=\{z\in E:0\in Bz\}.
We know that B^{-1}0 is closed and convex; see [20]. The generalized resolvent has the following
property: for any x\in E and q\in F(J_{r})=\{z\in E:0\in Bz\},

2\langle J_{r}x-q, Jx-JJ_{r}x\}\geq 0.

Then we get
2\langle J_{r}x-x+x-q , Jx—JJrx} \geq 0

and hence

2 \{x-q ,
Jx —  JJ_{r}x\rangle (1.3)

\geq 2 {x—Jrx, Jx — JJ_{r}x\rangle= $\phi$(x, J_{r}x)+ $\phi$(J_{r}x, x) .

Thus, from (1.3), the generalized resolvent J_{r} with  B^{-1}0\neq\emptyset is (0,1) ‐demigeneralized.
In this article, we first deal with basic properties of new demigeneralized mappings. In

particular, we prove that the common fixed point sets of new demigeneralized mappings are

closed and convex. Using these results and the hybrid method introduced by Nakajo and Taka‐

hashi [14], we prove a strong convergence theorem which solves the split common fixed point
problem in Banach Spaces. Furthermore, using the shrinking projection method introduced

by Takahashi, Takeuchi and Kubota [28], we also prove another strong convergence theorem.

Moreover, using these results, we obtain well‐known and new strong convergence theorems in

Hilbert spaces and Banach spaces.
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2 Preliminaries

Let E be a real Banach space with norm \Vert\cdot\Vert and let  E^{*} be the dual space of E . We denote

the value of y^{*} \in E^{*} at x\in E by \langle x, y^{*} }. When \{x_{n}\} is a sequence in E
,

we denote the strong
convergence of \{x_{n}\} to x\in E by x_{n}\rightarrow x and the weak convergence by x_{n}\rightarrow x . The modulus

 $\delta$ of convexity of  E is defined by

 $\delta$( $\epsilon$)=\displaystyle \inf\{1-\frac{\Vert x+y\Vert}{2} : \Vert x\Vert \leq 1, \Vert y\Vert \leq 1, \Vert x-y\Vert \geq $\epsilon$\}
for every  $\epsilon$ with  0\leq  $\epsilon$ \leq 2 . A Banach space E is said to be uniformly convex if  $\delta$( $\epsilon$) >0 for

every  $\epsilon$>0 . It is known that a Banach space E is uniformly convex if and only if for any two

sequences \{x_{n}\} and \{y_{n}\} in E such that

\displaystyle \lim_{n\rightarrow\infty}\Vert x_{n}\Vert=\lim_{n\rightarrow\infty}\Vert y_{n}\Vert=1 and \displaystyle \lim_{n\rightarrow\infty}\Vert x_{n}+y_{n}\Vert=2,

\displaystyle \lim_{n\rightarrow\infty}\Vert x_{n}-y_{n}\Vert =0 holds. A uniformly convex Banach space is strictly convex and reflexive.

We also know that a uniformly convex Banach space has the Kadec‐Klee property, i.e., x_{n}\rightarrow u

and \Vert x_{n}\Vert\rightarrow\Vert u\Vert imply  x_{n}\rightarrow u . The duality mapping J from E into 2^{E^{*}} is defined by

Jx=\{x^{*}\in E^{*} : \langle x, x^{*}\}=\Vert x\Vert^{2}=\Vert x^{*}\Vert^{2}\}

for every x \in  E . Let U = \{x \in E : \Vert x\Vert = 1\} . The norm of E is said to be Gâteaux

differentiable if for each x, y\in U , the limit

\displaystyle \lim_{t\rightarrow 0}\frac{\Vert x+ty\Vert-\Vert x\Vert}{t} (2.1)

exists. In this case, E is called smooth. We know that E is smooth if and only if J is a single‐
valued mapping of E into E^{*} . The norm of E is said to be Fréchet differentiable if for each

x\in U , the limit (2.1) is attained uniformly for y\in U . The norm of E is said to be uniformly
smooth if the limit (2.1) is attained uniformly for x

, y\in U . We also know that E is reflexive if

and only if J is surjective, and E is strictly convex if and only if J is one‐to‐one. Therefore, if

E is a smooth, strictly convex and reflexive Banach space, then J is a single‐valued bijection
and in this case, the inverse mapping J^{-1} coincides with the duality mapping J_{*} on E^{*} . For

more details, see [19] and [20]. We know the following result.

