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1. INTRODUCTION

In this survey article, we review the recent results [6], [7] by the authors on

Liouville‐type theorems for both the stationary and nonstationary Navier‐Stokes

equations. Let us first state what Liouville‐type theorems for the stationary Navier‐

Stokes equations are. Let us consider the 3\mathrm{D} homogeneous Navier‐Stokes equations
in the whole space \mathbb{R}^{3} ;

(1.1) \left\{\begin{array}{l}
- $\Delta$ v+(v\cdot\nabla)v+\nabla p=0 \mathrm{i}\mathrm{n} \mathbb{R}^{3},\\
\mathrm{d}\mathrm{i}\mathrm{v}v=0 \mathrm{i}\mathrm{n} \mathbb{R}^{3},
\end{array}\right.
where v=v(x)= (v_{1}(x), v_{2}(x) , v3 (x) ) and p=p(x) denote the velocity vector and

the scalar pressure at the point x= (x_{1}, x_{2}, x3) \in \mathbb{R}^{3} , respectively. We deal with

solutions v of (1.1) in the class of the finite Dirichlet integral

(1.2)  D(v)\displaystyle \equiv\int_{\mathbb{R}^{3}}|\nabla v(x)|^{2}dx<\infty
with the homogeneous condition at infinity

(1.3) \displaystyle \lim_{|x|\rightarrow\infty}|v(x)|=0 uniformly in x.

Since the pioneer work of Leray [9], it has been an open problem whether v\equiv 0 is

the only solution of (1.1) under conditions (1.2) and (1.3). This is a Liouville‐type
statement on the 3\mathrm{D} stationary Navier‐Stokes equations. A partial answer under

some further restrictions is called a Liouville‐type theorem for the stationary 3\mathrm{D}

Navier‐Stokes equations. Liouville‐type theorems were obtained by several authors

up to now. Galdi [4, Theorem X.9.5] showed that if v\in L^{9/2}(\mathbb{R}^{3}) ,
then it holds that

v\equiv 0 . Chae [2, Theorem 1.2] proved that the condition  $\Delta$ v\in L^{6/5}(\mathbb{R}^{3}) implies that

(1.1) has the only trivial solution. He emphasizes that the norm D^{2}v in L^{6/5}(\mathbb{R}^{3})
corresponds to that of \nabla v in L^{2}(\mathbb{R}^{3}) at the level of scaling and that there is no

mutual implication relation between their results [4] and [2]. So, it seems to be

an interesting question to investigate why the space L^{9/2}(\mathbb{R}^{3}) necessarily appears
from the viewpoint of scaling. On the other hand, recently, Seregin [13] showed

that v\in L^{6}(\mathbb{R}^{3})\cap BMO^{-1} leads to the Liouville‐type theorem.

It is well‐known that if \{v,p\} solves (1.1), so does \{v_{ $\lambda$},p_{ $\lambda$}\} for all  $\lambda$>0 , where

v_{ $\lambda$}(x) =  $\lambda$ v( $\lambda$ x) and p_{ $\lambda$}(x) = $\lambda$^{2}p( $\lambda$ x) . A standard method to prove that (1.1)
possesses the only trivial solution v\equiv 0 is to bound D(v) by means of the quantity
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of v or \nabla v at infinity. For that purpose, Galdi [4] derived such an estimate as

(1.4) \displaystyle \int_{|x|\leq R}|\nabla v(x)|^{2}dx\leq C\Vert v\Vert_{L^{2}(R\leq|x|\leq 2R)}^{3}+CR^{-\frac{1}{3}}\Vert v\Vert_{L^{\frac{9}{2}}(R\leq|x|\leq 2R)}^{2}2
+C\Vert v\Vert_{L^{2}(R\leq|x|\leq 2R)}\Vert p\Vert_{L^{2}(R\leq|x|\leq 2R)}24

for all R > 0 with a constant C independent of R > 0 , which yields that v \equiv  0

is the only solution of (1.1) with (1.2) and (1.3) provided v\in L^{9/2}(\mathbb{R}^{3}) . It is easy

to see that both D(v) and each term in the right‐hand side have the same scaling
with respect to the transformation v_{ $\lambda$} for all  $\lambda$>0 . On the other hand, Chae [2]
established an estimate of p+|v|^{2}/2 by a skillful technique which does not need

any other bound except for \Vert $\Delta$ v\Vert_{L^{\frac{6}{5}}(\mathbb{R}^{3})} having the same scaling as D(v)^{1/2}.
We shall first establish an a priori estimate of D(v) in terms of the asymptotic

behavior of the vortex  $\omega$ = rot v as |x| \rightarrow \infty . Our estimate is invariant under

the change of scaling. As an application, it turns out that if  $\omega$(x) =o(|x|^{-5/3}) as

|x| \rightarrow\infty , then  v\equiv 0 is the only solution of (1.1) with (1.2) and (1.3). In view of

the decay rate at the infinity, our result extends Galdi�s one and is not included

by the previous results such as [2], [3] or [13]. Concerning v itself, introducing the

