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Abstract

In [FL88], Foreman and Laver proved, assuming the existence of a huge cardinal

the consistency of the transfer property of maximal chromatic number from \aleph_{2} to

\aleph_{1} . We combine this result with another result by Baumgartner [Bau84] to prove,

also assuming the existence of a huge cardinal, that such a transfer property from

\aleph_{2} to \aleph_{1} does not follow from the transfer property from \aleph_{3} to \aleph_{1}.

1 Introduction

By using a technique created by Kunen [Kun78], Foreman and Laver constructed

in [FL88] a model of set theory with some nice reflection properties on \aleph_{2} . One of those

properties is related with the maximality of the chromatic number of graphs.
Recall the definition of the chromatic number of a graph:

Definition 1.1. Given a graph \mathcal{G}=\langle X, E ) (X is the set of vertices and  E\subset [X]^{2} is the

set of edges), we say that a function f with domain X is a good coloring of \mathcal{G} if for every

edge \{a, b\}\in E we have f(a)\neq f(b) .

The chromatic number of the graph \mathcal{G} , denoted by \mathrm{C}\mathrm{h}\mathrm{r}(\mathcal{G}) , is the minimal cardinal  $\rho$

such that there exists a good coloring  f:X\rightarrow $\rho$.
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A feature of the model by Foreman and Laver is that every graph of size (i.e. number

of vertices) and chromatic number \aleph_{2} has a subgraph of size and chromatic number \aleph_{1} in

the model. Since the chromatic number of a graph is at most the size of the same graph,
this property can be interpreted as the maximality of the chromatic number of graphs is

always transferred from graphs of size \aleph_{2} to a subgraph of size \aleph_{1} . In more general terms,
we shall refer to such property as follows:

Definition 1.2. Given two cardinals  $\gamma$< $\delta$ , we denote by \mathrm{R}_{\mathrm{C}\mathrm{h}\mathrm{r}}( $\delta$,  $\gamma$) the following state‐

ment:  $\iota$ Any graph G of size and chromatic number  $\delta$ has a subgraph of size and chromatic

number  $\gamma$
�

With this notation, the result by Foreman and Laver can be stated as: if the existence

of a huge cardinal is consistent, then so is \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{2}, \aleph_{1}) . As claimed in the original article,
this result is easily generalizable by changing \aleph_{2} and \aleph_{1} for \aleph_{m} and \aleph_{n} respectively, with

n < m <  $\omega$.

By definition 1.2, it is clear that, \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{3}, \aleph_{2}) together with \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{2}, \aleph_{1}) implies
\mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{3}, \aleph_{1}) . From this fact arises the question of whether the converse holds. In this

paper, we shall prove that, if the existence of a huge cardinal is consistent, the answer

to such question is negative. We accomplish this by combining the previous result by
Foreman and Laver with a result by Baumgartner in [Bau84] and obtaining the following
theorem:

Theorem 1.3. Suppose there exists a huge cardinal. Then there exists a forcing extension

of V which satisfies simultaneously \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{3}, \aleph_{1}) and \neg \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{2}, \aleph_{1}) .

The goal of this paper is to present a proof of theorem 1.3. We also present a slight
generalization of it (theorem 4.2).

1.1 Definitions and preliminaries
Definition 1.4. For regular cardinals  $\gamma$ <  $\delta$

, define the Silver collapse \mathrm{S}( $\gamma$,  $\delta$) as the

poset consisting of all partial functions p from  $\gamma$\times $\delta$ to  $\delta$ satisfying the following: |p|\leq $\gamma$ ;
\exists $\eta$< $\gamma$(\mathrm{d}\mathrm{o}\mathrm{m}(p)\subset $\eta$\times $\delta$)_{f}. and \forall\langle $\alpha$,  $\beta$\rangle\in \mathrm{d}\mathrm{o}\mathrm{m}(p)(p( $\alpha$,  $\beta$)=0\vee p( $\alpha$,  $\beta$)\in $\beta$) .

Definition 1.5. Given a poset \mathbb{Q} and a set of conditions S\subseteq \mathbb{Q} , we define the quotient

\mathbb{Q}/S= { q\in \mathbb{Q} : q is compatible with every s\in S}
ordered by\leq \mathbb{Q}/s:=\leq_{\mathbb{Q}}\cap(\mathbb{Q}/S\times \mathbb{Q}/S) .

Fact 1.6. If \mathbb{Q}<\mathbb{P} and  G_{\mathbb{Q}}\sim is the usual \mathbb{Q} ‐name for a generic, then \mathbb{P}\approx \mathbb{Q}*(\mathbb{P}/G_{\mathbb{Q}})\sim.
We now want to define the concept of a termspace. For that, we need the followin \mathrm{g}

remark.

Remark 1.7. We say that a \mathbb{Q} ‐name \sim t has minimal rank if for any \mathbb{Q} ‐name \sim t which

is forcing equivalent tot\sim, i.e. |\vdash_{\mathbb{Q}}t\sim=\sim t'
�

, we have rank(t) \leq rank (t') . From the well

known fact 1.8, it is standard to show that for any \mathbb{Q} ‐name  X\sim we have that

{  t\in V^{\mathbb{Q}} : |\vdash_{\mathbb{Q}}t\in X\sim`' and t has minimal rank}

is a set.
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Fact 1.8. Let \mathbb{Q} be a poset. Suppose x\sim is a \mathbb{Q} ‐name and  $\chi$ is a large enough regular
cardinal such that |\vdash  x\sim \in  H(\check{ $\chi$})

�

Then there exists a \mathbb{Q}‐name  x'\sim \in  H( $\chi$) which is

forcing equivalent to\sim x.

We can now define the termspace of a name for a poset.

Definition 1.9. Suppose \mathbb{Q} is a poset and  $\Gamma$\sim is a \mathbb{Q} ‐name for a poset. We define \overline{ $\Gamma$}^{\mathbb{Q}} the

termspace for  $\Gamma$\sim (with respect to \mathbb{Q}) as the quotient by the forcing equivalence relation of
the set

{ t\in V^{\mathbb{Q}} : |\vdash_{\mathrm{Q}}t\in $\Gamma$\sim
� and  t has minimal rank}

ordered by

 t_{1}\leq_{\mathbb{Q}}t_{2}\Leftrightarrow |\vdash_{\mathbb{Q}}t_{1}\leq_{ $\Gamma$}t_{2}\sim\sim\sim
�

where \sim t_{1} and\sim t_{2} are representatives of the classes t_{1} and t_{2} respectively.

Notice that we shall omit the superscript \mathbb{Q} when it is clear by the context. Also, we

shall make no difference of between the class and the representative when the distinction

is clear by the context.

Proposition 1.10. Suppose \mathbb{Q} is a poset of regular size  $\delta$ and  $\Gamma$\sim is a \mathbb{Q} ‐name for a poset

such that |\vdash_{\mathbb{Q}}(| $\Gamma$|\sim=|\check{ $\kappa$}| for some regular cardinal  $\kappa$ . Then the termspace \overline{ $\Gamma$}^{\mathbb{Q}} has size

\leq$\kappa$^{ $\delta$}.

Definition 1.11. Let  $\delta$ be a cardinal. We say that a poset \mathbb{Q} is  $\delta$ ‐centered if there exists

a function  f : \mathbb{Q} \rightarrow  $\delta$ such that for every  $\alpha$ <  $\delta$
, each finite subset of  f^{-1}(\{ $\alpha$\}) has a

common extension in \mathbb{Q} (we call such function f a  $\delta$ ‐centering of \mathbb{Q}). Alternatively, if \mathbb{Q}
can be partitioned  into\leq $\delta$ many centered (in \mathbb{Q}) subsets.

Fact 1.12. Suppose j : V\rightarrow M is an elementary embedding and \mathbb{Q} a forcing poset in

V and G a(V, \mathbb{Q}) ‐generic filter. If there exists some (M,j(\mathbb{Q})) ‐generic filter \hat{G} such that

j''G\subset\hat{G} , then we can extend j to an elementary embedding j' : V[G]\rightarrow M[\hat{G}].
Notation 1.13. Given two names \sim a, \sim b, we denote by \mathrm{o}\mathrm{p}(ab)\sim,\sim

the canonical name such

that |\vdash \mathrm{o}\mathrm{p}(ab)\sim,\sim=\langle a\sim, \sim b\rangle
�

2 The partial orders

We shall construct 3 posets: \mathbb{P}, \mathbb{R}($\kappa$^{+},  $\lambda$) and]Đ. Our final poset, which shall force the

main result (theorem 1.3), will be the two step iteration \mathbb{P}* (\mathbb{R}($\kappa$^{+},  $\lambda$)\sim \times \mathrm{B}\sim) .
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2.1 Baumgartner�s Poset and the \mathbb{R} collapse
Let \mathrm{B} be the poset defined in [Bau84]. For a transitive model W of ZFC, we denote

by \mathrm{B}^{W} the poset constructed in W with the relative definition. We can summarize the

features of \mathrm{B} in the following theorem (also from [Bau84]):

Theorem 2.1 (Baumgartner). Assume CH. Then there exists a partial order \mathrm{B} which

forces \neg \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{2}, \aleph_{1}) and has the following properties:

\bullet |\mathrm{B}|=\aleph_{2}, \mathrm{B} is  $\sigma$ ‐closed and preserves cardinals;

\bullet If  W_{1}, W_{2} are transitive models of ZFC such that$\omega$_{1}, $\omega$_{2} and \mathrm{O}\mathrm{n}^{ $\omega$} are absolute between

them, then \mathrm{B}^{W_{1}} =\mathrm{B}^{W_{2}}.

Now we present the collapse \mathbb{R}( $\gamma$,  $\delta$) , a modification of the Silver collapse (defini‐
tion 1.4) introduced by Foreman and Laver in [FL88]. Notice that the notation used here

is just slightly different from the original.

Definition 2.2. For any regular  $\gamma$,  $\delta$ with  $\gamma$< $\delta$ , we define recursively the collapse \mathbb{R}( $\gamma$,  $\delta$)

\bullet First, let \mathbb{R}^{0}( $\gamma$,  $\delta$)=\mathrm{S}( $\gamma$,  $\delta$) .

\bullet Assuming \mathbb{R}^{n}( $\beta$,  $\delta$) constructed for some n\geq 0 and for all regular  $\beta$ with  $\gamma$\leq $\beta$< $\delta$,
let

\displaystyle \mathbb{R}^{n+1}( $\gamma$,  $\delta$)=\prod_{ $\beta$\in[ $\gamma,\ \delta$)\cap \mathrm{R}\mathrm{E}\mathrm{G}}^{\leq $\gamma$}\mathbb{R}^{n}( $\beta$,  $\delta$)
where the superscript \leq $\gamma$ indicates the size of the support and REG is the class of
all regular cardinals.

\bullet Finally, define

\displaystyle \mathbb{R}( $\gamma$,  $\delta$)=\prod_{n\in $\omega$}\mathbb{R}^{n}( $\gamma$,  $\delta$)
Lemma 2.3. For regular  $\gamma$,  $\delta$ , there is a meet operation \wedge in \mathbb{R}( $\gamma$,  $\delta$) which assigns a

greatest lower bound to any collection of<  $\gamma$ many pairwise compatible conditions in

\mathbb{R}( $\gamma$,  $\delta$) .

