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1 Introduction

This note presents an improvement of an a priori estimate for positive solutions of the

Lane‐Emden equation, given in many studies. Let us start with a simple introduction

related to this. Let  $\Omega$ be a bounded domain in \mathbb{R}^{n}(n\geq 3) and let $\delta$_{ $\Omega$}(x) denote the usual

distance from a point x to the boundary \partial $\Omega$ of  $\Omega$ . The Lane‐Emden equation is a nonlinear

equation of the form

- $\Delta$ u=|u|^{p-1}u , (1.1)

where  $\Delta$ is the Laplacian on \mathbb{R}^{n} and p>1 . We consider the set \mathscr{U}_{p}( $\Omega$) ofall positive classical

solutions of (1.1) in  $\Omega$ . Let

 Ps:=\displaystyle \frac{n+2}{n-2}.
It is known that if 1<p<p_{S} , then there exists a positive constant C depending only on p

and n such that

u(x)\leq C$\delta$_{ $\Omega$}(x)^{-\frac{2}{p-1}} (1.2)

holds for all  x\in $\Omega$ and  u\in \mathscr{U}_{p}( $\Omega$) . This estimate was utilized in many studies on (1.1). See

Dancer [2] for the Dirichlet problem on exterior domains, Poláčik‐Quittner‐Souplet [6]

for a Liouville type theorem: \mathscr{U}_{p}(\mathbb{R}^{n})=\emptyset , and Serrin‐Zou [7] for -$\Delta$_{q}u=|u|^{p-1}u with $\Delta$_{q}
being the q‐Laplacian on \mathbb{R}^{n} . Note that the exponent‐ \displaystyle \frac{2}{p-1} comes from the scale invariant

property of (1.1): if u\in \mathscr{U}_{p}( $\Omega$) and  $\lambda$>0 , then $\lambda$^{\frac{2}{p-1}}u( $\lambda$ x)\displaystyle \in \mathscr{U}_{p}(\frac{1}{ $\lambda$} $\Omega$) . Then there arises a

natural question whether or not the growth rate in (1.2) is optimal?
To state our main result, we need to prepare some notations. We write a\displaystyle \wedge b:=\min\{a,b\}

and a\displaystyle \vee b:=\max\{a, b\} for a, b\in \mathbb{R} . Let G(x,y) denote the (Dinchlet) Green function on  $\Omega$

for  $\Delta$ . For a fixed  x_{0}\in $\Omega$ , we put

 g(x):=G(x,x_{0})\wedge 1.
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Note that the boundary decay rate of g may vary at each boundary point when \partial $\Omega$ is non‐

smooth, whereas  g(x) is comparable to the distance function $\delta$_{ $\Omega$}(x) when \partial $\Omega$ is smooth.

We prove the following theorem.

Theorem 1.1.  Let $\Omega$ be a bounded Lipschitz domain in \mathbb{R}^{n}(n\geq 3) and let 1<p<p_{S} . Then

there exists a positive constant C depending only on p, n and  $\Omega$ such that every  u\in \mathscr{U}_{p}( $\Omega$)
can be estimated by

u(x)\displaystyle \leq\frac{C}{g(x)$\delta$_{ $\Omega$}(x)^{n-2}\mathrm{v}$\delta$_{ $\Omega$}(x)^{\frac{2}{p-1}}} (1.3)

for all x\in $\Omega$.

Here we give some remarks on the above estimate in a bounded Lipschitz domain  $\Omega$.

For simplicity, we write

p_{ $\alpha$}:=\displaystyle \frac{n+ $\alpha$}{n+ $\alpha$-2}
for  $\alpha$\geq 0.

. The inverse of g(x)$\delta$_{ $\Omega$}(x)^{n-2} is related to the boundary growth of positive harmonic

functions on  $\Omega$ . Indeed, on a nontangential region at  $\xi$\in\partial $\Omega$ , it is comparable to the

Martin (Poisson) kernel at  $\xi$ . See Aikawa [1] and the author [3].