Lemma 2.1 ([19]). Let E be a smooth Banach space and let J be the duality mapping on

E. Then, \{x-y,  Jx-Jy\rangle \geq  0 for all x, y \in E. Furthermore, if E is strictly convex and

\langle x-y , Jx—Jy\}=0 ,
then x=y.

Let E be a smooth Banach space and let J be the duality mapping on E . Define a function

 $\phi$:E\times E\rightarrow \mathbb{R} by
$\phi$_{E}(x, y)=\Vert x\Vert^{2}-2\{x, Jy\rangle+\Vert y\Vert^{2}, \forall x, y\in E . (2.2)

In the case when E is clear, $\phi$_{E} is simply denoted by  $\phi$.
Let C be a nonempty, closed and convex subset of a smooth, strictly convex and reflexive

Banach space E . Then we know that for any x\in E , there exists a unique element z\in C such

that

 $\phi$(z, x)=\displaystyle \min_{y\in C} $\phi$(y, x) .
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The mapping $\Pi$_{C} : E\rightarrow C defined by z=$\Pi$_{C}x is called the generalized projection of E onto

C . The following are well‐known results. For example, see [1, 2, 7].
Lemma 2.2 ([1, 2, 7 Let E be a smooth, strictly convex and reflexive Banach space. Let C

be a nonempty, closed and convex subset of E and let x\in E and z\in C. Then, the following
conditions are equivalent:

(1) z=$\Pi$_{C}x ;

(2) \langle z-y,  Jx-Jz\rangle \geq 0, \forall y\in C.

Let E be a Banach space and let A be a mapping of E into 2^{E^{*}} The effective domain of A

is denoted by \mathrm{d}\mathrm{o}\mathrm{m}(A) ,
that is, \mathrm{d}\mathrm{o}\mathrm{m}(A)=\{x\in E: Ax\neq\emptyset\} . A multi‐valued mapping A on E

is said to be monotone if \{x-y, u^{*}-v^{*}\} \geq 0 for all x, y\in \mathrm{d}\mathrm{o}\mathrm{m}(A) , u^{*}\in Ax , and v^{*} \in Ay. \mathrm{A}

monotone operator A on E is said to be maximal if its graph is not properly contained in the

graph of any other monotone operator on E . The following theorem is due to [4, 16]; see also

[20, Theorem 3.5.4].

Theorem 2.3 ([4, 16 Let E be a uniformly convex and smooth Banach space and let J

be the duahty mapping of E into E^{*} . Let A be a monotone operator of E into 2^{E^{*}} Then A

is maximal if and only if for any r > 0, R(J+rA) =E^{*}
,

where R(J+rA) is the range of
J+rA.

Let E be a umiformly convex Banach space with a Gâteaux differentiable norm and let B

be a maximal monotone operator of E into 2^{E^{*}} For all x \in  E and r > 0 , we consider the

following equation Jx\in Jx_{r}+rBx_{r} . This equation has a unique solution x_{r} . We define J_{r} by
x_{r}=J_{r}x . Such J_{r}, r>0 are called the generalized resolvents of B . The set of null points of

B is defined by B^{-1}0=\{z\in E : 0\in Bz\} . We know that B^{-1}0 is closed and convex; see [20].
Let E be a smooth and strictly convex Banach space and let J be the duality mapping on

E . Let  $\eta$ and  s be real numbers with  $\eta$\in(-\infty, 1) and  s\in[0, \infty). Then a mapping  U : C\rightarrow E

with  F(U)\neq\emptyset is called ( $\eta$, s)‐demigeneralized [29, 12] if, for any x\in C and q\in F(U) ,

2 \{x-q ,
Jx — JUx\rangle\geq(1- $\eta$) $\phi$(x, Ux)+s $\phi$(Ux, x) ,

where F(U) is the set of fixed points of U.