Proof. We define recursively a function \wedge on subsets of the collapse \mathbb{R}^{n}( $\gamma$,  $\delta$) , for any
suitable  $\gamma$,  $\delta$.

\bullet For  n=0 , for S\in[\mathbb{R}^{0}( $\gamma$,  $\delta$)]^{< $\gamma$} , define \wedge S=\cup S.
Clearly, if S is pairwise compatible, \wedge S is indeed a condition in \mathbb{R}^{0}( $\gamma$,  $\delta$) and it is

a greatest lower bound of S.

\bullet suppose \wedge defined on \mathbb{R}^{n}( $\beta$,  $\delta$) for every suitable  $\gamma$\leq $\beta$\leq $\delta$ . For  S\in [\mathbb{R}^{n+1}( $\gamma$,  $\delta$)]^{< $\gamma$}
pairwise compatible, define

\wedge S=\langle\wedge S_{ $\beta$} :  $\gamma$\leq $\beta$< $\delta$,  $\beta$ \mathrm{r}\mathrm{e}\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r}\rangle

where  S_{ $\beta$} :=\{s( $\beta$) : s\in S\}.
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By induction hypothesis, we have that each \wedge S_{ $\beta$} \in \mathbb{R}^{n}( $\beta$,  $\gamma$) is a greatest lower

bound of S_{ $\beta$} . Since \displaystyle \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\wedge S)=\bigcup_{s\in S}\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(s) and |S| < $\gamma$ , clearly |\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\wedge S)|\leq $\gamma$,
so indeed \wedge S\in \mathbb{R}^{n+1}( $\gamma$,  $\delta$) . It is also clear that \wedge S is a lower bound of S.

Furthermore, suppose q\in \mathbb{R}^{n+1}( $\gamma$,  $\delta$) is a lower bound of S . Clearly for each  $\beta$ we

have that  q( $\beta$) is a lower bound for S_{ $\beta$} , so by induction hypothesis, q( $\beta$) \leq \wedge S_{ $\beta$},
hence q\leq\wedge S.

\bullet finally, for  S\in[\mathbb{R}( $\gamma$,  $\delta$)]^{< $\gamma$} pairwise compatible, define

\wedge S=\langle\wedge S_{n} :  n\in $\omega$\rangle

where  S_{n} := \{s(n) : s \in S\} . By the same argument on the previous item (with
no need to care about the support), we have that \wedge S\in \mathbb{R}( $\gamma$,  $\beta$) is a greatest lower

bound of S.

\square 

We will use a generalized version of the  $\Delta$‐system lemma, whose proof can be found

for example in [Kunll].

Lemma 2.4 (  $\Delta$‐system lemma). Let  $\gamma$< $\delta$ be infinite regular cardinals such that  $\alpha$^{< $\gamma$}< $\delta$

for all  $\alpha$ <  $\delta$ . Then for any family \langle A_{ $\alpha$} :  $\alpha$ <  $\delta$ } with |A_{ $\alpha$}| <  $\gamma$ ( $\alpha$ <  $\delta$) there is some

B \subset  $\delta$ such that  B is stationary (hence |B| =  $\delta$) such that (A_{ $\alpha$} :  $\alpha$ \in  B } forms a

 $\Delta$ ‐systemf i. e., there is a set  R such that A_{ $\alpha$}\cap A_{ $\beta$}=R for any distinct  $\alpha$,  $\beta$\in B.

The proof of the following result is by Philipp Lücke [Li6]:

Lemma 2.5. Let  $\delta$ be a weakly compact cardinal and  $\gamma$< $\delta$ . For each  $\alpha$< $\delta$ , let  P_{ $\alpha$} be a

 $\delta$-cc forcing poset. Then  the\leq $\gamma$ ‐support product  P :=\displaystyle \prod_{ $\alpha$< $\delta$}^{\leq $\gamma$}P_{ $\alpha$} is  $\delta$ ‐Knaster.

Proof. Let \langle p_{ $\xi$} :  $\xi$< $\delta$\rangle be a sequence of conditions in  P . Since  $\delta$ is inaccessible,  $\gamma$^{+} and

 $\delta$ satisfy the hypothesis of lemma 2.4, so we can assume w.l.  0.\mathrm{g} . that \{\mathrm{d}\mathrm{o}\mathrm{m}(p_{ $\xi$}) :  $\xi$< $\delta$ )
forms a  $\Delta$‐system with root  R\subset $\delta$, |R|\leq $\gamma$.

Define f:[ $\gamma$]^{2}\rightarrow R\cup\{ $\delta$\} by:

f(\{ $\xi$,  $\xi$ =\left\{\begin{array}{l}
\min\{ $\alpha$\in R : p_{ $\xi$}( $\alpha$)\perp_{P_{ $\alpha$}}p_{$\xi$'}( $\alpha$)\} \mathrm{i}\mathrm{f} \mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h} \mathrm{s}\mathrm{e}\mathrm{t} \mathrm{i}\mathrm{s} \mathrm{n}\mathrm{o}\mathrm{t} \mathrm{e}\mathrm{m}\mathrm{p}\mathrm{t}\mathrm{y}\\
 $\delta$ \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}
\end{array}\right.
Since  $\delta$ is a weakly compact cardinal, using the arrow notation from Ramsey theory,

we have  $\delta$ \rightarrow ( $\delta$)_{|R|}^{2} . Therefore, there is a set H \in [ $\delta$]^{ $\delta$} such that f''[H]^{2} = \{ $\beta$\} ,
for

some  $\beta$\in R\cup\{ $\delta$\} . Since each P_{ $\alpha$} is  $\delta$-\mathrm{c}\mathrm{c}
, we must have  $\beta$= $\delta$ . Notice that this implies

that ( $\gamma$ 0_{ $\xi$} :  $\xi$\in H } is pairwise compatible, because if there were  $\xi$, $\xi$'\in H with p_{ $\xi$} and p_{$\xi$'}
incompatible, there would be some  $\alpha$ in the root  R witnessing it. \square 

Lemma 2.6. Let  $\gamma$< $\delta$ , both regular cardinals. Then \mathbb{R}( $\gamma$,  $\delta$)  is< $\gamma$‐closed. Also, if  $\delta$ is

weakly compact, then it is  $\delta$‐Knaster.

Proof. Lemma 2.3 clearly imply that \mathbb{R}( $\gamma$,  $\delta$) is < $\gamma$‐closed.

Suppose  $\delta$ is weakly compact. The  $\delta$‐Knaster property follows from lemma 2.5 and

the following claim:
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Claim 2.7. For every  n\in $\omega$ and every regular  $\gamma$< $\delta$, \mathbb{R}^{n}( $\gamma$,  $\delta$) is  $\delta$ ‐Knaster.

Proof of claim 2.7. We proceed by induction on  n . For n=0 , we have \mathbb{R}^{0}( $\gamma$,  $\delta$)=\mathrm{S}( $\gamma$,  $\delta$) .

Notice that \mathrm{S}( $\gamma$,  $\delta$) can alternatively described as the product of \langle Co1 ( $\beta$, \{ $\delta$\}) :  $\gamma$\leq $\beta$< $\delta$\rangle
with bounded support of size \leq  $\gamma$ . Since Co1 ( $\beta$, \{ $\delta$\}) has size  $\beta$ <  $\gamma$ , it is  $\delta$‐Knaster.

Notice also that the proof of lemma 2.5 also holds in this case with the bounded support,
so \mathbb{R}^{0}( $\gamma$,  $\delta$) is  $\delta$‐Knaster.

The successor step follows directely from the induction hypothesis together with

lemma 2.5. \square 

\square 

2.2 Kunen�s universal collapse \mathbb{P}

Now, we are going to construct \mathbb{P} using the notation by Cox in [Cox15]. This kind

of construction was originally done by Kunen in [Kun78], where he refers to posets with

such kind of property as universal collapses.
We will define recursively a sequence \{\mathbb{P}_{ $\alpha$} :  $\alpha$ \leq  $\kappa$ ) of posets, and our \mathbb{P} will be \mathbb{P}_{ $\kappa$}.

This is a slight modification of the usual concept of iteration; Cox calls it \mathrm{a} (finite support)
universal Kunen iteration.

Define:

\bullet \mathbb{P}_{0}=\mathrm{S}( $\omega$,  $\kappa$) .

\bullet Suppose \mathbb{P}_{ $\alpha$} constructed. Suppose B_{ $\alpha$} := \mathbb{P}_{ $\alpha$}\cap V_{ $\alpha$} is a regular suborder of \mathbb{P}_{ $\alpha$},
|\vdash B_{ $\alpha$}

�

 $\alpha$=$\omega$_{1}
�

and  $\alpha$ is an inaccessible cardinal. In this case, we call  $\alpha$ an active

stage. Let \mathbb{Q}_{ $\alpha$}\sim be a  B_{ $\alpha$} ‐name for \mathbb{R}($\alpha$^{+},  $\kappa$) \times \mathrm{B} and define \mathbb{P}_{ $\alpha$+1} as the set of all

partial functions f on  $\alpha$+1 such that:

- f\mathrm{t}_{ $\alpha$}\in \mathbb{P}_{ $\alpha$}
‐ if  $\alpha$\in \mathrm{d}\mathrm{o}\mathrm{m}(f) , then f( $\alpha$) is a B_{ $\alpha$} ‐name of minimal rank such that

|\vdash B_{ $\alpha$}f( $\alpha$)\in \mathbb{Q}_{ $\alpha$}\sim,,

and the order on \mathbb{P}_{ $\alpha$+1} is given by: f_{1}\leq f_{2} if and only if

 f_{1}[ $\alpha$\leq f_{2}[ $\alpha$\wedge $\alpha$\in \mathrm{d}\mathrm{o}\mathrm{m}(f_{2})\rightarrow( $\alpha$\in \mathrm{d}\mathrm{o}\mathrm{m}(f_{1})\wedge
 f_{1}\mathrm{r}_{ $\alpha$}|\vdash_{$\Gamma$_{ $\alpha$}} V[G_{\mathbb{P}_{ $\alpha$}}\cap V_{ $\alpha$}]\sim \models f_{1}( $\alpha$)[G_{\mathbb{P}_{ $\alpha$}}\cap V_{ $\alpha$}]\sim\leq f_{2}( $\alpha$)[G_{\mathbb{P}_{ $\alpha$}}\cap V_{ $\alpha$}]\sim

where  G_{\mathbb{P}_{ $\alpha$}}\sim denotes the canonical \mathbb{P}_{ $\alpha$} ‐name for a generic;

\bullet otherwise, we call  $\alpha$ a passive stage and let \mathbb{P}_{ $\alpha$+1}=\mathbb{P}_{ $\alpha$} ;

\bullet for limit ordinals  $\delta$\leq $\kappa$ , let \displaystyle \mathbb{P}_{ $\delta$}=\bigcup_{ $\alpha$< $\delta$}\mathbb{P}_{ $\alpha$} with the order induced by the \mathbb{P}_{ $\alpha$}' \mathrm{s}.