Lorentz space L^{q,r}(\mathbb{R}^{3}) , we extend the result of Galdi [4] to that in the weak-L^{9/2}

space, which is based on an a priori estimate of D(v) by means of \Vert v\Vert_{L^{\frac{9}{2},\infty}(\mathbb{R}^{3})}^{3}.
Our first result on an a priori estimate of D(v) by means of vorticity now reads:

Theorem 1.1. Let v be a smooth solution of (1.1) with (1.3). Suppose that  $\omega$=

rot v satisfies

(1.5) \displaystyle \lim_{|x|\rightarrow}\sup_{\infty}|x|^{5/3}| $\omega$(x)| <+\infty.
Then we have that  D(v)<\infty as in (1.2) with the estimate

(1.6)  D(v)\displaystyle \leq C_{0} (\lim_{|x|\rightarrow}\sup_{\infty}|x|^{5/3}| $\omega$(x)|)^{3}
where C_{0}>0 is an absolute constant independent of v.

Another a priori estimate of D(v) in terms of v itself reads as follows:

Theorem 1.2. Let v be a smooth solution of (1.1). Assume that p is bounded in

\mathbb{R}^{3} . Suppose that v\in L^{9/2,\infty}(\mathbb{R}^{3}) , i. e.,

(1.7) \displaystyle \Vert v\Vert_{L^{\frac{9}{2}\infty}},\equiv\sup_{t>0}t $\mu$(\{x\in \mathbb{R}^{3};|v(x)| >t\})^{\frac{2}{9}} <\infty,
where  $\mu$ is the Lebesgue measure on \mathbb{R}^{3} . Then we have that D(v) <\infty as in (1.2)
with the estimate

(1.8)  D(v)\leq C\'{O} \Vert v\Vert_{L^{\frac{9}{2}\infty}}^{3}, �

where CÓ > 0 is an absolute constant independent of v.

As an application of the above theorems, we have the following uniqueness result

on (1.1).

Corollary 1.3 (Liouville‐type theorem). Let v be a smooth solution of (1.1) in the

class (1.2) with (1.3). Assume that v satisfies either following condition (i) or (ii).
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(i)

(1.9) \displaystyle \lim_{|x|\rightarrow}\sup_{\infty}|x|^{5/3}| $\omega$(x)| \leq( $\delta$ D(v))^{1/3}
with some constant  $\delta$<1/C_{0} ;

(ii)

(1.10) \Vert v||_{L^{\frac{9}{2}\infty}},\leq($\delta$'D(v))^{1/3}
with some constant $\delta$' < 1/CÓ.

Then it holds that v\equiv 0 in \mathbb{R}^{3}.

The article is organized as follows. In Section 2, a proof of Theorem 1.1 is

given. In Section 3, Liouvill‐type theorems for the nonstationary case are treated.

A sketch of their proof is also given.

2. BOUND BY VORTICiTY; PROOF OF THEOREM 1. 1

Based on the Biot‐Savart law, we first derive the general estimate of velocity v

from that of vorticity  $\omega$= rot v.

Lemma 2.1. Let v be a smooth solenoidal vector field in \mathbb{R}^{3} with (1.3). Suppose
that  $\omega$= rot v satisfies

(2.1)  $\epsilon$( $\alpha$)\displaystyle \equiv\lim\sup|x|^{ $\alpha$}| $\omega$(x)|<\infty for some  1< $\alpha$<3.
|x|\rightarrow\infty

Then there is  L>0 such that the estimate

(2.2) |v(x)|\displaystyle \leq C_{ $\alpha$} $\epsilon$( $\alpha$)|x|^{1- $\alpha$}+\frac{L^{3}}{6}\Vert $\omega$\Vert_{L(B_{L/2})}\infty|x|^{-2}
holds for all |x| \geq L with a constant C_{ $\alpha$} depending only on  $\alpha$ , but not on  v and L,
where B_{L}\equiv\{x\in \mathbb{R}^{3};|x| \leq L\} . Moreover, it holds that \nabla v\in L^{q}(\mathbb{R}^{3}) for all q with

 3/ $\alpha$ <q<\infty . When  $\epsilon$( $\alpha$)=0 , we interpret the constants  $\epsilon$( $\alpha$) and L in (2.2) as

an arbitrary small positive number and a constant depending on  $\epsilon$( $\alpha$) , respectively.