Examples.

(1) Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H . Let k

be a real number with 0\leq k<1 . A mapping U : C\rightarrow H is called a k‐strict pseud‐contraction
[5] if

\Vert  Ux — Uy \Vert^{2}\leq \Vert x-y\Vert^{2}+k\Vert x-Ux-(y-Uy)\Vert^{2}

for all x, y \in  C . If U is a k‐strict pseud‐contraction and F(U) \neq \emptyset , then  U is (k, 0)-
demigenerahzed.

(2) Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. \mathrm{A}

mapping U : C\rightarrow H is called generalized hybrid [8] if there exist  $\alpha$,  $\beta$\in \mathbb{R} such that

 $\alpha$\Vert Ux-Uy\Vert^{2}+(1- $\alpha$)\Vert x-Uy\Vert^{2}\leq $\beta$\Vert Ux-y\Vert^{2}+(1- $\beta$)\Vert x-y\Vert^{2}

for all x, y \in  C . Such a mapping U is called ( $\alpha$,  $\beta$) ‐generalized hybrid. If U is generalized
hybrid and  F(U)\neq\emptyset , then  U is (0,0)‐demigeneralized.
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(3) Let E be a strictly convex, reflexive and smooth Banach space and let C be a nonempty,
closed and convex subset of E . Let $\Pi$_{C} be the generalized projection of E onto C . Then $\Pi$_{C}
is (0,1) ‐demigeneralized.

(4) Let E be a uniformly convex and smooth Banach space and let B be a maximal mono‐

tone operator with B^{-1}0 \neq \emptyset . Let  $\lambda$ > 0 . Then the generalized resolvent J_{ $\lambda$} is (0,1)-
demigeneralized.

The following lemma is important and crucial in the proofs of our main results.

Lemma 2.4 ([29]). Let E be a smooth and strictly convex Banach space and let C be a

nonempty, closed and convex subset of E. Let  $\eta$ be a real number with  $\eta$\in(-\infty, 1) . Let U be

an ( $\eta$, 0) ‐demigenerahzed mapping of C into E. Then F(U) is closed and convex.

3 Main Results

In this section, using the hybrid method, we prove a strong convergence theorem for finding
a solution of the split common fixed point problem for families of new nonlinear mappings in

two Banach spaces. Let E be a Banach space and let C be a nonempty, closed and convex

subset of E . Let \{U_{n}\} be a sequence of mappings of C into E such that \mathrm{n}_{n=1}^{\infty}F(U_{n})\neq\emptyset . The

sequence \{U_{n}\} is said to satisfy the condition (I) if for any bounded sequence \{z_{n}\} of C such

that \displaystyle \lim_{n\rightarrow\infty}\Vert z_{n}-U_{n}z_{n}\Vert=0 , every weak cluster point of \{z_{n}\} belongs to \displaystyle \bigcap_{n=1}^{\infty}F(U_{n}) .

Theorem 3.1 ([27]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let J_{E} and J_{F} be the duality mappings on E and F

, respectively. Let \{$\tau$_{n}\} and \{$\eta$_{n}\} be

sequences of real numbers with $\tau$_{n}, $\eta$_{n} \in (-\infty, 1) and let \{t_{n}\} and \{\mathcal{S}_{n}\} be sequences of real

numbers with t_{n},  s_{n}\in[0, \infty). Let \{T_{n}\} be a family of ($\tau$_{n}, t_{n}) ‐demigenerahzed mappings of E

into itself with \mathrm{n}_{n=1}^{\infty}F(T_{n})\neq\emptyset satisfying the condition (I) and let \{U_{n}\} be a family of ($\eta$_{n}, s_{n})-
demigeneralized mappings of F into itself with \displaystyle \bigcap_{n=1}^{\infty}F(U_{n}) \neq \emptyset satisfying the condition (I).
Let  A : E\rightarrow F be a bounded linear operator such that A\neq 0 and let A^{*} be the adjoint operator
of A. Suppose that \displaystyle \mathcal{F}=\mathrm{n}_{n=1}^{\infty}F(T_{n})\cap A^{-1}(\bigcap_{n=1}^{\infty}F(U_{n})) \neq\emptyset . Let  x_{1} \in  E and let \{x_{n}\} be a