Remark 2.8. Notice that the conditions on each step have finite support. Also, as in

1.7, the requirement that each f( $\alpha$) is chosen with minimal rank guarantees that \mathbb{P}_{ $\alpha$+1} is

indeed a set.
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Lemma 2.9. Suppose  $\kappa$ is a regular cardinal and \langle \mathbb{P}_{ $\alpha$} :  $\alpha$\leq $\kappa$\rangle, \mathbb{P} :=\mathbb{P}_{ $\kappa$} , is a universal

collapse like constructed above. Then:

(1) \mathbb{P}\subset V_{ $\kappa$} ;

(2) \mathbb{P} is  $\kappa$-cc;

(3) |\mathbb{P}|\leq$\kappa$_{f}.

(4) if j : V\rightarrow M is an elementary embedding with critical point  $\kappa$ , then there exists a

regular embedding  h : \mathbb{P}* (\mathbb{R}($\kappa$^{+},  $\lambda$)\sim \times \mathrm{B}\sim) \rightarrow j(\mathbb{P}) extending j\lceil \mathbb{P}.

Proof. We start by proving item (1). We show by induction on  $\alpha$ \leq  $\kappa$ that \mathbb{P}_{ $\alpha$} \subset  V_{ $\kappa$}.
The limit step clearly holds, so we just need to prove the successor step. Suppose that

\mathbb{P}_{ $\alpha$}\subset V_{ $\kappa$} for some active stage  $\alpha$< $\kappa$ and let  f\in \mathbb{P}_{ $\alpha$+1} . By the induction hypothesis, we

have f\mathrm{r}_{ $\alpha$}\in \mathbb{P}_{ $\alpha$}\subset V_{ $\kappa$} , so it is enough to show that f( $\alpha$)\in V_{ $\kappa$}.
Notice that, under CH, since |\mathrm{B}| =\aleph_{2} we can assume wlog that \mathrm{B}\subset V_{\mathrm{N}_{2}} . Therefore,

by a direct calculation, we have that \mathbb{R}(\aleph_{2},  $\kappa$)\times \mathrm{B}\subset V_{ $\kappa$} . Thus, we have

|\vdash B_{ $\alpha$}\mathbb{Q}_{ $\alpha$}\subset V_{\check{ $\kappa$}}\sim
�

So by fact 1.8 and the requirement of the minimum rank on the definition of \mathbb{P}_{ $\alpha$+1} , we

have that f( $\alpha$)\in V_{ $\kappa$}.
For item (2), we prove by induction on  $\alpha$\leq  $\kappa$ that \mathbb{P}_{ $\alpha$} is  $\kappa$-\mathrm{c}\mathrm{c} . Since we are working

with a finite support iteration, at limit steps we can use a simple delta system argument
(the same used for proving that finite support iteration preserves  $\kappa$-\mathrm{c}\mathrm{c} ). So we just need

to prove the result for each active stage. In order to prove that, we use the following
claim:

Claim 2.10. At each active stage  $\alpha$< $\kappa$, \mathbb{P}_{ $\alpha$+1}\approx B_{ $\alpha$}*(\mathbb{Q}_{ $\alpha$}\sim\times\check{\mathbb{P}}_{ $\alpha$}/G_{B_{ $\alpha$} ,\sim}) .

The proof of claim 2.10 is straightforward and we omit it. It follows from the claim

that it is enough to show that B_{ $\alpha$} is  $\kappa$-\mathrm{c}\mathrm{c} and that the trivial condition on B_{ $\alpha$} forces

\mathbb{Q}_{ $\alpha$}\sim\times\check{\mathbb{P}}_{ $\alpha$}/G_{B_{ $\alpha$} ,\sim} to be  $\kappa$-\mathrm{c}\mathrm{c} . By the induction hypothesis and since B_{ $\alpha$}<\mathbb{P}_{ $\alpha$} , we have that

both B_{ $\alpha$} and any quotient \mathbb{P}_{ $\alpha$}/G_{B_{ $\alpha$}} are  $\kappa$-\mathrm{c}\mathrm{c} . So it is enough to show that \mathbb{Q}_{ $\alpha$}\sim is forced to

be  $\kappa$‐Knaster.

By definition, we have |\vdash B_{ $\alpha$}
��

\mathbb{Q}_{ $\alpha$}\sim = \mathbb{R}($\alpha$^{+},  $\kappa$)\sim \times \mathrm{B}\sim
�

By lemma 2.6, we have that

\mathbb{R}($\alpha$^{+},  $\kappa$) is  $\kappa$‐Knaster. Also, since  $\alpha$ is an active step, we have that |\vdash B_{ $\alpha$}
�

 $\alpha$=$\omega$_{1}
� and

|\mathrm{B}|=\aleph_{2} , and hence we have

|\vdash_{B_{ $\alpha$}} |\mathrm{B}|=\aleph_{2}=$\alpha$^{+}\sim< $\kappa$
�

Therefore, \mathrm{B}\sim is forced to be vacuously  $\kappa$‐Knaster, thus concluding the proof of item (2).
For item (3), notice that since  $\kappa$ is inaccessible, we have |V_{ $\kappa$}| = $\kappa$ , thus item (3) follows

from item (1).
For item (4), since \mathbb{P} is  $\kappa$-\mathrm{c}\mathrm{c} (item (2)) and \mathbb{P}\subset V_{ $\kappa$} (item (1)), we have that j\mathrm{r}\mathbb{P}=\mathrm{i}\mathrm{d}_{\mathbb{P}}

is a regular embedding from \mathbb{P} into j(\mathbb{P}) . Notice also that j(\mathbb{P})\cap V_{ $\kappa$}=\mathbb{P} . By elementarity,
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we have that j (\langle \mathbb{P}_{ $\alpha$} :  $\alpha$\leq  $\kappa$\}) is a finite support Kunen universal iteration of length  $\lambda$,
denoted by \langle j(\mathbb{P})_{ $\beta$} :  $\beta$ \leq  $\lambda$\rangle , and that  j(\mathbb{P})_{ $\alpha$} = j(\mathbb{P}_{ $\alpha$}) for  $\alpha$ \leq  $\kappa$ . So we can conclude

that  $\kappa$ is an active stage of the iteration \langle j(\mathbb{P})_{ $\beta$} :  $\beta$\leq $\lambda$\rangle . Then, by the definition of the

iteration, we have a natural correspondence  h:\mathbb{P}*(\mathbb{R}($\kappa$^{+},  $\lambda$)\sim\times \mathrm{B})\sim\rightarrow j(\mathbb{P})_{ $\kappa$+1} . Similarly

to an usual iteration, we can straightforwardly show that j(\mathbb{P})_{ $\kappa$+1}\ll j(\mathbb{P}) , so we conclude

that h is the desired regular embedding. \square 

Remark 2.11. Notice also that each \mathbb{P}_{ $\alpha$} for  $\alpha$\leq $\kappa$ and also \mathbb{P}*\mathbb{R}($\kappa$^{+},  $\lambda$)\sim force GCH. This

is clear by their respective sizes and chain conditions.

3 Main result

Now that we constructed our forcing posets, we restate theorem 1.3 more precisely:

Theorem 3.1. Suppose  j:V\rightarrow M is a huge embedding with  $\kappa$ :=\mathrm{c}\mathrm{r}\mathrm{i}\mathrm{t}(j) , and  $\lambda$ :=j( $\kappa$)

(M^{ $\lambda$}\subseteq M) . Then the poset \mathbb{P}* (\mathbb{R}($\kappa$^{+},  $\lambda$)\sim \times \mathrm{B}\sim) forces \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{3}, \aleph_{1}) and \neg \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{2}, \aleph_{1}) .

For the rest of this section, we fix  $\kappa$,  $\lambda$, j and M as in theorem 3.1. We also fix a

\mathbb{P}* (\mathbb{R}($\kappa$^{+},  $\lambda$)\sim \times \mathrm{B})\sim‐generic  G*H over V . Notice that, by the construction of the posets

\mathbb{P}, \mathbb{R} and \mathrm{B}
,

we have that V[G*H] \models``  $\kappa$=$\omega$_{1}, ($\kappa$^{+})^{V}=$\omega$_{2} and  $\lambda$=$\omega$_{3}
�

3.1 Extending the elementary embedding
The first step in order to prove theorem 3.1 is to extend the embedding j to an

elementary embedding \hat{j} : V[G*H] \rightarrow  M[\hat{G}*H for some appropriate \hat{G}*\hat{H} . To

simplify the notation, we denote such extensions also by j , making no distinction with

the original embedding. We shall extend j in 2 stages.
First, by lemma 2.9(4) and fact 1.6, we can find \hat{G}\mathrm{a}(V,j(\mathbb{P})) ‐generic with  h''G*H\subset

\hat{G} . Thus, by fact 1.12, we can extend j to j:V[G]\rightarrow M[\hat{G}] . Notice that, by elementarity,

j(\mathbb{P}) collapses all the cardinals between  $\omega$ and  $\lambda$ , thus \aleph_{1}^{V[\hat{G}\rfloor}= $\lambda$ . Notice also that, since

 j(\mathbb{P}) is  $\lambda$-\mathrm{c}\mathrm{c} and M^{ $\lambda$}\cap V \subseteq  M , the extension M[\hat{G}] still retains some closure from M ;

more explicitly:

Fact 3.2. M[\hat{G}]^{ $\lambda$}\cap V[\hat{G}] \subset M[\hat{G}].
The second stage is to further extend j to an elementary embedding with domain

V[G*H] . In order to do so, we use the following lemma.

Lemma 3.3. In M[\hat{G}] , there is a master condition m for H over j, i.e . there exists

m\in j (\mathbb{R}($\kappa$^{+},  $\lambda$)^{V[G]} \times \mathrm{B}^{V[G]}) such that for any q\in H we have m\leq j(q) .

Proof. We work in V[\hat{G}] . Since G*H\subset\hat{G} , we have H\in V[\hat{G}] . Let H_{1}, H_{2} be respectively
\mathbb{R}($\kappa$^{+},  $\lambda$)^{V[G]} and \mathrm{B}^{V[G]} generic filters such that H_{1} \times H_{2}=H . It is enough to construct

m=\langle m_{1}, m_{2}) \in M[\hat{G}] such that m_{i} is a master condition for H_{i} (i=1, 2) .

We start by constructing m_{1} . By elementarity, we have

j(\mathbb{R}($\kappa$^{+},  $\lambda$)^{V[G]})=\mathbb{R}($\lambda$^{+},j( $\lambda$))^{M[\hat{G}]}.
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Also, we have |\mathbb{R}($\kappa$^{+},  $\lambda$)^{V[G\rfloor}|= $\lambda$ , so  H_{1} also has size  $\lambda$ . By fact 3.2, since  H_{1}\in V[\hat{G}] , we

have that  j'' Hl\in  M[\hat{G}] . By lemma 2.3, we can define m_{1} =\wedge j''H_{1} \in \mathbb{R}($\lambda$^{+},j( $\lambda$))^{M[\hat{G}]},
which clearly satisfies the master condition property.