. Let  $\xi$\in\partial $\Omega$ . It is known that there are constants  $\alpha$_{ $\xi$}>0 and C>1 such that

g(x)\displaystyle \geq\frac{1}{C}$\delta$_{ $\Omega$}(x)^{$\alpha$_{ $\xi$}} (1.4)

on a nontangential region at  $\xi$ . Therefore, if  p<p_{$\alpha$_{ $\xi$}} , then

g(x)$\delta$_{ $\Omega$}(x)^{n-2}>$\delta$_{ $\Omega$}(x)^{\frac{2}{p-1}}

on that set near  $\xi$ , which implies that (1.3) improves the earlier one.

\bullet As we see from Theorem 3.1 below, the growth rate in (1.3) is optimal when  1<p<

p_{$\alpha$_{ $\xi$}} (and also when p_{0}<p<p_{S} because it is known that there is a positive solution

of(1.1) in  $\Omega$ behaving like \Vert x- $\xi$\Vert^{-\frac{2}{p-1}} near  $\xi$\in\partial $\Omega$). For  p_{$\alpha$_{ $\xi$}}\leq p\leq p_{0} , we do not know

whether or not (1.3) is optimal.

The plan of this note is as follows. In Section 2, we prove Theorem 1.1 using the global
estimates of the Green function and the Martin kernel, a fundamental pointwise estimate

of the Newton potential of a superharmonic density and some known results in potential
theory. In Section 3, we prove the existence of a positive solution of (1.1) in  $\Omega$ behaving
like the Martin kernel in order to show that the growth rate in (1.3) is optimal. In the final

section, we enumerate some properties one can get from Theorem 1.1.
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2 ProofofTheorem 1.1

In what follows, we suppose that  $\Omega$ is a bounded Lipschitz domain in \mathbb{R}^{n}(n\geq 3) . By the

symbol C , we denote an absolute positive constant whose value may vary at each occur‐

rence. When C depends on some /\mathrm{a}\mathrm{l}1 of the Lipschitz characters, diam  $\Omega$ and  $\delta$_{ $\Omega$}(x_{0}) , we

say that C depends on  $\Omega$ . If necessary, we use  C_{1} , C2, \cdots to specify them.

Let  $\xi$\in\partial $\Omega$ and let  $\beta$>0. A nontangential region at  $\xi$ is defined by

 $\Gamma$_{ $\beta$}( $\xi$):=\{x\in $\Omega$:\Vert x- $\xi$\Vert\leq $\beta \delta$_{ $\Omega$}(x)\}.

This set is nonempty and  $\xi$ is accessible from there whenever  $\beta$ is sufficiently large, say

 $\beta$\geq$\beta$_{ $\Omega$} . Let us recall the global estimates for the Green function G_{ $\Omega$}(x,y) and the Martin

kernel M_{ $\Omega$}(x, $\xi$) at  $\xi$\in\partial $\Omega$ established in [4]. For  x, y\in\overline{ $\Omega$} and C_{1}>1 , we let

\displaystyle \mathscr{R}(x,y) :=\{b\in\overline{ $\Omega$}:\frac{1}{C_{1}}(\Vert x-b\Vert\vee\Vert b-y\Vert)\leq\Vert x-y\Vert\leq C_{1}$\delta$_{ $\Omega$}(b)\}.
It is not difficult to see that \mathscr{R}(x,y) is nonempty for any pair x,y whenever C_{1} is sufficiently
large. Then there exists a constant C>1 depending only on n and  $\Omega$ such that

\displaystyle \frac{1}{C}\frac{g(x)g(y)}{g(b_{xy})^{2}}\Vert x-y\Vert^{2-n}\leq G_{ $\Omega$}(x,y)\leq C\frac{g(x)g(y)}{g(b_{xy})^{2}}\Vert x-y\Vert^{2-n} (2.1)

for all  x,y\in $\Omega$ and  b_{xy}\in \mathscr{R}(x,y) ;

\displaystyle \frac{1}{C}\frac{g(x)}{g(b_{x $\xi$})^{2}}\Vert x- $\xi$\Vert^{2-n}\leq M_{ $\Omega$}(x, $\xi$)\leq C\frac{g(x)}{g(b_{x $\xi$})^{2}}\Vert x- $\xi$\Vert^{2-n} (2.2)

for all  x\in $\Omega$ and  b_{x $\xi$}\in \mathscr{R}(x, $\xi$) . In particular, for each  $\beta$\geq$\beta$_{ $\Omega$} there exists a constant C>1

depending only on  $\beta$, n and  $\Omega$ such that

\displaystyle \frac{1}{C}$\delta$_{ $\Omega$}(x)^{2-n}\leq g(x)M_{ $\Omega$}(x, $\xi$)\leq C$\delta$_{ $\Omega$}(x)^{2-n} (2.3)

for all x\in$\Gamma$_{ $\beta$}( $\xi$) (see [3]). Also, we can see the following fact from the Harnack inequality
and the Carleson estimate for positive harmonic functions:

. There exists a constant C>0 depending only on n and  $\Omega$ such that  g(x)\leq Cg(b) for

any pair x,y\in\overline{ $\Omega$} and b\in \mathscr{R}(x,y) .