sequence generated by

\left\{\begin{array}{l}
z_{n}=J_{E}^{-1}(J_{E}x_{n}-r_{n}A^{*}(J_{F}Ax_{n}-J_{F}U_{n}Ax_{n}\\
y_{n}=T_{n}z_{n},\\
C_{n}=\{z\in E:2\langle x_{n}-z, J_{E}x_{n}-J_{E}z_{n}\}\\
\geq r_{n}(1-$\eta$_{n})$\phi$_{F} (Axn, U_{n}Ax_{n})+r_{n}s_{n}$\phi$_{F}(U_{n}Ax_{n}, Ax_{n}\\
D_{n}=\{z\in E:2 \{z_{n}-z, J_{E}z_{n}-J_{E}y_{n}\rangle\\
\geq(1-$\tau$_{n})$\phi$_{E}(z_{n}, y_{n})+t_{n}$\phi$_{E}(y_{n}, z_{n}\\
Q_{n}=\{z\in E: \langle x_{n}-z, J_{E}x_{1}-J_{E}x_{n}\rangle\geq 0\},\\
x_{n+1}=$\Pi$_{C_{n}\cap D_{n}\cap Q_{n}^{X}1}, \forall n\in \mathbb{N},
\end{array}\right.
where a, b\in \mathbb{R}, \{r_{n}\}\subset (0, \infty) and \{$\tau$_{n}\}, \{$\eta$_{n}\}\subset (-\infty, 1) satisfy the following inequalities

 0<a\leq r_{n}\leq \displaystyle \frac{1}{2\Vert A\Vert^{2}} and 0<b\leq 1-$\tau$_{n}, 1-$\eta$_{n}, \forall n\in \mathbb{N}.

Then the sequence \{x_{n}\} converges strongly to z_{0} \in \mathrm{n}_{n=1}^{\infty}F(T_{n}) \displaystyle \cap A^{-1}(\bigcap_{n=1}^{\infty}F(U_{n})) , where

 z_{0}= $\Pi$ 口 \infty {}_{n=1}F(T_{n})\cap A-1 (口誰 {}_{1}F(U_{n}))^{X}1.
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Next, using the shrinking projection method [28], we prove a strong convergence theorem

for finding a solution of the split common fixed point problem with families of mappings in

Banach spaces.

For a sequence \{C_{n}\} of nonempty, closed and convex subsets of a Banach space E
, define

s‐Lin C_{n} and w‐Lsn C_{n} as follows:  x\in s‐Lin  C_{n} if and only if there exists \{x_{n}\}\subset E such that

\{x_{n}\} converges strongly to x and x_{n}\in C_{n} for all n\in \mathbb{N} . Similarly,  y\in w‐Lsn  C_{n} if and only
if there exist a subsequence \{C_{n_{i}} \} of \{C_{n}\} and a sequence \{y_{i}\}\subset E such that \{y_{i}\} converges

weakly to y and y_{i}\in C_{n_{i}} for all i\in \mathbb{N} . If C_{0} satisfies

C_{0}= s‐Lni C_{n}= w‐Lns C_{n} , (3.1)

it is said that \{C_{n}\} converges to C_{0} in the sense of Mosco [13] and we write C_{0} =

\displaystyle \mathrm{M}-\lim_{n\rightarrow\infty}C_{n} . It is easy to show that if \{C_{n}\} is nonincreasing with respect to inclusion, then

\{C_{n}\} converges to \displaystyle \bigcap_{n=1}^{\infty}C_{n} in the sense of Mosco. For more details, see [13]. The following
lemma was proved by Ibaraki, Kimura and Takahashi [6].
Lemma 3.2 ([6]). Let E be a smooth Banach space such that E^{*} has a Fréchet differentiable
norm. Let \{C_{n}\} be a sequence of nonempty, closed and convex subsets of E. If C_{0} =M-

\displaystyle \lim_{n\rightarrow\infty}C_{n} exists and nonempty, then for each x\in E, \{$\Pi$_{C_{n}}x\} converges strongly to $\Pi$_{C_{0}}x,
where $\Pi$_{C_{n}} and $\Pi$_{C_{0}} are the generalized projections of E onto C_{n} and C_{0} , respectively.