We next investigate behavior at infinity of the pressure p . For that purpose, we

need (1.2).

Lemma 2.2. Let v be a smooth solution to (1.1) with (1.3) and let p be the pressure

associated with v in (1.1). Assume that  $\omega$= rot v satisfies (2.1) for some  $\alpha$ with

 3/2\leq $\alpha$<2 and that L is the same as in (2.2). Then there exists \overline{p}\in \mathbb{R} such that

p'(x)=p(x)-\overline{p} satisfies the estimate

(2.3) |p'(x)| \leq C_{ $\alpha$}' $\epsilon$( $\alpha$)^{2}|x|^{-2( $\alpha$-1)}+C_{ $\alpha$,L} $\epsilon$( $\alpha$)(1+\Vert $\omega$\Vert_{L\infty(B_{L/2})})^{2}|x|^{- $\alpha$}

+\displaystyle \frac{(2L)^{3}}{3}\Vert $\omega$\times v||_{L\infty(B_{L})}|x|^{-2}
for all |x| \geq  2L

, where C_{ $\alpha$}' and C_{ $\alpha$,L} are constants depending only on  $\alpha$ and on

 $\alpha$, L , respectively.

For the proof of these lemmas, we refer to [6].
Using these lemmas, we are now in a position to prove Theorem 1.1.

Proof of Theorem 1,1. In what follows, we shall denote by C various constants

which may change from line to line. In particular, we denote by C=C(*, \cdots , *)
constants depending only on the quantities appearing in parentheses.
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By (1.5) we see that (2.1) holds with  $\alpha$=5/3 , and hence it follows from Lemma

2.1 that  D(v)<\infty as in (1.2). Let  $\psi$= $\psi$(x)\in C_{0}^{\infty}(\mathbb{R}^{3}) be a test function satisfying

 $\psi$(x)=\left\{\begin{array}{ll}
1, & |x|\leq 1,\\
0, & |x| \geq 2
\end{array}\right.
and  0\leq $\psi$\leq  1 . We define a family \{$\psi$_{R}\} of cut‐off functions with large parameter
R>0 by $\psi$_{R}(x)= $\psi$(x/R) . Multiplying the equation (1.1) by $\psi$_{R}(x)v(x) and then

integrating over \mathbb{R}^{3} , we have by integration by parts that

(2.4) \displaystyle \int_{\mathbb{R}^{3}}|\nabla v|^{2}$\psi$_{R}dx=\int_{\mathbb{R}^{3}}|v|^{2} $\Delta \psi$_{R}dx+\frac{1}{2}\int_{\mathbb{R}^{3}}|v|^{2}v\cdot\nabla$\psi$_{R}dx
+\displaystyle \int_{\mathbb{R}^{3}}p'v\cdot\nabla$\psi$_{R}dx

=:I_{R}^{(1)}+I_{R}^{(2)}+I_{R}^{(3)},
where p'(x)=p(x)-\overline{p} is as in Lemma 2.2. Let us take R sufficiently large so that

R \geq  4L , where L is the same constant as in (2.2). Then, taking $\epsilon$_{*} =  $\epsilon$(5/3) in

(2.1), we obtain from Lemmata 2.1 and 2.2 that

I_{R}^{(1)} \displaystyle \leq R^{-2}\int_{R\leq|x|\leq 2R}(C$\epsilon$_{*}R^{-\frac{2}{3}}+C(L, \Vert $\omega$\Vert_{L^{\infty}(B_{L})})R^{-2})^{2}\Vert $\Delta \psi$\Vert_{L}\infty dx
\leq C$\epsilon$_{*}^{2}R^{-1/3}+C(L, 1 $\omega$||_{L^{\infty}(B_{L})})R^{-4},

I_{R}^{(2)}\displaystyle \leq R^{-1}\int_{R\leq|x|\leq 2R}(C$\epsilon$_{*}R^{-\frac{2}{3}}+C(L, \Vert $\omega$\Vert_{L^{\infty}(B_{L})})R^{-2})^{3}\Vert\nabla $\psi$\Vert_{L}\infty dx
\leq C$\epsilon$_{*}^{3}+C(L, \Vert $\omega$\Vert_{L^{\infty}(B_{L})})R^{-4},

and

I_{R}^{(3)}
\leq  R^{-1}\displaystyle \int_{R\leq|x|\leq 2R}(C$\epsilon$_{*}^{2}R^{-\frac{4}{3}}+C(L, \Vert $\omega$\Vert_{L\infty(B_{L})})$\epsilon$_{*}R^{-\frac{5}{3}}+C(L, \Vert $\omega$\times v\Vert_{L\infty(B_{L})})R^{-2})