Now we construct m_{2} . Once again, by elementarity we have

j(\mathrm{B}^{V[G]})=\mathrm{B}^{M[\hat{G}]}.
Notice that \mathrm{B}^{V[\hat{G}]} is countable in V[\hat{G}] (since \aleph_{1}^{V[\hat{G}]}= $\lambda$ ). So in  V[\hat{G}] we can construct

recursively a decreasing sequence \langle q_{n} :  n\in $\omega$ } generating  H_{2} . By fact 3.2, we have that

\langle j(q_{n}) : n \in  $\omega$\rangle \in  M[\hat{G}] . By the a‐closure of \mathrm{B}^{M[\hat{G}]}
, we can find m_{2} \in \mathrm{B}^{M[\hat{G}]} a lower

bound for \{j(q_{n}) :  n\in $\omega$\rangle , which clearly satisfies the master condition property. \square 

By fact 1.12, if we take \hat{H} an (M[\hat{G}],j(\mathbb{R}($\kappa$^{+},  $\lambda$)\sim\times \mathrm{B})[\hat{G}])\sim ‐generic filter containing the

condition  m from lemma 3.3, we can extend j to j : V[G*H]\rightarrow M[\hat{G}*H

3.2 $\kappa$^{+}‐centeredness

The next theorem states a key property used to show that \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{3}, \aleph_{1}) holds in

V[G*H].

Theorem 3.4. In V[G*H] , the poset j(\mathbb{P})/h
�

(G*H) is $\kappa$^{+} ‐centered.

Notice that by j(\mathbb{P})/h
�

(G*H) we mean j(\mathbb{P})^{V}/h
�

(G*H) . The proof of theorem 3.4

is basically the original proof on [FL88], plus the argument that \mathrm{B} is forced to have size

<$\kappa$^{+} . We are going to need some lemmata:

Lemma 3.5. Suppose  $\delta$ is a regular cardinal such that  2^{< $\delta$}= $\delta$ . Then, given  $\gamma$< $\delta$ and

a family (D_{ $\alpha$} :  $\alpha$<2^{ $\delta$}\rangle of  $\delta$ ‐centered posets, we have that \displaystyle \prod_{ $\alpha$<2^{ $\delta$}}^{\leq $\gamma$}D_{ $\alpha$} is  $\delta$ ‐centered.

Lemma 3.5 is a generalization of the fact that Tychonoff product of continuum many

sepaxable spaces is separable. A proof for it can be found in [FL88].
For the next lemma, we shall fix some notations. By elementarity, we have that  j(\mathbb{P}) is

the limit of a finite support universal Kunen iteration of length  $\lambda$ . For every active stage
 $\alpha$< $\lambda$ , let  B_{ $\alpha$}' :=j(\mathbb{P})_{ $\alpha$}\cap V_{ $\alpha$} . Let \overline{\mathbb{Q}_{ $\alpha$}'} the termspace for the B_{ $\alpha$}'‐name \mathbb{Q}_{ $\alpha$}'\sim :=\mathbb{R}($\alpha$^{+},  $\lambda$)\sim\times \mathrm{B}\sim
(definition 1.9).

Lemma 3.6. In  V[G*H] , the product P :=(\displaystyle \mathrm{S}( $\omega$,  $\lambda$))^{V}\times\prod_{\mathrm{a}c\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e} $\alpha$< $\lambda$}^{< $\omega$}(\overline{\mathbb{Q}_{ $\alpha$}^{J}})^{V} is $\kappa$^{+} ‐centered.

Proof. We work in V[G*H] . By remark 2.11, the conditions needed for lemma 3.5 do

hold, so it is enough to prove that each factor of P is $\kappa$^{+} ‐centered.

Foreman and Laver proved that (\mathrm{S}( $\omega$,  $\lambda$))^{V} is $\kappa$^{+}‐centered in [FL88]. We shall now

prove that each (\overline{\mathbb{Q}_{ $\alpha$}'})^{V} is also $\kappa$^{+}‐centered.

We fix  $\alpha$< $\lambda$ an active stage. By definition 2.2, we have that

(\displaystyle \overline{\mathbb{Q}_{ $\alpha$}'})^{V}\approx ((\prod_{n\in $\omega$}\overline{\mathbb{R}^{n}($\alpha$^{+}, $\lambda$)}) \times\overline{\mathrm{B}})^{V} (3.2.1)
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We shall first show that (\overline{\mathrm{B}})^{V} and each (\overline{\mathbb{R}^{n}($\alpha$^{+}, $\lambda$)})^{V} are $\kappa$^{+}‐centered, and then show

that this implies the $\kappa$^{+} ‐centeredness of (\overline{\mathbb{Q}_{ $\alpha$}'})^{V} . The proof that each (\overline{\mathbb{R}^{n}($\alpha$^{+}, $\lambda$)})^{V} is

$\kappa$^{+} ‐centered is the same as in [FL88]. Actually, the proof of regarding (\mathrm{S}( $\omega$,  $\lambda$))^{V} is a

particular case of the one regarding (\mathbb{R}^{n}($\alpha$^{+},  $\lambda$))^{V}.
Now we work in V . Since  $\alpha$ an active stage, it is inaccessible. Thus, we have |V_{ $\alpha$}|=\mathrm{a},

so |B_{ $\alpha$}'|\leq $\alpha$ . Furthermore, by theorem 2.1 we have:

 V\models |\vdash B_{ $\alpha$}' |\mathrm{B}|=\aleph_{2}=$\alpha$^{+}\sim
�

By proposition 1.10, we have |\overline{\mathrm{B}}| \leq($\alpha$^{+})^{ $\alpha$}=$\alpha$^{+} .Therefore, back to V[G*H] , we have

|(\overline{\mathrm{B}})^{V}| \leq$\kappa$^{+} , so (\overline{\mathrm{B}})^{V} is indeed $\kappa$^{+}‐centred.

Now we shall prove that (\overline{\mathbb{Q}_{ $\alpha$}'})^{V} is $\kappa$^{+}‐centered in V[G*H] . Since ($\kappa$^{+})^{\aleph_{0}} = $\kappa$^{+} , we

can construct in V[G*H] a $\kappa$^{+}‐centering C for (\displaystyle \prod_{n\in $\omega$}(\overline{\mathbb{R}^{n}(\mathrm{a}^{+}, $\lambda$)})^{V}) \times\cap^{V}\mathrm{B} We claim

that the restriction of C to V is a $\kappa$^{+}‐centering of ((\displaystyle \prod_{n\in $\omega$}\overline{\mathbb{R}^{n}($\alpha$^{+}, $\lambda$)}) \times\overline{\mathrm{B}})^{V}- thus, by

(3.2.1), (\overline{\mathbb{Q}_{ $\alpha$}'})^{V} is $\kappa$^{+}‐centered.

Let s_{1} ,
. . .

, s_{m} \in ((\displaystyle \prod_{n\in $\omega$}\overline{\mathbb{R}^{n}($\alpha$^{+}, $\lambda$)}) \times\overline{\mathrm{B}})^{V} such that C(s_{1}) =. . . =C(s_{m}) . By the

$\kappa$^{+}‐centering, we have t\in V[G*H] a common extension of s_{1} ,
. . .

, s_{m} , but it may be the

case that t \not\in V . However, for each n\in $\omega$, t(n) \in  V witnesses that s_{1}(n) , . . .

, s_{m}(n) are

pairwise compatible in (\overline{\mathbb{R}^{n}($\alpha$^{+}, $\lambda$)})^{V} By lemma 2.3, we can construct t'\in V defined by

t'( $\omega$)=t( $\omega$) and for each  n\in $\omega$ V\models |\vdash_{B_{ $\alpha$}'}
�

t'(n)=\displaystyle \bigwedge_{1\leq i\leq n}s_{i}(n)
�

Clearly t'\leq s_{1} ,
. . .

, s_{m},

so this completes the proof. \square 

Proof of theorem 3.4. We work in V[G*H] . Notice that there is a natural projection
from the poset j(\mathbb{P}) onto the product P from lemma 3.6, where each p( $\alpha$) is sent to

the correspondent equivalence class in the termspace. Therefore, given C : P \rightarrow $\kappa$^{+}

witnessing that P is $\kappa$^{+} centered, we can w.l.o.g. consider the same function over j(\mathbb{P}) .

Let p_{1} ,
. . .

, p_{n} \in j(\mathbb{P})/h''(G*H) such that C(p_{1}) =. . .
= C(p_{n}) . We want to show

that those conditions have a common extension in j(\mathbb{P})/h
�

(G*H) . Notice that for each

 $\alpha$\displaystyle \in\bigcup_{1\leq i\leq n}\mathrm{d}\mathrm{o}\mathrm{m}(p_{i}) we have

|\vdash B_{ $\alpha$}'
�

p_{1}( $\alpha$) ,
. . .

, p_{n}( $\alpha$) have a common extention�

For each  $\alpha$\displaystyle \in\bigcup_{1\leq i\leq n}\mathrm{d}\mathrm{o}\mathrm{m}(p_{i}) and each i=1 , . . . , n we can assume that p_{i}( $\alpha$) is of the

form p_{i}( $\alpha$)=\mathrm{o}\mathrm{p}(ab_{\mathrm{i}, $\alpha$})\sim^{i, $\alpha$},\sim
(op as in 1.13), where \sim^{i, $\alpha$}\sim a\mathrm{a}\mathrm{n}\mathrm{d}b_{i, $\alpha$} are B_{ $\alpha$}'‐names for conditions

in \mathbb{R}($\alpha$^{+},  $\lambda$)\sim and \mathrm{B}\sim respectively.

By the size of the termspace \overline{B}^{B\mathrm{a}} , we can assume that

|\vdash_{B_{ $\alpha$}'} ``\sim^{1, $\alpha$}b=\ldots=\sim b_{n, $\alpha$}
�

(3.2.2)

Hence we can further assume h\sim,=\cdots=\sim b_{ $\tau \tau,\ \alpha$} , so denote such name by b_{ $\alpha$,\sim}.
We then define q\in j(\mathbb{P}) with domain \displaystyle \bigcup_{1\leq i\leq n}\mathrm{d}\mathrm{o}\mathrm{m}(p_{i}) such that

|\vdash_{B_{ $\alpha$}'}
�

 q( $\alpha$)=\displaystyle \langle\bigwedge_{1\leq i\leq n}a,h\rangle
�

(3.2.3)
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for every  $\alpha$ \in \mathrm{d}\mathrm{o}\mathrm{m}(q) . Clearly q is a common extension for p_{1} , . .. , p_{n} in j(\mathbb{P}) , so it is

enough to show that q\in j(\mathbb{P})/h
�

(G*H) . Let x\in h''(G*H) . We shall show that x and q
are compatible in j(\mathbb{P}) . Since p_{1} ,

. . .

, p_{n}\in j(\mathbb{P})/h
�

(G\cap H) , we can take y_{1} , . . .

, y_{n}\in j(\mathbb{P})
such that y_{i}\leq_{j(\mathbb{P})}x,p_{i} for i=1 , . . .

, n.

Like before, we can assume that, for  $\alpha$ \in \mathrm{d}\mathrm{o}\mathrm{m}(x) , x( $\alpha$) = \mathrm{o}\mathrm{p}(x_{1, $\alpha$},x_{2, $\alpha$})\sim\sim . Likewise,
for  i = 1 , . . .