Theorem 3.3 ([27]). Let E and F be uniformly convex and uniformly smooth Banach spaces
and let J_{E} and J_{F} be the duality mappings on E and F

, respectively. Let \{$\tau$_{n}\} and \{$\eta$_{n}\} be

sequences of real numbers with $\tau$_{n}, $\eta$_{n} \in (-\infty, 1) and let \{t_{n}\} and \{s_{n}\} be sequences of real

numbers with t_{n},  s_{n}\in [0, \infty). Let \{T_{n}\} be a family of ($\tau$_{n}, t_{n}) ‐demigeneralized mappings of E

into itself with \mathrm{n}_{n=1}^{\infty}F(T_{n})\neq\emptyset satisfying the condition (I) and let \{U_{n}\} be a family of ($\eta$_{n}, s_{n})-
demigeneralized mappings of F into itself with \displaystyle \bigcap_{n=1}^{\infty}F(U_{n}) \neq \emptyset satisfying the condition (I).
Let  A : E\rightarrow F be a bounded hnear operator such that A\neq 0 and let A^{*} be the adjoint operator
of A. Suppose that \mathcal{F}= \displaystyle \mathrm{n}_{n=1}^{\infty}F(T_{n})\cap A^{-1}(\bigcap_{n=1}^{\infty}F(U_{n})) \neq \emptyset . For  x_{1} \in  E and C_{1} =E

, let

\{x_{n}\} be a sequence generated by

\left\{\begin{array}{l}
z_{n}=J_{E}^{-1}(J_{E}x_{n}-r_{n}A^{*}(J_{F}Ax_{n}-J_{F}U_{n}Ax_{n}\\
y_{n}=T_{n}z_{n},\\
C_{n+1}=\{z\in C_{n}:2\langle x_{n}-z, J_{E}x_{n}-J_{E}z_{n}\}\\
\geq r_{n}(1-$\eta$_{n})$\phi$_{F} (Axn, U_{n}Ax_{n})+r_{n}s_{n}$\phi$_{F}(U_{n}Ax_{n}, Axn)\}\\
\cap\{z\in C_{n}: 2\langle z_{n}-z, J_{E}z_{n}-J_{E}y_{n}\rangle\\
\geq(1-$\tau$_{n})$\phi$_{E}(z_{n}, y_{n})+t_{n}$\phi$_{E}(y_{n}, z_{n}\\
x_{n+1}=$\Pi$_{C_{n+1}}x_{1}, \forall n\in \mathbb{N} \text{）}
\end{array}\right.
where a, b\in \mathbb{R} and \{r_{n}\}\subset (0, \infty) satisfy the following inequalities

 0<a\leq r_{n}\leq \displaystyle \frac{1}{2\Vert A\Vert^{2}} and 0<b\leq 1-$\tau$_{n}, 1-$\eta$_{n}, \forall n\in \mathbb{N}.

Then the sequence \{x_{n}\} converges strongly to z_{0} \in \displaystyle \mathrm{n}_{n=1}^{\infty}F(T_{n})\cap A^{-1}(\bigcap_{n=1}^{\infty}F(U_{n})) , where

 z_{0}= $\Pi$口罷 {}_{1} F(T_{n})\cap A-1 (口盤 {}_{1}F(U_{n}))^{X}1\cdot
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4 Applicationss

In this section, using Theorems 3.1 and 3.3, we get well‐known and new strong convergence
theorems which are connected with the split common fixed point problem for families of

demigeneralized mappings in Banach spaces. We know the following result obtained by Marino

and Xu [11].

Lemma 4.1 ([11]). Let  H be a Hilbert space and let C be a nonempty, closed and convex subset

of H. Let k be a real number with 0\leq k<1 and U : C\rightarrow H be a k ‐strict pseudo‐contraction.
If x_{n}\rightarrow z and x_{n}-Ux_{n}\rightarrow 0 ,

then z\in F(U) .