\times (C$\epsilon$_{*}R^{-\frac{2}{3}}+C(L, \Vert $\omega$\Vert_{L^{\infty}(B_{L})})R^{-2})\Vert\nabla $\psi$\Vert_{L}\infty dx
\leq  C$\epsilon$_{*}^{3}+C(L, \Vert $\omega$\Vert_{L\infty(B_{L})}, \Vert v\Vert_{L\infty(B_{L})})($\epsilon$_{*}^{2}R^{-\frac{1}{3}}+$\epsilon$_{*}R^{-\frac{2}{3}}+R^{-2})

for all R\geq 4L . Hence, it follows from (2.4) that

\displaystyle \int_{\mathbb{R}^{3}}|\nabla v|^{2}$\psi$_{R}dx\leq C$\epsilon$_{*}^{3}+C($\epsilon$_{*}, L, \Vert $\omega$\Vert_{L^{\infty}(B_{L})}, \Vert v\Vert_{L\infty(B_{L})})R^{-\frac{1}{3}} for all R\geq 4L.

Letting  R\rightarrow\infty , we obtain

 D(v)\leq C$\epsilon$_{*}^{3},
which implies the desired estimate (1.6). In the case when $\epsilon$_{*}=0 , similarly to the

above one can obtain

D(v)\leq C$\epsilon$^{3}
for an arbitrarily small  $\epsilon$ > 0 . Hence, in this case we obtain D(v) = 0 . This

completes the proof of Theorem 1.1. We omit the proof of Theorem 1.2 since it is

similar to that of Theorem 1.1. We also omit the proof of Corollary 1.3 since it is

easy.
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3. LIOUVILLE‐TYPE THEOREMS FOR THE NONSTATIONARY CASE

Next we consider Liouville‐type theorems for the Cauchy problem for the Navier‐

Stokes equations

(3.1) \left\{\begin{array}{ll}
v_{t}- $\Delta$ v+(v\cdot\nabla)v+\nabla p=0, & (x, t)\in \mathbb{R}^{n}\times(0, T) ,\\
\mathrm{d}\mathrm{i}\mathrm{v}v=0, & (x, t)\in \mathbb{R}^{n}\times(0, T) ,\\
v(x, 0)=v_{0}(x) , & x\in \mathbb{R}^{n}.
\end{array}\right.
Here v=v(x, t)=(v^{1}(x, t), \ldots, v^{n}(x, t)) and p=p(x, t) denote the velocity and the

pressure, respectively, while v_{0}(x)= (v_{0}^{1}(x), \ldots, v``(x)) stands for the given initial

velocity. Let the initial data v_{0} belong to L_{ $\sigma$}^{2}(\mathbb{R}^{n}) , which is the closure of C_{0, $\sigma$}^{\infty}(\mathbb{R}^{n}) ,

compactly supported C^{\infty} ‐solenoidal vector functions, with respect to the L^{2}‐norm.

We recall that a measurable function v on \mathbb{R}^{n} \times (0, T) is a weak solution of the

Leray‐Hopf class to (3.1) if v \in  L^{\infty}(0, T;L_{ $\sigma$}^{2}(\mathbb{R}^{n}))\cap L_{loc}^{2}([0, T);H_{ $\sigma$}^{1}(\mathbb{R}^{n})) and if v

satisfies (1.1) in the sense that

\displaystyle \int_{0}^{T}\{-(v, \partial_{ $\tau$} $\Phi$)+(\nabla v, \nabla $\Phi$)+(v\cdot\nabla v,  $\Phi$)\}d $\tau$=(v_{0},  $\Phi$(0))
holds for all  $\Phi$\in H_{0}^{1}([0, T);H_{ $\sigma$}^{1}(\mathbb{R}^{n})\cap L^{n}(\mathbb{R}^{n})) . For every weak solution v(t) of the

Leray‐Hopf class to (3.1) ,
it is shown by Prodi [12] and Serrin [14] that, after a

redefinition of its value of v(t) on a set of measure zero in the time interval [0, T],
v t) is continuous for t in the weak topology of L_{ $\sigma$}^{2}(\mathbb{R}^{n}) . See also Masuda [11,
Proposition 2].