Note that this, together with (2.2) and (2.3), yields that

G_{ $\Omega$}(x,y)\displaystyle \leq C\frac{g(y)}{g(x)}\Vert x-y\Vert^{2-n} (2.4)

and

M_{ $\Omega$}(x, $\xi$)\displaystyle \leq\frac{C}{g(x)$\delta$_{ $\Omega$}(x)^{n-2}} (2.5)

for all  x,y\in $\Omega$ . Also, we use the following elementary estimate.
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Lemma 2.1. Let  u be a nonnegative superharmonicfunction on B(x, r) . Then

\displaystyle \int_{B(x,r)}\frac{u(y)}{\Vert x-y\Vert^{n-2}}dy\leq\frac{$\sigma$_{n}}{2}r^{2}u(x) ,
where $\sigma$_{n} is the surface area of the unit sphere in \mathbb{R}^{n}.

Proof. By the polar coordinate representation and the spherical mean value inequality for

superharmonic functions, we have

\displaystyle \int_{B(x,r)}\frac{u(y)}{\Vert x-y\Vert^{n-2}}dy=\int_{0}^{r}\frac{1}{$\rho$^{n-2}}\int_{\partial B(x, $\rho$)}u(y)d $\sigma$(y)d $\rho$
\displaystyle \leq$\sigma$_{n}u(x)\int_{0}^{r} $\rho$ d $\rho$=\frac{$\sigma$_{n}}{2}r^{2}u(x) .

\square 

We are now ready to prove Theorem 1.1.

ProofofTheorem 1.1. Let u\in \mathscr{U}_{p}( $\Omega$) . As stated in the introduction, we note that u satisfies

(1.2). Therefore it satisfies the differential inequality

0\leq- $\Delta$ u(x)\leq C_{2}$\delta$_{ $\Omega$}(x)^{-2}u(x) (2.6)

for all  x\in $\Omega$ , where  C_{2} is a positive constant depending only on p and n . To get (1.3), we

have only to show that there exists a positive constant C depending only on p, n and  $\Omega$

such that

 u(x)\displaystyle \leq\frac{C}{g(x)$\delta$_{ $\Omega$}(x)^{n-2}} (2.7)

holds for all  x\in $\Omega$ . By the Riesz decomposition theorem for nonnegative superharmonic
functions, there exists a nonnegative harmonic function  h on  $\Omega$ such that

 u(x)=h(x)+\displaystyle \int_{ $\Omega$}G_{ $\Omega$}(x,y)(- $\Delta$ u(y))dy (2.8)

for all  x\in $\Omega$ . Moreover, by substituting  x=x_{0} in (2.8), we have

\displaystyle \int_{ $\Omega$}g(y)(- $\Delta$ u(y))dy\leq u(x_{0}) . (2.9)

Let  x\in $\Omega$ and let  j\in \mathbb{N} , which will be chosen later. We write B_{j} :=B(x,$\delta$_{ $\Omega$}(x)/2^{j}) for sim‐

plicity. By (2.4), we have

G_{ $\Omega$}(x,y)\displaystyle \leq\frac{2^{j(n-2)}C}{g(x)$\delta$_{ $\Omega$}(x)^{n-2}}g(y)
for all y\in $\Omega$\backslash B_{j} . Therefore, by (2.9),

\displaystyle \int_{ $\Omega$\backslash B_{j}}G_{ $\Omega$}(x,y)(- $\Delta$ u(y))dy\leq\frac{2^{j(n-2)}C}{g(x)$\delta$_{ $\Omega$}(x)^{n-2}}u(x_{0}) .
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Since G_{ $\Omega$}(x,y)\leq C\Vert x-y\Vert^{2-n} and u is superharmonic on  $\Omega$ , it follows from (2.6) and Lemma