We also know the following result from Plubtieng and Takahashi [15].
Lemma 4.2 ([15]). Let H_{1} and H_{2} be Hilbert spaces and let  $\alpha$>0 . Let G:H_{1} \rightarrow 2^{H_{1}} be a

maximal monotone mapping and let J_{ $\lambda$} = (I+ $\lambda$ G)^{-1} be the resolvent of G for  $\lambda$ > 0 . Let

T:H_{2}\rightarrow H_{2} be an  $\alpha$ ‐inverse strongly monotone mapping and let  A:H_{1} \rightarrow H_{2} be a bounded

linear operator. Suppose that G^{-1}0\cap A^{-1}(T^{-1}0) \neq\emptyset . Let  $\lambda$, r > 0 and z \in  H_{1} . Then the

following are equivalent:

(i) z=J_{ $\lambda$}(I-rA^{*}TA)z ;

(it) 0\in A^{*}TAz+Gz ;

(iii) z\in G^{-1}0\cap A^{-1}(T^{-1}0) .

Using Theorem 3.1 and Lemmas 4.1 and 4.2, we obtain the following theorem.

Theorem 4.3. Let H_{1} and H_{2} be Hilbert spaces. Let k\in[0 , 1) and  $\alpha$\in (0, \infty) . Let  T:H_{1}\rightarrow
 H_{1} be an  $\alpha$ ‐inverse strongly monotone mapping with  T^{-1}0 \neq \emptyset and let  U : H_{2} \rightarrow  H_{2} be a

k ‐strict pseudo‐contraction such that F(U) \neq \emptyset . Let  G be a maximal monotone operator of
H_{1} into H_{1} and J_{ $\lambda$} be the resolvent of G for  $\lambda$>0 . Define T_{n}=J_{$\lambda$_{n}}(I-$\lambda$_{n}T) for all n\in \mathbb{N}

such that $\lambda$_{n} \in (0, \infty) and define U_{n}=$\alpha$_{n}I+(1-$\alpha$_{n})U for all n\in \mathbb{N} such that  0\leq $\alpha$_{n} < 1

and \displaystyle \sup_{n\in \mathbb{N}}$\alpha$_{n} < 1 . Let A : H_{1} \rightarrow H_{2} be a bounded hnear operator such that A\neq 0 and let

A^{*} be the adjoint operator of A. Suppose that  T^{-1}0\cap G^{-1}0\cap A^{-1}F(U)\neq\emptyset . Let  x_{1}\in H_{1} and

let \{x_{n}\} be a sequence generated by

\left\{\begin{array}{l}
z_{n}=x_{n}-r_{n}A^{*}(Ax_{n}-U_{n}Ax_{n}) ,\\
y_{n}=T_{n}z_{n},\\
C_{n}=\{z\in H_{1} : 2\{xn- z, x_{n}-z_{n}\}\geq r_{n}(1-k)\Vert Ax_{n}-U_{n}Ax_{n}\Vert^{2}\},\\
D_{n}=\{z\in H_{1} : 2 \{z_{n}-z, z_{n}-y_{n}\rangle\geq \Vert z_{n}-y_{n}\Vert^{2}\},\\
Q_{n}=\{z\in H_{1} : \langle xn- z, x_{1}-x_{n}\}\geq 0\},\\
x_{n+1}=P_{C_{n}\cap D_{n}\cap Q_{n}}x_{1}, \forall n\in \mathbb{N},
\end{array}\right.
where {rn}, \{$\lambda$_{n}\}\subset (0, \infty) and a, b\in \mathbb{R} satisfy the following inequalities

 0<a\leq r_{n}\leq \displaystyle \frac{1}{2\Vert A\Vert^{2}} and 0<b\leq$\lambda$_{n}\leq 2 $\alpha$, \forall n\in \mathbb{N}.

Then the sequence \{x_{n}\} converges strongly to a point z_{0} \in T^{-1}0\cap G^{-1}0\cap A^{-1}F(U) , where

z0=P_{$\tau$^{-1}0\cap G-1}0\cap A-1F(U)^{X}1.