Serrin [14] proved that if v is a weak solution of the Leray‐Hopf class to (3.1)
and if.v\in L^{s}(0, T;L^{q}(\mathbb{R}^{n})) for \displaystyle \frac{3}{q}+\frac{2}{s} \leq  1 with some q>3, s>2 , then the energy

identity

(3.2) \displaystyle \Vert v(t)||_{L^{2}}^{2}+2\int_{0}^{t}\Vert\nabla v( $\tau$)\Vert_{L^{2}}^{2}d $\tau$=\Vert v_{0}\Vert_{L^{2}}^{2} (0\leq t<T)
is valid. Shinbrot [15] also proved that the same conclusion holds under another

assumption for some s > 1, q \geq  4 such that \displaystyle \frac{2}{q}+ \displaystyle \frac{2}{s} \leq  1 . Taniuchi [16] further

extended these results to

\displaystyle \frac{2}{q}+\frac{2}{s} \leq 1, \frac{3}{q}+\frac{1}{s} \leq 1 (n=3) ,

\displaystyle \frac{2}{q}+\frac{2}{s} \leq 1, q\geq 4 (n\geq 4) .

We give a new condition which ensures the energy inequality, and as its appli‐
cation, several Liouville‐type theorems are established. Let us first introduce our

definition of a generalized suitable weak solution.

Definition 3.1 (Generalized suitable weak solution). Let v_{0} \in  L_{ $\sigma$}^{2}(\mathbb{R}^{n}) . We say

that the pair (v,p) of measurable functions on \mathbb{R}^{n}\times(0, T) is a generalized suitable

weak solution of the Navier‐Stokes equations (3.1) if

(i) v\in L_{loc}^{3}(\mathbb{R}^{n}\times[0, T \nabla v\in L_{loc}^{2}(\mathbb{R}^{n}\times[0, T)) and p\in L_{loc}^{3/2}(\mathbb{R}^{n}\times[0, T
(ii) For every compact subset K\subset \mathbb{R}^{n}, v t) is continuous for  t\in [0, T) in the

weak topology of L^{2}(K) and is strongly continuous in L^{2}(K) at t=0 , that
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is,

\displaystyle \int_{K}v(x, \cdot)\cdot $\varphi$(x)dx\in C([0, T)) for all  $\varphi$\in L^{2}(K) ,

\displaystyle \lim_{t\rightarrow 0+}\int_{K}|v(x, t)-v_{0}(x)|^{2}dx=0 ;

(iii) The pair (v,p) satisfies the Navier‐Stokes equations (3.1) in the sense of
distributions in \mathbb{R}^{n}\times(0, T) ;

(iv) The pair (v, p) fulfills the generalized energy inequality

(3.3) 2 \displaystyle \int_{0}^{T}\int_{\mathbb{R}^{n}}|\nabla v|^{2} $\Phi$ dxdt\leq\int_{0}^{T}\int_{\mathbb{R}^{n}} [|v|^{2}($\Phi$_{t}+ $\Delta \Phi$)+(|v|^{2}+2p)v\cdot\nabla $\Phi$]dxdt

for any nonnegative test function  $\Phi$\in C_{0}^{\infty}(\mathbb{R}^{n}\times(0, T

Remark 3.1. (i) Caffarelli‐Kohn‐Nirenberg [1] first introduced the notion of a suit‐

able weak solution and proved the partial regularity and the the Hausdorff dimension

of singularities for such weak solutions. In comparison with the suitable weak so‐

lution given by [1], we assume neither finite energy \displaystyle \sup_{0<t<T}\Vert v(t)\Vert_{L^{2}}^{2} < \infty nor

finite dissipation \displaystyle \int_{0}^{T}\Vert\nabla v( $\tau$)\Vert_{L^{2}}^{2}d $\tau$ < \infty . Furthermore, we impose on the pressure

 p only local L^{\frac{3}{2}} ‐bound in \mathbb{R}^{n}\times (0, T) , while they [1] assume such a global bound as

p\in L^{\frac{5}{4}}(\mathbb{R}^{3}\times(0, T)) for n=3.

(ii) A similar notion to our generalized suitable weak solution was considered by
Lemarie‐Rieusset [8, Chapter 32] who constructed the local Leray solution based on

the uniformly local L^{2} ‐space.

Our main result for (3.1) is the following. Here L^{q,r} denotes the Lorenz space

with a standard notation.