2.1 that

\displaystyle \int_{B_{j}}G_{ $\Omega$}(x,y)(- $\Delta$ u(y))dy\leq\frac{C}{$\delta$_{ $\Omega$}(x)^{2}}\int_{B_{j}}\frac{u(y)}{\Vert x-y\Vert^{n-2}}dy\leq\frac{C_{3}}{2^{2j}}u(x) ,
where C3 depends only on p, n and  $\Omega$ . Moreover, by the Martin integral representation of

 h and (2.5), we get

h(x)\displaystyle \leq\frac{C}{g(x)$\delta$_{ $\Omega$}(x)^{n-2}}h(x_{0})\leq\frac{C}{g(x)$\delta$_{ $\Omega$}(x)^{n-2}}u(x_{0}) .

These estimates and (2.8) yield that

u(x)\displaystyle \leq\frac{2^{j(n-2)}C}{g(x)$\delta$_{ $\Omega$}(x)^{n-2}}u(x_{0})+\frac{C_{3}}{2^{2j}}u(x) .
Since u(x_{0})\leq C by (1.2), we can obtain (2.7) by choosing j such that C_{3}/2^{2j}\leq 1/2. \square 

3 Optimalityofour estimate

The following theorem shows that the growth rate in (1.2) is optimal.

Theorem 3.1. Let 1<p<p_{$\alpha$_{ $\xi$}} , where a_{ $\xi$} is the constant in (1.4). Then there exists a positive
number $\lambda$_{1} such thatfor any $\lambda$\in(0,$\lambda$_{1} ], there exists a positive classical solution u of(1.1) in

 $\Omega$ such that

\displaystyle \frac{ $\lambda$}{2}M_{ $\Omega$}(x, $\xi$)\leq u(x)\leq\frac{3 $\lambda$}{2}M_{ $\Omega$}(x, $\xi$) (3.1)

for all x\in $\Omega$.

To show this, we apply the Banach fixed point theorem to the following function class

and operator. Let  $\lambda$>0 . We consider the closed set

W_{ $\lambda$}:= { w\displaystyle \in C( $\Omega$):\frac{ $\lambda$}{2}\leq w(x)\leq\frac{3 $\lambda$}{2} for  x\in $\Omega$ }
in the Banach space (BC( $\Omega$), \Vert\cdot\Vert_{\infty}) , the set of all bounded continuous functions on  $\Omega$

equipped with the uniform norm, and the operator \mathscr{T}_{ $\lambda$} on W_{ $\lambda$} defined by

J_{ $\lambda$}^{ $\sigma$-}[w](x):= $\lambda$+\displaystyle \frac{1}{M_{ $\Omega$}(x, $\xi$)}\int_{ $\Omega$}G_{ $\Omega$}(x,y)(w(y)M_{ $\Omega$}(y, $\xi$))^{p}dy
for  x\in $\Omega$ . Using (2.1) and (2.2), we can show that if  1<p<p_{$\alpha$_{ $\zeta$}} , then

A:=\displaystyle \sup_{x\in $\Omega$}\frac{1}{M_{ $\Omega$}(x, $\xi$)}\int_{ $\Omega$}G_{ $\Omega$}(x,y)M_{ $\Omega$}(y, $\xi$)^{p}dy
is finite. See [5] for details.
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Lemma 3.2. T_{ $\lambda$}(W_{ $\lambda$})\subset W_{ $\lambda$} whenever  $\lambda$ is sufficiently small.

Proof. Let  w\in W_{ $\lambda$} . Since p>1 , we get

\displaystyle \frac{ $\lambda$}{2}\leq $\lambda$-A(\frac{3 $\lambda$}{2})^{p}\leq J_{ $\lambda$}^{ $\sigma$-}[w](x)\leq $\lambda$+A(\frac{3 $\lambda$}{2})^{p}\leq\frac{3 $\lambda$}{2}
for all  x\in $\Omega$ , whenever  $\lambda$ is sufficiently small. Since (w(y)M_{ $\Omega$}(y, $\xi$))^{p} is locally bounded on

 $\Omega$ , the classical result shows that the Green potential of that density is continuous on  $\Omega$,

and so is J_{ $\lambda$}[w] . Hence J_{ $\lambda$}^{ $\sigma$-}[w]\in W_{ $\lambda$}. \square 

Lemma3.3. T_{ $\lambda$}:W_{ $\lambda$}\rightarrow W_{ $\lambda$} is a contraction mapping whenever  $\lambda$ is sufficiently small.