Using Theorem 3.1, we get the following result [24].
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Theorem 4.4 ([24]). Let E and F be unOformly convex and uniformly smooth Banach spaces

and let J_{E} and J_{F} be the duality mappings on E and F
, respectively. Let G and B be maximal

monotone operators ofE into E^{*} and F into F^{*}
, respectively. Let J_{ $\lambda$} and Q_{ $\mu$} be the generalized

resolvents of G for  $\lambda$>0 and B for  $\mu$>0 , respectively. Let A:E\rightarrow F be a bounded hnear

operator such that A \neq  0 and let A^{*} be the adjoint operator of A. Suppose that  G^{-1}0\cap

 A^{-1}(B^{-1}0)\neq\emptyset . Let  x_{1} \in E and let \{x_{n}\} be a sequence generated by

\left\{\begin{array}{l}
z_{n}=J_{E}^{-1}(J_{E}x_{n}-r_{n}A^{*}(J_{F}Ax_{n}-J_{F}Q_{$\mu$_{n}}Ax_{n}\\
y_{n}=J_{$\lambda$_{n}}z_{n},\\
C_{n}=\{z\in E:2\{x_{n}-z \text{）} J_{E}x_{n}-J_{E}z_{n}\}\\
\geq r_{n}$\phi$_{F} (Axn, Q_{$\mu$_{n}}Ax_{n})+r_{n}$\phi$_{F}(Q_{$\mu$_{n}}Ax_{n}, Ax_{n}\\
D_{n}=\{z\in E:2\langle z_{n}-z, J_{E}z_{n}-J_{E}y_{n}\}\\
\geq$\phi$_{E}(z_{n}, y_{n})+$\phi$_{E}(y_{n} \text{）} z_{n}\\
Q_{n}=\{z\in E: \{x_{n}-z, J_{E}x_{1}-J_{E}x_{n}\rangle\geq 0\},\\
x_{n+1}=$\Pi$_{C_{n}\cap D_{n}\cap Q_{n}^{X}1}, \forall n\in \mathbb{N},
\end{array}\right.
where a, b\in \mathbb{R} and {rn}, \{$\lambda$_{n}\}, \{$\mu$_{n}\}\subset(0, \infty) satisfy the following inequalities

0<a\displaystyle \leq r_{n}\leq\frac{1}{2\Vert A\Vert^{2}} , and 0<b\leq$\lambda$_{n}, $\mu$_{n}, \forall n\in \mathbb{N}.

Then \{x_{n}\} converges strongly to z_{0}\in G^{-1}0\cap A^{-1}(B^{-1}0) , where z_{0}=$\Pi$_{G^{-1}0\cap A-1}(-1x.

Similarly, using Theorem 3.3, we have the following results.

Theorem 4.5. Let H_{1} and H_{2} be Hilbert spaces. Let  k\in [0 , 1) and  $\alpha$\in(0, \infty) . Let  T:H_{1}\rightarrow
 H_{1} be an  $\alpha$ ‐inverse strongly monotone mapping with  T^{-1}0 \neq \emptyset and let  U : H_{2} \rightarrow  H_{2} be a

k ‐strict pseudo‐contraction such that F(U) \neq \emptyset . Let  G be a maximal monotone operator of
H_{1} into H_{1} and J_{ $\lambda$} be the resolvent of G for  $\lambda$>0 . Define T_{n}=J_{$\lambda$_{n}}(I-$\lambda$_{n}T) for all n\in \mathbb{N}
such that $\lambda$_{n} \in (0, \infty) and define U_{n}=$\alpha$_{n}I+(1-$\alpha$_{n})U for all n\in \mathbb{N} such that 0\leq$\alpha$_{n} < 1

and \displaystyle \sup_{n\in \mathbb{N}}$\alpha$_{n} < 1 . Let A : H_{1} \rightarrow H_{2} be a bounded linear operator such that A\neq 0 and let