Theorem 3.2. Let n \geq  2, v_{0} \in  L_{ $\sigma$}^{2}(\mathbb{R}^{n}) and let the pair (v,p) be a generalized
suitable weak solution of (3.1). Suppose that there exist q_{1}, q_{2}, r_{1}, r_{2} satisfying

(3.4) 3\leq q_{1} \displaystyle \leq\frac{3n}{n-1} , 3\leq r_{1} \leq\infty and (q_{1}, r_{1})\neq (\displaystyle \frac{3n}{n-1}, \infty) ,

(3.5) 2\displaystyle \leq q_{2}\leq\frac{2n}{n-2} ,  2\leq r_{2}\leq\infty and \left\{\begin{array}{ll}
(q_{2}, r_{2})\neq (\frac{2n}{n-2}, \infty) & (n\geq 3) ,\\
q_{2}\neq\infty & (n=2)
\end{array}\right.
such that v\in L^{3}(0, T;L^{q_{1},r_{1}}(\mathbb{R}^{n}))\cap L^{2}(0, T;L^{q_{2},r_{2}}(\mathbb{R}^{n})) . We also assume that the

pressure p satisfies

(3.6) \displaystyle \frac{1}{|B_{|x|/2}(x)|}\int_{B_{|x|/2}(x)}p(y, t)dy=o(|x|) as |x|\rightarrow\infty

for almost every  t\in(0, T) . (B_{R}(x) denotes the ball centered at x\in \mathbb{R}^{n} with radius

R>0. ) Then, we have that

v\in L^{\infty}(0, T;L_{ $\sigma$}^{2}(\mathbb{R}^{n}))\cap L^{2}(0, T;\dot{H}_{ $\sigma$}^{1}(\mathbb{R}^{n}))
and that

\displaystyle \Vert v(t)\Vert_{L^{2}}^{2}+2\int_{0}^{t}\Vert\nabla v( $\tau$)\Vert_{L^{2}}^{2}d $\tau$\leq \Vert v_{0}\Vert_{L^{2}}^{2}
for all t\in(0, T) .
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Remark 3.2. (i) Our proof of Theorem 3.2 enables us to show that if the pair

(v,p) \dot{u} a smooth solution with such bounds as (3.4) and (3.5) in Theorem 3.2 and

if p behaves at infinity like (3.6), then we have the energy identity (3.2).
(ii) Besides the energy identity (3.2), there is another notion of the strong energy

inequality which means that

(3.7) \displaystyle \Vert v(t)\Vert_{L^{2}}^{2}+2\int_{s}^{t}\Vert\nabla v( $\tau$)\Vert_{L^{2}}^{2}d $\tau$\leq\Vert v(s)\Vert_{L^{2}}^{2}
for almost all 0\leq s<T , including s=0 and all t>0 such that s\leq t\leq T . The

importance of the strong energy inequality was pointed out by Masuda [11]. For

every v_{0} \in  L_{ $\sigma$}^{2}(\mathbb{R}^{n}) , the existence of the weak solution v in the Leray‐Hopf class

satisfying (3.7) was proved by Leray [10] for n = 3 and by Kato [5] for n = 4,
respectively. However, it seems difficult to obtain the corresponding result to the

higher dimensional case for n \geq  5 . In addition to the condition (ii) of Definition
3.1, if we assume that

\displaystyle \lim_{t\rightarrow s+0}\int_{K}|v(x, t)-v(x, s)|^{2}dx=0
for almost all 0 \leq  s <T , including s=0 , then our proof of Theorem 3.2 enables

us to see that v satisfies the strong energy inequality (3.7).
(iii) The condition (3.6) is not restrictive. Indeed, if p satisfies p(x, t) =o(|x|)

as |x| \rightarrow \infty for almost every  t \in (0, T) , then we have (3.6). Also, if p satisfies
p\in L^{S}(0, T;L^{q,r}(\mathbb{R}^{n})) with some s, q,  r\in [1, \infty] , then (3.6) holds.

An immediate consequence of this theorem is the following Liouville‐type theo‐

rem.

Corollary 3.3. Let n \geq  2
,

and let v_{0} \equiv  0 in \mathbb{R}^{n} . Suppose that the pair (v,p)
is a generalized suitable weak solution of (3.1). If p satisfies (3.6) and if v \in

 L^{3}(0,T;L^{q_{1},r_{1}}(\mathbb{R}^{n}))\cap L^{2}(0, T;L^{q_{2},r_{2}}(\mathbb{R}^{n})) for such (q_{1}, r_{1}) and (q_{2}, r_{2}) as in (3.4)
and (3.5), respectively, then it holds that v(x, t)\equiv 0 on \mathbb{R}^{n}\times (0, T) .

We next deal with the exponents (q_{1}, r_{1}) and (q_{2}, r_{2}) in the marginal case of (3.4)
and (3.5).