, n and  $\alpha$ \in \mathrm{d}\mathrm{o}\mathrm{m}(y_{i}) , we assume y_{i}( $\alpha$) = \mathrm{o}\mathrm{p}(u_{i, $\alpha$},v_{ $\alpha$})\sim\sim , where  x_{1, $\alpha$}\sim, \sim u_{i, $\alpha$} and

\sim\sim x_{2, $\alpha$},v_{ $\alpha$} are B_{ $\alpha$}'‐names for conditions in \mathbb{R}($\alpha$^{+},  $\lambda$) and \mathrm{B}\sim respectively. Notice that \sim v_{ $\alpha$} does

not deppend on i
, by the same argument used in (3.2.2). We can further assume that

y_{i, $\alpha$}\mathrm{r}_{ $\alpha$}|\vdash_{j(\mathbb{P})_{ $\alpha$}}
��

M[G_{j(\mathbb{P})_{ $\alpha$}}\sim\cap(V_{ $\alpha$})^{M}] \models\sim u_{i, $\alpha$}=\sim x_{1, $\alpha$}\wedge\sim^{i, $\alpha$}a
�

(3.2.4)

We shall construct y \in j(\mathbb{P}) such that y \leq_{j(\mathbb{P})} y_{1} ,
. . . y_{n} . By induction on  $\alpha$ \leq  $\lambda$ , we

construct  y such that \displaystyle \mathrm{d}\mathrm{o}\mathrm{m}(y)=\bigcup_{1\leq i\leq n}\mathrm{d}\mathrm{o}\mathrm{m}(y_{i}) and

y[ $\alpha$\leq_{j(1\mathrm{P})_{ $\alpha$}y_{1}}\mathrm{r}_{ $\alpha$} , . . .

, y_{n}\mathrm{r}_{ $\alpha$} for all  $\alpha$< $\lambda$ . (3.2.5)

If  $\alpha$ is a limit ordinal, since the support of  j(\mathbb{P})_{ $\alpha$} is finite, it is enough to take y\mathrm{r}_{ $\alpha$}=
\displaystyle \bigcup_{ $\beta$< $\alpha$}y\lceil $\beta$ . So we assume that the induction hypothesis hold for some active  $\alpha$<  $\lambda$ and

construct  y( $\alpha$) . Since y_{i}[ $\alpha$\leq_{j(\mathbb{P})_{ $\alpha$}}x\mathrm{r}_{ $\alpha$},p_{i}\mathrm{r}_{ $\alpha$} , from 3.2.5 we have:

y_{\mathrm{r}} $\alpha$|\vdash_{j(\mathbb{P})_{ $\alpha$}}
�

M[G_{j(\mathbb{P})_{ $\alpha$}}\sim\cap(V_{ $\alpha$})^{M}] \models\forall i=1 , . . . , n, u_{i, $\alpha$}\sim\leq\sim\sim^{i, $\alpha$}x_{1, $\alpha$},a and \sim v_{ $\alpha$}\leq x_{2, $\alpha$}\sim, \sim \mathrm{f}\mathrm{f}\mathrm{i}
�

(3.2.6)
By (3.2.3), we have

|\vdash_{B_{ $\alpha$}'} ``\sim^{1, $\alpha$}a ,
. . .

, \sim a_{n, $\alpha$} are pairwise compatible in \mathbb{R}($\alpha$^{+},  $\lambda$)\sim
�

(3.2.7)

Since  B_{ $\alpha$}'<j(\mathbb{P})_{ $\alpha$} , (3.2.7) together with (3.2.6) implies

y\mathrm{r}_{ $\alpha$}|\vdash_{j(\mathbb{P})_{ $\alpha$}}
�

M[G_{j(\mathbb{P})_{ $\alpha$}}\sim\cap(V_{ $\alpha$})^{M}] \models\sim a_{1, $\alpha$} , . . .

, \sim a_{n, $\alpha$},  x_{1, $\alpha$}\sim are pairwise compatible in \mathbb{R}($\alpha$^{+},  $\lambda$)\sim
�

By lemma 2.3, we can then find a  B_{ $\alpha$}' name y( $\alpha$) such that:

 y\mathrm{r}_{ $\alpha$}|\vdash_{j(\mathbb{P})_{ $\alpha$}}M[G_{j(\mathbb{P})_{ $\alpha$}}\cap(V_{ $\alpha$})^{M}]\sim \models y( $\alpha$)=\langle\wedge\{a_{1, $\alpha$}\sim, . . . , \sim\sim a_{n, $\alpha$}, x_{1, $\alpha$}\}, \sim v_{ $\alpha$}\rangle
�

By (3.2.4), we have that  y\mathrm{r}_{ $\alpha$+1}\leq_{j(\mathbb{P})_{ $\alpha$+1}}y_{1}[ $\alpha$+1 ,
. . . y_{n}\mathrm{r}_{ $\alpha$+1} , so this concludes the

construction of y . From 3.2.6 and 3.2.3, we have that y\leq_{j(\mathbb{P})}x, q. \square 

3.3 Proof of the main result

Notice that, in V[G] , since $\omega$_{1} =  $\kappa$ and \mathbb{R}($\kappa$^{+},  $\lambda$) does not add any new  $\omega$‐sequence
of \aleph_{2} , by the last property of \mathrm{B} in theorem 2.1 we have \mathbb{R}($\kappa$^{+},  $\lambda$)*\mathrm{B}\sim \approx \mathbb{R}($\kappa$^{+},  $\lambda$) \times \mathrm{B}.

Therefore, we have:

V[G*H] \models\neg \mathrm{T}\mathrm{n}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{2}, \aleph_{1}) .

The following theorem completes the proof of theorem 3.1.

Theorem 3.7. In V[G*H] , every graph of size and chromatic number \aleph_{3} has a subgraph
of size and chromatic number \aleph_{1}, i.e. V[G*H] \models \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{3}, \aleph_{1}) .
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The proof for theorem 3.7 is almost the same proof as in [FL88]. It follows from the

two similar lemmata below:

Lemma 3.8. Let \mathcal{G}= \{ $\lambda$,  E\rangle be a graph and  D  a< $\lambda$ ‐closed poset. Suppose there exists

a countable good coloring of \mathcal{G} (i.e . a good color f :  $\lambda$\rightarrow $\omega$) in some generic extension

by D. Then there is some countable good coloring of \mathcal{G} in the ground model.

Proof. Assume there are a D‐name \sim f and a condition d_{0} \in  D such that d_{0}|\vdash D
�

 f\sim :

is an  $\omega$‐good coloring of \check{\mathcal{G}} � Since D is <  $\lambda$‐closed, we can construct a decreasing se‐

quence (d_{ $\alpha$} :  $\alpha$< $\lambda$\rangle such that for each  $\alpha$< $\lambda$, d_{ $\alpha$} decides \sim f( $\alpha$) .

We can define a function f' :  $\lambda$\rightarrow $\omega$ in the ground model by  f'( $\alpha$)=n , where  n\in $\omega$

is such that  d_{ $\alpha$}|\vdash Df(\check{ $\alpha$})\sim=n
� Since \{d_{ $\alpha$} :  $\alpha$< $\lambda$\rangle is decreasing, it is easy to see that  f'

is a countable good coloring of \mathcal{G}. \square 

Lemma 3.9. Let \mathcal{G}=\langle $\lambda$,  E\rangle be a graph and  C a  $\delta$ ‐centered poset (\aleph_{0}\leq $\delta$< $\lambda$) . Suppose
there exists a countable good coloring of \mathcal{G} in some genert,c extension by C. Then there is

some good coloring for \mathcal{G} in the ground model with  $\delta$ many colors.

Proof. Assume there are a  C‐name \sim f and a condition c \in  C such that c forces \sim f to

be an  $\omega$‐good coloring of \mathcal{G} . For each  $\alpha$ \in  $\lambda$ , chose  c_{ $\alpha$} \leq  c and n_{ $\alpha$} \in  $\omega$ such that

 c_{ $\alpha$}|\vdash_{c}f'(e_{ $\alpha$}\vee)=n_{ $\alpha$}\sim
�

Let  g:C\rightarrow $\delta$ witness that  D is  $\delta$‐centered. We can define a function  f' :  $\lambda$\rightarrow $\omega$\times $\delta$

in the ground model by  f'( $\alpha$)=\langle n_{ $\alpha$},  g(c_{ $\alpha$})\rangle . Since  g is a centering, it is clear that f' is a

good coloring of \mathcal{G} . Also, since | $\omega$\times $\delta$|= $\delta$, f' indeed has  $\delta$ many colors. \square 

Proof of theorem 3.7. In V[G*H] , let \mathcal{G} be a graph of size and chromatic number \aleph_{3} . We

can assume w.l. 0.\mathrm{g} . that \mathcal{G}=\langle $\lambda$,  E\rangle . By elementarity, it is enough to show that

 M[\hat{G}*\hat{H}] \models``` j(\mathcal{G}) has a subgraph of size and chromatic number  j( $\kappa$)= $\lambda$
�

We claim that \langle j'' $\lambda$,  j''E\rangle is a witness for the previous statement. Notice that we

indeed have \langle j'' $\lambda$,j''E\rangle \in M[\hat{G}*H since j'' $\lambda$\in M\subseteq M[\hat{G}*\hat{H}] by the closure of M and

j'' E=j(E)\cap j''([ $\lambda$]^{2})\in M[\hat{G}*\hat{H}] by elementarity.
Assume, towards a contradiction, that there is some countable good coloring f for \mathcal{G}

in M[\hat{G}*H Since being a good coloring is upwards absolute, we have that f is still a

good coloring in V[\hat{G}*H Working in V[\hat{G}*H we have that \{j'' $\lambda$,  j''E\rangle is isomorphic
to \mathcal{G} , and hence we have f' :  $\lambda$\rightarrow $\omega$ \mathrm{a}\wedge good coloring \mathcal{G} induced by f.

Now, notice that V[\hat{G}*\hat{H}] = V[G][\hat{H}] is ageneric extension of V[\hat{G}] by the poset

j (\mathbb{R}($\kappa$^{+},  $\lambda$)\sim \times \mathrm{B})[\hat{G}]\sim , which is <  $\lambda$‐closed in  V[\hat{G}] (by elementarity, fact 3.2, lemma 2.6

and theorem 2.1). Next, we have that V[\hat{G}] is a generic extension of V[G*H] by the

poset j(\mathbb{P})/h
�

(G*H) , which is $\kappa$^{+}‐centered in V[G*H] (theorem 3.4). Therefore, we can

apply lemma 3.8 and then lemma 3.9 to construct a good coloring f'' :  $\lambda$\rightarrow$\kappa$^{+} of \mathcal{G} in

V[G*H] . However, we have

V[G*H]\models \mathrm{C}\mathrm{h}\mathrm{r}(\mathcal{G})=\aleph_{3}= $\lambda$>$\kappa$^{+}=\aleph_{2}

So f'' witnesses a contradiction. \square 
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From theorem 3.1, we have:

Corollary 3.10. If the existence of a huge cardinal is consistent, then \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{3}, \aleph_{1}) does

not imply \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{2}, \aleph_{1}) .