A^{*} be the adjoint operator of A. Suppose that  T^{-1}0\cap G^{-1}0\cap A^{-1}F(U)\neq\emptyset . For  x_{1} \in H_{1} and

C_{1}=H_{1} , let \{x_{n}\} be a sequence generated by

\left\{\begin{array}{l}
z_{n}=x_{n}-r_{n}A^{*}(Axn-- U Axn),\\
y_{n}=T_{n}z_{n},\\
C_{n+1}=\{z\in C_{n} : 2 \{x_{n}-z, x_{n}-z_{n}\rangle \geq r_{n}(1-$\eta$_{n})\Vert Ax_{n}-U_{n}Ax_{n}\Vert^{2}\\
and 2\{z_{n}-z, z_{n}-y_{n}\}\geq (1-$\tau$_{n})\Vert z_{n}-y_{n}\Vert^{2}\},\\
x_{n+1}=P_{C_{n+1}}x_{1}, \forall n\in \mathbb{N},
\end{array}\right.
where {rn}, \{$\lambda$_{n}\}\subset (0, \infty) and a, b\in \mathbb{R} satisfy the following inequalities

0<a\displaystyle \leq r_{n}\leq\frac{1}{2\Vert A\Vert^{2}} and 0<b\leq$\lambda$_{n}\leq 2 $\alpha$, \forall n\in \mathbb{N}.

Then the sequence \{x_{n}\} converges strongly to a point z_{0} \in  T^{-1}0\cap G^{-1}0\cap A^{-1}F(U) , where

z_{0}=P_{T^{-1}0\cap G^{-1}0\cap A^{-1}F(U)^{X}1}.

Furthermore, using Theorem 3.3, we get the following result [17].
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Theorem 4.6 ([17]). Let E and F be uniformly convex and uniformly smooth Banach spaces

and let J_{E} and J_{F} be the duality mappings on E and F , respectively. Let G and B be maximal

monotone operators of E into E^{*} and F into F^{*} , respectively. Let J_{ $\lambda$} and Q_{ $\mu$} be the generalized
resolvents of G for  $\lambda$>0 and B for  $\mu$>0 , respectively. Let A:E\rightarrow F be a bounded hnear

operator such that A \neq  0 and let A^{*} be the adjoint operator of A. Suppose that  G^{-1}0\cap

 A^{-1}(B^{-1}0)\neq\emptyset . For  x_{1}\in E and C_{1}=E , let \{x_{n}\} be a sequence generated by

\left\{\begin{array}{l}
z_{n}=J_{E}^{-1}(J_{E}x_{n}-r_{n}A^{*}(J_{F}Ax_{n}-J_{F}Q_{$\mu$_{n}}Ax_{n}\\
y_{n}=J_{$\lambda$_{n}}z_{n},\\
C_{n+1}=\{z\in C_{n} : 2 \{x_{n}-z, J_{E}x_{n}-J_{E}z_{n}\}\\
\geq r_{n}$\phi$_{F} (Ax_{n}, Q_{$\mu$_{n}}Ax_{n})+r_{n}$\phi$_{F}(Q_{$\mu$_{n}}Ax_{n}, Ax_{n})\\
and 2\langle z_{n}-z, J_{E}z_{n}-J_{E}y_{n}\rangle\\
\geq$\phi$_{E}(z_{n}, y_{n})+$\phi$_{E}(y_{n}, z_{n}\\
x_{n+1}=$\Pi$_{C_{n+1}}x_{1}, \forall n\in \mathbb{N},
\end{array}\right.
where a, b\in \mathbb{R} and {rn}, \{$\lambda$_{n}\}, \{$\mu$_{n}\}\subset (0, \infty) satisfy the following inequalities

 0<a\leq r_{n}\leq \displaystyle \frac{1}{2\Vert A\Vert^{2}} and 0<b\leq$\lambda$_{n}, $\mu$_{n}, \forall n\in \mathbb{N}.

Then \{x_{n}\} converges strongly to z_{0}\in G^{-1}0\cap A^{-1}(B^{-1}0) ,
where z_{0}=$\Pi$_{G^{-1}0\cap A^{-1}(B^{-1}0)^{X}1}.
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