Theorem 3.4. Let n \geq  2, v_{0} \in  L_{ $\sigma$}^{2}(\mathbb{R}^{n}) and let the pair (v,p) be a generalized
suitable weak solution of (3.1). Suppose that there exist q_{1}, q_{2}, r_{1}, r_{2} satisfying

 3\displaystyle \leq q_{1}\leq\frac{3n}{n-1}, 2\leq q_{2}\leq \frac{2n}{n-2}, 3\leq r_{1} \leq\infty, 2\leq r_{2}\leq\infty
and

(Case 1) (q_{1}, r_{1})= (\displaystyle \frac{3n}{n-1}, \infty) ,

(Case 2) (q_{1}, r_{1})\neq (\displaystyle \frac{3n}{n-1}, \infty) ,

(Case 3) (q_{1}, r_{1})= (\displaystyle \frac{3n}{n-1}, \infty) ,

\{ (q_{2}, r_{2})\neq (\displaystyle \frac{2n}{n-2}, \infty) (n\geq 3) ,

\{ (q_{2}, r_{2})= (\displaystyle \frac{2n}{n-2}, \infty) (n\geq 3) ,

\{ (q_{2}, r_{2})= (\displaystyle \frac{2n}{n-2}, \infty) (n\geq 3) ,

 q_{2}\neq\infty (n=2) ,

 q_{2}=\infty (n=2) ,

 q_{2}=\infty (n=2)
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such that v\in L^{3}(0, T;L^{q_{1},r_{1}}(\mathbb{R}^{n}))\cap L^{2}(0, T;L^{q_{2},r_{2}}(\mathbb{R}^{n})) . We also assume that the

pressure p satisfies (3.6). Then, we have that

v\in L^{\infty}(0, T;L_{ $\sigma$}^{2}(\mathbb{R}^{n}))\cap L^{2}(0, T;\dot{H}_{ $\sigma$}^{1}(\mathbb{R}^{n}))

and that

(3.8) \displaystyle \Vert v(t)\Vert_{L^{2}}^{2}+2\int_{0}^{t}\Vert\nabla v( $\tau$)\Vert_{L^{2}}^{2}d $\tau$\leq \Vert v_{0}\Vert_{L^{2}}^{2}+c_{0}V_{v}(t)
holds for all t\in(0, T) with some absolute constant C_{0} ,

where

V_{v}(t)= \left\{\begin{array}{ll}
\Vert v\Vert_{L^{3}(0,t;L^{q_{1}}}^{3} , r_{1}) & (\mathrm{C}\mathrm{a}\mathrm{s}\mathrm{e} 1),\\
\Vert v\Vert_{L^{2}(0,t;L^{\mathrm{q}_{2},r_{2}})}^{2} & (\mathrm{C}\mathrm{a}\mathrm{s}\mathrm{e} 2),\\
\Vert v\Vert_{L^{3}(0,t;L^{q_{1}}}^{3} , r_{1)}+\Vert v\Vert_{L^{2}(0,t;L^{q_{2}}}^{2} , r_{2)} & (\mathrm{C}\mathrm{a}\mathrm{s}\mathrm{e} 3).
\end{array}\right.
Similarly to Corollary 3.3, we have also the following Liouville‐type theorem:

Corollary 3.5. Let  n\geq  2 , and let v_{0} \equiv 0 in \mathbb{R}^{n} . Suppose that the pair (v,p) is

a generalized suitable weak solution of (1.1). We assume that p satisfies (3.6) and

that v\in L^{3}(0, T;L^{q_{1},r_{1}}(\mathbb{R}^{n}))\cap L^{2}(0, T;L^{q_{2},r_{2}}(\mathbb{R}^{n})) for such (q_{1}, r_{1}) and (q_{2}, r_{2}) as

in the Cases 1, 2 and 3 in Theorem 3.4. If there exists  $\delta$\in(0,1/C_{0}) such that

V_{v}(t_{0})\displaystyle \leq $\delta$(\Vert v(t_{0})\Vert_{L^{2}}^{2}+2\int_{0}^{t_{0}}\Vert\nabla v( $\tau$)\Vert_{L^{2}}^{2}d $\tau$)
for some  t_{0}\in (0, T) , then it holds that v(x, t)\equiv 0 on \mathbb{R}^{n}\times [0, t_{0}].