Question 1. Is it consistent (modulo some large cardinal assumption) that

\mathrm{R}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{3}, \aleph_{1})\wedge\neg \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{3}, \aleph_{2}) ?

Notice that the same technique used here would not work to solve question 1, since

we heavily used the small size of the poset B.

4 Generalization

We can also generalize theorem 3.1 for other cardinalities. In order to do so, we

generalize 2.1.

Theorem 4.1. Let  $\kappa$ be a regular cardinal and assume  2^{ $\kappa$}=$\kappa$^{+} . Then there exists a poset
\mathrm{B}( $\kappa$) of size $\kappa$^{++} which is  $\kappa$ ‐closed,  $\kappa$^{++}-cc and forces \neg \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}($\kappa$^{++}, $\kappa$^{+}) .

More specifically, B(rc) forces the existence of a graph of size and chromatic number

$\kappa$^{++} for which all subgraphs of size \leq$\kappa$^{+} have chromatic number \leq $\kappa$.
We can use theorem 4.1 to generalize theorem 3.1 and obtain:

Corollary 4.2. Suppose \mathrm{K} is a huge cardinal with target  $\lambda$ . Let  $\alpha$ be an ordinal such that

(\aleph_{ $\alpha$})^{V}< $\kappa$ is regular. Let also  n+2<m< $\omega$ . Then, there exists  W a generic extension

of V such that (\aleph_{ $\alpha$+1})^{W}=$\kappa$_{f} (\aleph_{ $\alpha$+m})^{W}= $\lambda$ and

 W\models \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{ $\alpha$+m}, \aleph_{ $\alpha$+1})\wedge\neg \mathrm{T}\mathrm{r}_{\mathrm{C}\mathrm{h}\mathrm{r}}(\aleph_{ $\alpha$+n+2}, \aleph_{ $\alpha$+n+1})
�

Proof. We proceed similarly to the proof of theorem 3.1, but use theorem 4.1 instead of

theorem 2.1. This way we construct the poset \mathbb{P}'*\mathbb{Q}\sim , where \mathbb{P}' is the Kunen universal

collapse with respect to \mathbb{Q}, \mathbb{P}_{0}'=\mathrm{S}(\aleph_{ $\alpha$},  $\kappa$) and

\mathbb{Q}=\sim (\mathbb{R}($\kappa$^{+(m-2)},  $\lambda$)\sim \times \mathrm{B}\sim(\aleph_{ $\alpha$+n^{V^{\mathrm{P}}}}
The proof that this poset is the desired one is analogous to the original proof of

theorem 3.1. \square 

In the rest of this section, we shall construct the poset \mathrm{B}( $\kappa$) and prove theorem 4.1.

4.1 The poset

The poset defined here and the following proof are a straightforward generalization of

Baumgartner�s construction in [Bau84].
We denote W := E_{ $\kappa$}^{$\kappa$^{++}} = \{ $\alpha$ \in $\kappa$^{++} : \mathrm{c}\mathrm{f}( $\alpha$) =  $\kappa$\} and fix a family of functions

\{f_{ $\xi$} : W \rightarrow $\kappa$^{++} :  $\xi$ <  $\kappa$\} such that for each  $\alpha$ \in  W (f_{ $\xi$}( $\alpha$) :  $\xi$ \in  $\kappa$\rangle is an increasing
sequence cofinal in  $\alpha$ . Such a family is called a ladder system.

64



The poset \mathrm{B}( $\kappa$) consists of conditions p of the form:

 p=\langle a, e, (g_{ $\beta$} :  $\beta$\in a\rangle, (A( $\alpha$,  $\beta$) :  $\alpha$,  $\beta$\in a\rangle, \langle B( $\alpha$,  $\beta$,  $\xi$) :  $\alpha$,  $\beta$\in a,  $\xi$\in $\kappa$)\rangle

satisfying the following properties:

(1)  a\in[W]^{ $\kappa$} ;

(2) e\subset[a]^{2} ;

(3) g_{ $\beta$} :  $\beta$\cap a\rightarrow $\kappa$ is a good coloring of \{ $\beta$\cap a, e\cap[ $\beta$\cap a]^{2}\} ;

(4)  A( $\alpha$,  $\beta$)\subset $\kappa$ is unbounded and counbounded;

(5)  B( $\alpha$,  $\beta$,  $\xi$)\subset A( $\alpha$,  $\beta$) is unbounded in  $\kappa$ and  B( $\alpha$,  $\beta$,  $\xi$)\cap B( $\alpha$,  $\beta,\ \xi$')=\emptyset for  $\xi$\neq$\xi$' ;

(6) If  $\gamma$< $\alpha$,  $\beta$, \{ $\alpha$,  $\gamma$\}\in e and  $\beta$\in a , then g_{ $\beta$}( $\gamma$)\in A( $\alpha$,  $\beta$) ;

(7) If  $\gamma$< $\alpha$,  $\beta$, \{ $\alpha$,  $\gamma$\}\in e,  $\beta$\in a and g_{ $\beta$}( $\gamma$)\in B( $\alpha$,  $\beta$,  $\xi$) , then  $\gamma$\leq f_{ $\xi$}( $\alpha$) ;

Notation 4.3. For p\in \mathrm{B}( $\kappa$) like above, we denote a^{p} :=a, e^{p} :=e, j_{ $\beta$}^{p} :=g_{ $\beta$}, A^{p}( $\alpha$,  $\beta$) :=

A( $\alpha$,  $\beta$) and B^{p}( $\alpha$,  $\beta$,  $\xi$) := B( $\alpha$,  $\beta$,  $\xi$) . Furthermore, we denote a^{p_{1}} := a^{1}, a^{\mathrm{p}_{2}} := a^{2},
e^{p_{1}} :=e^{1}

,
and so on.

The order on \mathrm{B}( $\kappa$) is defined by: given p^{1},p^{2}\in \mathrm{B}, p^{1}\leq p^{2} iff a^{1}\supseteq a^{2}, e^{1}\cap[a^{2}]^{2}=e^{2},
g_{ $\beta$}^{1}[a^{2}=g_{ $\beta$}^{2}, A^{1}( $\alpha$,  $\beta$)=A^{2}( $\alpha$,  $\beta$) , B^{1}( $\alpha$,  $\beta$,  $\xi$)=B^{2}( $\alpha$,  $\beta$,  $\xi$) for all  $\alpha$,  $\beta$\in a^{2} and  $\xi$\in $\kappa$.

Notice that each p contains the following information: a graph \langle a^{p},  e^{p}\rangle of size \mathrm{K} ap‐

proximating the generic graph; a function \displaystyle \int_{ $\beta$} approximating a good coloring of a small

subgraph of the generic graph; a family A^{p}( $\alpha$,  $\beta$) consisting of the colors still available for

the colorings g_{ $\beta$}^{q} , for q\leq p ; and a family B^{p}( $\alpha$,  $\beta$,  $\xi$) consisting of colors which should be

avoided by g_{ $\beta$}^{\mathrm{q}} for q\leq p (so that B^{\mathrm{p}}( $\alpha$,  $\beta$,  $\xi$) controls a �cofinal growth�� of g_{ $\beta$}^{q} ).

Proposition 4.4. For  $\kappa$ regular, \mathrm{B}( $\kappa$) is  $\kappa$ ‐closed. Moreover, any decreasing sequence of
length  $\kappa$ of conditions in \mathrm{B} has a greatest lower bound.

Proof. Just notice that since  $\kappa$ is regular, the coordinatewise union of a decreasing se‐

quence of length  $\kappa$ of conditions in IEB(rc) is itself a condition in \mathrm{B}( $\kappa$) . \square 

The next proposition will be useful to construct conditions in \mathrm{B}( $\kappa$) .

Proposition 4.5. Suppose that for some X\subset a\times a we have

\{a, e, \langle g_{ $\beta$} :  $\beta$\in a\rangle, \langle A( $\alpha$,  $\beta$) : \langle $\alpha$,  $\beta$)\in X\rangle, \langle B( $\alpha$,  $\beta$,  $\xi$) : \langle $\alpha$,  $\beta$) \in X,  $\xi$\in $\kappa$)\rangle

satisfying properties (1) -(7) for A( $\alpha$,  $\beta$) , B( $\alpha$,  $\beta$,  $\xi$) defined only for \langle $\alpha$,  $\beta$\rangle \in X . If for all

\langle $\alpha$,  $\beta$\}\in a\times a\backslash X we have

\{g_{ $\beta$}( $\gamma$) : \{ $\gamma$,  $\alpha$\}\in e,  $\gamma$< $\alpha$,  $\beta$\} is counbounded in  $\kappa$ (4.1.1)

then we can define  A( $\alpha$,  $\beta$) and B( $\alpha$,  $\beta,\ \xi$) for ( $\alpha$,  $\beta$\rangle \in  a\times  a\backslash X so that the resulting
sequence is an condition in \mathrm{B}( $\kappa$) .
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Proof. Fix \langle $\alpha$,  $\beta$ } \in  a \times  a\backslash X . Define C :=  $\kappa$\backslash \{g_{ $\beta$}( $\gamma$) : \{ $\gamma$,  $\alpha$\} \in e,  $\gamma$ <  $\alpha$,  $\beta$\} . By
(4.1.1), C is unbounded in  $\kappa$ . Therefore, we can partition  C into \{C_{ $\xi$} :  $\xi$< $\kappa$\rangle such that

each  C_{ $\xi$} is unbounded in  $\kappa$ . We define  A( $\alpha$,  $\beta$) = $\kappa$\backslash C_{0} and B( $\alpha$,  $\beta$,  $\xi$)=C_{ $\xi$+1} . Clearly,
conditions (4) and (5) are satisfied. Since \{g_{ $\beta$}( $\gamma$) : \{ $\gamma$,  $\alpha$\} \in e,  $\gamma$ <  $\alpha$,  $\beta$\} \subset  A( $\alpha$,  $\beta$) ,

condition (6) is satisfied. Condition (7) holds vacuously, since \{g_{ $\beta$}( $\gamma$) : \{ $\gamma$,  $\alpha$\} \in  e,  $\gamma$ <

 $\alpha$,  $\beta$\}\cap B( $\alpha$,  $\beta$,  $\xi$)=\emptyset for each  $\xi$\in $\kappa$. \square 

Using proposition 4.5, it is straightforward to prove:

Lemma 4.6. For every  $\alpha$\in W ,
the set D_{ $\alpha$}=\{p\in \mathrm{B}( $\kappa$) :  $\alpha$\in a^{p}\} is dense in \mathrm{B}( $\kappa$) .

4.2 Amalgamation of conditions

We shall fix the following framework: For each  $\delta$ \in [$\kappa$^{+}, $\kappa$^{++} ), we fix a bijection
h_{ $\delta$} : $\kappa$^{+} \rightarrow $\delta$ . Let  $\theta$ be a large enough regular cardinal \mathrm{a}\mathrm{n}\mathrm{d}\triangleleft \mathrm{a} well ordering of H( $\theta$) .