Proof. Let  w_{1}, w_{2}\in W_{ $\lambda$} . For  x\in $\Omega$ , we get

|J_{ $\lambda$}^{-} $\sigma$[w_{1}](x)-T_{ $\lambda$}[w_{2}](x)|\displaystyle \leq\int_{ $\Omega$}\frac{G_{ $\Omega$}(x,y)M_{ $\Omega$}(y, $\xi$)^{p}}{M_{ $\Omega$}(x, $\xi$)}|w_{1}(y)^{p}-w_{2}(y)^{p}|dy
\leq A\Vert w_{1}^{p}-w_{2}^{p}\Vert_{\infty}.

Since

\displaystyle \Vert w_{1}^{p}-w_{2}^{p}\Vert_{\infty}\leq p(\frac{3 $\lambda$}{2})^{p-1}\Vert w_{1}-w_{2}\Vert_{\infty}
by the mean value theorem, we can obtain

|\displaystyle \mathscr{T}_{ $\lambda$}[w_{1}](x)-\mathscr{T}_{ $\lambda$}[w_{2}](x)|\leq\frac{1}{2}\Vert w_{1}-w_{2}\Vert_{\infty}
for all  x\in $\Omega$ , whenever  $\lambda$ is small enough. Thus the lemma follows. \square 

ProofofTheorem 3.1. By the Banach fixed point theorem, there exists a unique w_{0}\in W_{ $\lambda$}
such that \mathscr{T}_{ $\lambda$}[w_{0}]=w_{0} on  $\Omega$ . Letting  u(x):=w_{0}(x)M_{ $\Omega$}(x, $\xi$) , we have

u(x)= $\lambda$ M_{ $\Omega$}(x, $\xi$)+\displaystyle \int_{ $\Omega$}G_{ $\Omega$}(x,y)u(y)^{p}dy
for all  x\in $\Omega$ . Also, (3.1) holds. Since  u is locally bounded on  $\Omega$ , the classical regularity
theorem shows that  u\in C^{2}( $\Omega$) . Hence u is a positive classical solution of(1.1) in  $\Omega$. \square 

4 Remark

Theorem 1.1 has important and wide applications. Indeed, with the help of some results

in potential theory, one can get

\bullet a strong Harnack inequality: for each small  0< $\kappa$\ll 1 , there exists a constant c(K)

depending only on K, p and n such that u(x)\leq c( $\kappa$)u(y) for all u\in \mathscr{U}_{p}( $\Omega$) and any

pair  x,y\in $\Omega$ satisfying \Vert x-y\Vert\leq $\kappa \delta$_{ $\Omega$}(x) . Moreover, c( $\kappa$) enjoys c( $\kappa$)\geq 1 and c(K)\rightarrow 1

as  $\kappa$\rightarrow 0+ ;
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\bullet the existence of nontangential limits of  u\in \mathscr{U}_{p}( $\Omega$) and the ratio ulM_{ $\Omega$}(\cdot, $\xi$) ;

\bullet a Harnack convergence theorem: any sequence in \mathscr{U}_{p}( $\Omega$) has a subsequence which

converges uniformly to a function in \mathscr{U}_{p}( $\Omega$)\cup\{0\} on each compact subset of  $\Omega$.

\bullet the existence and nonexistence of a positive classical solution of

\left\{\begin{array}{l}
- $\Delta$ u=u^{p}\\
u= $\lambda \delta$_{ $\xi$}
\end{array}\right. \mathrm{i}\mathrm{n} $\Omega$ \mathrm{o}\mathrm{n}\partial $\Omega$ , (4.1)

where  $\lambda$>0 and $\delta$_{ $\xi$} is the Dirac measure concentrated at  $\xi$\in\partial $\Omega$ . Indeed, we can

find a critical number  $\lambda$^{*} such that if  $\lambda$\leq$\lambda$^{*}, then (4.1) has a positive solution, but if

 $\lambda$>$\lambda$^{*} , then (4.1) has no positive solution.

These results and their proofs can be found in [5].
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