Remark 3.3. (i) The estimate (3.8) is invariant under the scaling transformation
v_{ $\lambda$}(x, t)= $\lambda$ v( $\lambda$ x, $\lambda$^{2}t) with  $\lambda$>0 . Indeed, if v satisfies the estimate (3.8) for some

t\in(0, T) , then it holds that

\displaystyle \Vert v_{ $\lambda$}(t/$\lambda$^{2})\Vert_{L^{2}}^{2}+2\int_{0}^{t/$\lambda$^{2}}\Vert\nabla v_{ $\lambda$}( $\tau$)\Vert_{L^{2}}^{2}d $\tau$\leq\Vert v_{0, $\lambda$}\Vert_{L^{2}}^{2}+C_{0}V_{v_{ $\lambda$}}(t/$\lambda$^{2})
for all  $\lambda$>0.

(ii) In comparison with the result of Taniuchi [16], even for the energy inequality,
Theorem 3.2 requires stronger integrability of v at the spatial infinity. On the other

hand, we do not need to impose on v the finite energy and dissipation like

(3.9) v\in L^{\infty}(0,T;L_{ $\sigma$}^{2}(\mathbb{R}^{n}))\cap L_{loc}^{2}([0, T);H_{ $\sigma$}^{1}(\mathbb{R}^{n})) ,

while [16] requires such a property as (3. 9).

Let us mention a little bit about the proof of Thorem 3.2 and Theorem 3.4.

First we sketch the proof of Theorem 3.2. Let  $\psi$ =  $\psi$(x) \in  C_{0}^{\infty}(\mathbb{R}^{n}) be a test

function satisfying

 $\psi$(x)=\left\{\begin{array}{l}
1, |x|\leq 1,\\
0, |x| \geq 2,
\end{array}\right. 0\leq $\psi$\leq 1.

119



LIOUVILLE‐TYPE THEOREMS FOR THE NAVIER‐STOKES EQUATIONS

We define a family \{$\psi$_{R}\} of cut‐off functions with large parameter R>0 by $\psi$_{R}(x)=
 $\psi$(x/R) . Using the generalized energy inquality (3.3), we have

\displaystyle \int_{\mathbb{R}^{n}}|v(t)|^{2}$\psi$_{R}dx+2\int_{0}^{t}\int_{\mathbb{R}^{n}}|\nabla v|^{2}$\psi$_{R}dxd $\tau$
\displaystyle \leq\int_{\mathbb{R}^{n}}|v_{0}|^{2}$\psi$_{R}dx+\int_{0}^{t}\int_{\mathbb{R}^{n}}|v|^{2} $\Delta \psi$_{R}dxd $\tau$

+\displaystyle \int_{0}^{t}\int_{\mathbb{R}^{n}}|v|^{2}v\cdot\nabla$\psi$_{R}dxd $\tau$+2\int_{0}^{t}\int_{\mathbb{R}^{n}}p'v\cdot\nabla$\psi$_{R}dxd $\tau$
=:\displaystyle \int_{\mathbb{R}^{n}}|v_{0}|^{2}$\psi$_{R}dx+I_{R}^{(1)}+I_{R}^{(2)}+I_{R}^{(3)}.

Then we show I_{R}^{1}, I_{R}^{2}, I_{R}^{3} tends to zero as R tends to infinity under the conditions

in Theorem 3.2. This ends a sketch of the proof of Theorem 3.2.

Next we give a skech of the proof of Theorem 3.4. We only treat Casel, because

the other cases are quite similar. We first have \displaystyle \lim_{R\rightarrow\infty}I_{R}^{(1)} =0 . Concerning I_{R}^{(2)},
we only have I_{R}^{(2)} \leq C\Vert v\Vert_{L^{3}(0,T;L^{\frac{3n}{n-1},\infty})}^{3} , since -1+\displaystyle \frac{n(q_{1}-3)}{q_{1}}=0 . Using an estimate

of the pressure term by the velocity term, we have I_{R}^{(3)} \leq C\Vert v\Vert_{L^{3}(0,T;L^{\frac{3n}{n-1},\infty})}^{3}.
Thus, letting  R\rightarrow\infty , we conclude that

\displaystyle \int_{\mathbb{R}^{n}}|v(t)|^{2}dx+2\int_{0}^{t}\int_{\mathbb{R}^{n}}|\nabla v|^{2}dxd $\tau$\leq\int_{\mathbb{R}^{n}}|v_{0}|^{2}dx+C_{0}\Vert v\Vert_{L^{3}(0,T;L^{\frac{3n}{n-1},\infty})}^{3}
with some absolute constant C_{0} >0.

This ends a sketch of the proof of Theorem 3.4.

We omit the proof of Corollary 3.3, Corollary 3.5 since they are easy.
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