Consider \mathfrak{A} the structure with underlying set H( $\theta$) , fixed relations \in and \triangleleft and fixed

functions \{h_{ $\delta$} :  $\delta$\in[$\kappa$^{+}, $\kappa$^{++} { h_{ $\delta$}^{-1} :  $\delta$\in [$\kappa$^{+}, $\kappa$^{++} ) \rangle and \{f_{ $\xi$} :  $\xi$\in $\kappa$\rangle.
Now we can define:

Definition 4.7. Let  x\in [$\kappa$^{++}]^{ $\kappa$} . We say that x is strongly closed if it is a substructure

of \mathfrak{A} . For any x \in [$\kappa$^{++}]^{ $\kappa$} , we define the strong closure of x
,

denoted by \mathrm{s}\mathrm{c}1(x) , as the

smallest strongly closed set containing x . Also, we say that a condition p\in \mathrm{B}( $\kappa$) is closed

if a^{p}=\mathrm{s}\mathrm{c}1(a^{p})\cap W.

Proposition 4.8. The set of all closed conditions of \mathrm{B}( $\kappa$) is dense.

Proof. It follows from proposition 4.4 and lemma 4.6. \square 

Lemma 4.9. Suppose x,  y\in [$\kappa$^{++}]^{ $\kappa$} are strongly closed and x\cap$\kappa$^{+}=y\cap$\kappa$^{+} . Then x\cap y
is an initial segment of both x and y.

Proof. If x\cap y\subset$\kappa$^{+} , the result clearly holds. Thus, let  $\delta$\in x\cap y . Since x is closed under

h_{ $\delta$} and h_{ $\delta$}^{-1} , we have that x\cap $\delta$=h_{ $\delta$}''(x\cap$\kappa$^{+}) Similarly, we have y\cap $\delta$=h_{ $\delta$}''(y\cap$\kappa$^{+}) . Since

we assumed x\cap$\kappa$^{+}=y\cap$\kappa$^{+} , we have  x\cap $\delta$=y\cap $\delta$ , thus  x\cap y is indeed an initial segment
of x and of y. \square 

Now we can define the concept of isomorphism.

Definition 4.10. We shall say that two closed condition p^{1},p^{2}\in \mathrm{B}( $\kappa$) are isomorphic if
a^{1}\cap$\kappa$^{+} = a^{2}\cap$\kappa$^{+} and there exists an order preserving bijection  $\varphi$ : \mathrm{s}\mathrm{c}1(a^{1}) \rightarrow \mathrm{s}\mathrm{c}1(a^{2})
which preserves the side‐conditions and the ladder system \langle f_{ $\xi$} :  $\xi$\in $\kappa$\rangle, i.e. :

\bullet  a^{2}=$\varphi$''a^{1_{f}}e^{2}=\{\{ $\varphi$( $\alpha$),  $\varphi$( $\beta$)\} : \{ $\alpha$,  $\beta$\}\in e^{1}\} ;

\bullet  g_{ $\varphi$( $\beta$)}^{2}( $\varphi$( $\alpha$))=g_{ $\beta$}^{1}( $\alpha$),\cdot
\bullet  A^{2}( $\varphi$( $\alpha$),  $\varphi$( $\beta$))=A^{1}( $\alpha$,  $\beta$) , B^{2}( $\varphi$( $\alpha$),  $\varphi$( $\beta$),  $\xi$)=B^{1}( $\alpha$,  $\beta$,  $\xi$) ;

\bullet  $\varphi$(f_{ $\xi$}( $\alpha$))=f_{ $\xi$}( $\varphi$( $\alpha$)) .

for all  $\alpha$,  $\beta$\in a^{1},  $\xi$\in $\kappa$.
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As usual, such a  $\varphi$ is called an isomorphism. Now we can prove our main lemma.

Lemma 4.11.

(a) If  p^{1},p^{2}\in \mathrm{B}( $\kappa$) are closed isomorphic conditions, they are compatible;

(b) if, furthermore, there exist $\alpha$^{*}\in a^{1} and  $\xi$^{*}\in $\kappa$ such that

 a^{1}\cap a^{2}\subseteq f_{$\xi$^{*}}( $\varphi$($\alpha$^{*}))\leq$\alpha$^{*}< $\varphi$($\alpha$^{*}) (4.2.1)

where  $\varphi$ : \mathrm{s}\mathrm{c}1(a^{1}) \rightarrow \mathrm{s}\mathrm{c}1(a^{2}) is the isomorphism between p^{1} and p^{2} , then there exists

a condition p^{3}\leq p_{1},p_{2} such that \{$\alpha$^{*},  $\varphi$($\alpha$^{*})\}\in e^{3}.

Proof. Since the proof of item (b) contains the proof of item (a), we shall prove both

simultaneously, calling attention just to the parts where they differ.

Let p^{1},p^{2} be closed isomorphic conditions in \mathrm{B}( $\kappa$) . Begin the construction of p^{3}\leq p^{1},p^{2}
by setting a^{3} =a^{1}\cup a^{2}, A^{3}( $\alpha$,  $\beta$) =A^{i}( $\alpha$,  $\beta$) and B^{3}( $\alpha$,  $\beta$,  $\xi$) =B^{i}( $\alpha$,  $\beta$,  $\xi$) for  $\alpha$,  $\beta$ \in  a^{i},
for i=1

,
2. In case (a), define e^{3}=e^{1}\cup e^{2} , while on case (b) e^{3}=e^{1}\cup e^{2}\cup\{\{$\alpha$^{*},  $\varphi$($\alpha$^{*})\}\}.

We need to construct the functions g_{ $\beta$}^{3} for  $\beta$\in a^{3} and also construct suitable A^{3}( $\alpha$,  $\beta$)
and B^{3}( $\alpha$,  $\beta,\ \xi$) for the remaining pairs \{ $\alpha$,  $\beta$\}\in (a^{3})^{2}\backslash ((a^{1})^{2}\cup(a^{2})^{2}) .

For simplicity, define  $\Delta$ :=a^{1}\cap a^{2}, b_{1} :=a^{1}\backslash  $\Delta$ and  b_{2} :=a^{2}\backslash  $\Delta$ . We shall construct

 g_{ $\beta$}^{3} . First, assume  $\beta$\in $\Delta$ . In this case we define  g_{ $\beta$}^{3}=g_{ $\beta$}^{1}\cup g_{ $\beta$}^{2} . By lemma 4.9, we have that

 $\Delta$ is an initial segment of  a^{1} and a^{2} . This implies that  $\varphi$ \mathrm{r} $\Delta$ is the identity function, thus

by the the isomorphism we have that  g_{ $\beta$}^{1} and g_{ $\beta$}^{2} are compatible functions. In case (a), we

clearly have that g_{ $\beta$}^{3} satisfies (3), (6) and (7). In case (b), by assumption (4.2.1) we have

 $\beta$<$\alpha$^{*} , thus $\alpha$^{*}, $\beta$^{*} do not belong to the domain of g_{ $\beta$}^{3} , therefore the satisfaction of (3),
(6) and (7) follow from the same argument as in case (a).

Now, we construct g_{ $\beta$}^{3} for  $\beta$\in b_{1} . We shall construct it recursively so that it satisfies

the following properties:

(i) g_{ $\beta$}^{3}[a^{1=g_{ $\beta$}^{1};}

(ii) g_{ $\beta$}^{3}\mathrm{r}_{b_{2}} is 1‐1;

(iii) \forall $\gamma$\in b_{2}\cap $\beta$, g_{ $\beta$}^{3}( $\gamma$)\in $\kappa$\backslash A^{2}( $\gamma$,  $\varphi$( $\beta$)) ;

(iv) \forall $\alpha$\in b_{2}, A^{2}( $\alpha$,  $\varphi$( $\beta$))\cup g_{ $\beta$}^{3}
�

(b_{2}\cap $\beta$) is counbounded in  $\kappa$ ;

(v) In case (b), we also want:  $\varphi$($\alpha$^{*})< $\beta$\Rightarrow g_{ $\beta$}^{3}( $\varphi$($\alpha$^{*}))\neq g_{ $\beta$}^{1}($\alpha$^{*}) .

Before constructing it, we enumerate  b_{2}\cap $\beta$ := \{ $\gamma$( $\xi$) :  $\xi$ \in  $\kappa$\} . Separately we also

enumerate b_{2} :=\{ $\alpha$( $\xi$) :  $\xi$\in $\kappa$\} , so that each element of b_{2} reappears cofinally many times

on the enumeration. Then we shall define g_{ $\beta$}^{3}( $\gamma$( $\xi$)) recursively on  $\xi$ . Simultaneously, we

construct a sequence (x_{ $\xi$} :  $\xi$\in $\kappa$\rangle \subset $\kappa$ consisting of �colors that  g_{ $\beta$}^{3} must avoid��

In case (b), if  $\varphi$($\alpha$^{*}) <  $\beta$ we fix  x_{0} = g_{ $\beta$}^{1}($\alpha$^{*}) and choose arbitrarily g_{ $\beta$}^{3}( $\gamma$(0)) \in  $\kappa$\backslash 
(\{x_{0}\}\cup A^{2}( $\gamma$(0),  $\varphi$( $\beta$))) ,

thus satisfying (v). Otherwise, we define x_{0} and g_{ $\beta$}^{3}( $\gamma$(0)) as in

the following general case.

Given  $\xi$< $\kappa$ , suppose  g_{ $\beta$}^{3}( $\gamma$( $\zeta$)) and x_{ $\xi$} have already been defined for all  $\zeta$< $\xi$.
Since by property (4) we have that A^{2}( $\alpha$( $\xi$),  $\varphi$( $\beta$)) is counbounded in  $\kappa$

,
we can choose

 x_{ $\xi$}\in $\kappa$\backslash ( $\xi$\cup A^{2}( $\alpha$( $\xi$),  $\varphi$( $\beta$))\cup\{g_{ $\beta$}^{3}( $\gamma$( $\zeta$)) :  $\zeta$< $\xi$
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Since  A^{2}( $\gamma$( $\xi$),  $\varphi$( $\beta$)) and X_{ $\xi$} are counbounded in  $\kappa$ , we can take

 g_{ $\beta$}^{3}( $\gamma$( $\xi$))\in $\kappa$\backslash (A^{2}( $\gamma$( $\xi$),  $\varphi$( $\beta$))\cup\{x_{ $\zeta$} :  $\zeta$< $\xi$\}\cup\{g_{ $\beta$}^{3}( $\gamma$( $\zeta$)) :  $\zeta$< $\xi$

Clearly such  g_{ $\beta$}^{3}( $\gamma$( $\xi$)) satisfies (ii) and (iii). Also, notice that \{x_{ $\xi$} :  $\xi$ <  $\kappa$\} is an

unbounded sequence witnessing the satisfaction of (iv), so this concludes the construction.

Now we construct g_{ $\beta$}^{3} for  $\beta$\in b_{2} . This is basically the dual of the construction above,
except for one extra property regarding g_{ $\beta$}^{3}($\alpha$^{*}) in case (b). More explicitly, we construct

g_{ $\beta$}^{3} so that:

(i�) g_{ $\beta$}^{3}\mathrm{r}_{a^{2}}=g_{ $\beta$}^{2} ;

(ii�) g_{ $\beta$}^{3}\mathrm{r}b_{1} is 1‐1;

(iii�) \forall $\gamma$\in(b_{1}\cap $\beta$)\backslash \{$\alpha$^{*}\}, g_{ $\beta$}^{3}( $\gamma$)\in $\kappa$\backslash A^{1}( $\gamma,\ \varphi$^{-1}( $\beta$)) ;

(iv�) \forall $\alpha$\in b_{1}, A^{1}( $\alpha,\ \varphi$^{-1}( $\beta$))\cup g_{ $\beta$}^{3}
�

(b_{1}\cap $\beta$) is counbounded in  $\kappa$ ;

(v�) in case (b), we want:  $\varphi$($\alpha$^{*}) < $\beta$\Rightarrow g_{ $\beta$}^{3}($\alpha$^{*})\neq g_{ $\beta$}^{2}( $\varphi$($\alpha$^{*})) ;

(vi�) also in case (b), we want: $\alpha$^{*}< $\beta$\Rightarrow g_{ $\beta$}^{3}($\alpha$^{*})\in B^{2}( $\varphi$($\alpha$^{*}),  $\beta,\ \xi$^{*}) .

Like before, we enumerate  b_{1}\cap $\beta$ :=\{ $\gamma$( $\xi$) :  $\xi$\in  $\kappa$\} and separately enumerate b_{1} :=

\{ $\alpha$( $\xi$) :  $\xi$\in $\kappa$\} like previously. The difference is that this time, in the case \mathrm{b}
,

if $\alpha$^{*} < $\beta$,
we fix  $\gamma$(0) := $\alpha$^{*} . In this case, we begin the induction by choosing x_{0} (like before, let

x_{0} = g_{ $\beta$}^{2}( $\varphi$($\alpha$^{*})) if  $\varphi$($\alpha$^{*}) <  $\beta$ , otherwise let  x_{0} be arbitrary), then choose g_{ $\beta$}^{3}( $\gamma$(0)) \in

 B^{2}( $\varphi$($\alpha$^{*}),  $\beta,\ \xi$^{*})\backslash \{x_{0}\} , if $\alpha$^{*} <  $\beta$ . Thus, item (vi�) holds. The rest of the induction is

dual to the previous case.

We now shall prove that such  g_{ $\beta$}^{3} adequate. The first step towards this end is proving
the following:

Claim 4.12. The function g_{ $\beta$}^{3} constructed above is a good coloring of \langle a^{3}\cap $\beta$, e^{3}\cap[ $\beta$]^{2}\rangle.

Proof of claim 4.12. Suppose  $\alpha$ <  $\gamma$ <  $\beta$ and \{ $\alpha$,  $\gamma$\} \in  e^{3} . We divide the proof in the

following cases:

\bullet If \{ $\gamma$, a,  $\beta$\}\subset a^{i} , for i=1 , 2, we have g_{ $\beta$}^{3}( $\alpha$)=g_{ $\beta$}^{i}( $\alpha$)\neq g_{ $\beta$}^{i}( $\gamma$)=g_{ $\beta$}^{3}( $\gamma$) , by either (i)
or (\mathrm{i}') ;

\bullet If  $\gamma$ \in  $\Delta$ , since  $\Delta$ is an initial segment of  a^{1} and of a^{2} (by lemma 4.9), we have

 $\alpha$\in $\Delta$ . Therefore we fall in the previous case;

\bullet If  $\beta$\in a^{1} and  $\alpha$,  $\gamma$\in b_{2} (or dually  $\beta$\in a^{2} and  $\alpha$,  $\gamma$\in b_{1} ), we have that g_{ $\beta$}^{3}( $\alpha$)\neq g_{ $\beta$}^{3}( $\gamma$)
by item (ii) (or dually by item (ii�));

\bullet if  $\beta$ \in  a^{1},  $\alpha$ \in  $\Delta$ and  $\gamma$ \in  b_{2} , we have \{ $\alpha$,  $\gamma$\} \in  e^{2} , so by (6) we have g_{ $\varphi$( $\beta$)}^{2}( $\alpha$) \in

 A^{2}( $\gamma$,  $\varphi$( $\beta$)) . Also, since  $\alpha$ \in  $\Delta$ , we have  g_{ $\varphi$( $\beta$)}^{2}( $\alpha$) = g_{ $\beta$}^{1}( $\alpha$) = g_{ $\beta$}^{3}( $\alpha$) , so g_{ $\beta$}^{3}( $\alpha$) \in

 A^{2}( $\gamma$,  $\varphi$( $\beta$)) . But by (iii) we have g_{ $\beta$}^{3}( $\gamma$)\not\in A^{2}( $\gamma$,  $\varphi$( $\beta$)) , hence g_{ $\beta$}^{3}( $\alpha$)\neq g_{ $\beta$}^{3}( $\gamma$)
\bullet if  $\beta$\in a^{2},  $\alpha$\in $\Delta$ and  $\gamma$\in b_{1} , the proof is dual to the above one;

These are all the possible cases for case (a). For case (b), we have some extra possibilities:
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\bullet If  $\beta$\in a^{2},  $\alpha$=$\alpha$^{*} and  $\gamma$\in a^{1} , by (4.2.1) we have $\alpha$^{*}\in b_{1} ,
so  $\gamma$\in b_{1} . Once again we

have g_{ $\beta$}^{3}( $\alpha$)\neq g_{ $\beta$}^{3}( $\gamma$) by item (ii�);

\bullet If  $\beta$ \in  a^{2},  $\alpha$ \in  $\Delta$ and  $\gamma$ = $\alpha$^{*} , we have \{ $\alpha$,  $\varphi$($\alpha$^{*})\} \in  e^{2} . By (4.2.1), we have

 $\Delta$\subset f_{$\xi$^{\mathrm{x}}}( $\varphi$($\alpha$^{*})) , so  $\alpha$<f_{$\xi$^{*}}( $\varphi$($\alpha$^{*})) . By (7), we have g_{ $\beta$}^{2}( $\alpha$) \not\in B^{2}( $\varphi$($\alpha$^{*}),  $\beta,\ \xi$^{*}) . But

by item (vi�), we have g_{ $\beta$}^{3}($\alpha$^{*})\in B^{2}( $\varphi$($\alpha$^{*}),  $\beta,\ \xi$^{*}) , so g_{ $\beta$}^{3}( $\alpha$)=g_{ $\beta$}^{2}( $\alpha$)\neq g_{ $\beta$}^{3}($\alpha$^{*}) ;

\bullet If \{ $\alpha$,  $\gamma$\}=\{$\alpha$^{*},  $\varphi$($\alpha$^{*})\} , it is clear by either item (v) or (\mathrm{v}') ;

\square 

Now we need to check that the g_{ $\beta$} we constructed is compatible with the sets A^{3}( $\alpha$,  $\beta$) ,

B^{3}( $\alpha$,  $\beta$,  $\xi$) already constructed.

Claim 4.13. Conditions (6) and (7) holds for all ( $\alpha$,  $\beta$\rangle \in(a^{1})^{2}\cup(a^{2})^{2}.

Proof of claim 4.13. Suppose  $\gamma$< $\alpha$,  $\beta$ and \{ $\alpha$,  $\gamma$\}\in e^{3} . In case (a) by symmetry we can

assume w.l. 0.\mathrm{g} . that  $\beta$\in b_{1} . Thus we have  $\alpha$\in a^{1} . We have the following cases:

\bullet If \{ $\gamma$,  $\alpha$,  $\beta$\} \subset  a^{\hat{ $\iota$}} , for i= 1 , 2, we have g_{ $\beta$}^{3}( $\alpha$) =g_{ $\beta$}^{i}( $\alpha$) and g_{ $\beta$}^{3}( $\gamma$) =g_{ $\beta$}^{i}( $\gamma$) , by either

(i) or (i�), so we are done because (6) and (7) holds for p^{1} and p^{2} ;

\bullet If  $\alpha$,  $\beta$\in a^{1} and \{ $\gamma$,  $\alpha$\}\in e^{2} , we have  $\alpha$\in $\Delta$ . Since  $\Delta$ is an initial segment of  a^{1} , we

have that  $\gamma$\in a^{1} , hence we fall in the previous case;

\bullet the case  $\alpha$,  $\beta$\in a^{2} and \{ $\gamma$,  $\alpha$\}\in e^{1} is the dual of the previous case.

In the case (b), we have also the following possibilities:
\bullet If  $\beta$\in a^{2},  $\gamma$=\mathrm{a}^{*} and  $\alpha$= $\varphi$( $\alpha$) , we have g_{ $\beta$}^{3}($\alpha$^{*}) \in B^{3}( $\varphi$($\alpha$^{*}),  $\beta,\ \xi$^{*}) \subset B^{3}( $\varphi$($\alpha$^{*}),  $\beta$)

by item (vi�). Since, by (4.2.1), f_{$\xi$^{*}}( $\varphi$($\alpha$^{*})) \leq $\alpha$^{*} and the B^{3} sets are pairwise
disjoint, (6) and (7) are satisfied;

\bullet If  $\beta$ \in  a^{1},  $\gamma$ = $\alpha$^{*} and  $\alpha$ =  $\varphi$($\alpha$^{*}) we have \langle $\alpha$,  $\beta$\rangle \not\in (a^{1})^{2}\cup(a^{2})^{2} , so A^{3}( $\alpha$,  $\beta$) ,

B^{3}( $\alpha$,  $\beta$,  $\xi$) have not been constructed yet;

\bullet if  $\beta$\in a^{1} and  $\varphi$($\alpha$^{*}) \in \{ $\alpha$,  $\gamma$\}\in e^{2} , we have  $\alpha$\in b_{2} by (4.2.1) Like above we have

\langle $\alpha$,  $\beta$\rangle\not\in(a^{1})^{2}\cup(a^{2})^{2} ;

\bullet the case where  $\beta$\in a^{2} and $\alpha$^{*}\in\{ $\alpha$,  $\gamma$\}\in e^{1} is dual to the previous case.

\square 

The only remaining part is to show that (4.1.1) holds so we can apply proposition 4.5

and finish the construction of p^{3}.
Claim 4.14. Let X=(a^{1})^{2}\cup(a^{2})^{2} . Then condition (4\cdot 1.1) holds for all \langle $\alpha$,  $\beta$\rangle \in (a^{3})^{2}\backslash X.

Proof of claim 4.14. It is enough to prove for the case (a), since case (b) adds only one

extra edge. By symmetry, w.l. 0.\mathrm{g} we assume  $\beta$ \in  a^{1} and  $\alpha$ \in  b_{2} . Let  $\gamma$ <  $\alpha$,  $\beta$ be such

that \{ $\gamma$,  $\alpha$\}\in e^{3} . Since  $\alpha$\in b_{2} , we have  $\gamma$\in a^{2} , we have either  $\gamma$\in $\Delta$ or  $\gamma$\in b^{2} . If  $\gamma$\in $\Delta$,
we have g_{ $\beta$}^{3}( $\gamma$)=g_{ $\beta$}^{2}( $\gamma$)\in A^{2}( $\alpha$,  $\varphi$( $\gamma$)) by (i) and (6). Therefore

\{g_{ $\beta$}^{3}( $\gamma$) : \{ $\gamma$,  $\alpha$\}\in e^{3},  $\gamma$< $\alpha$,  $\beta$\}\subset A^{2}( $\alpha$,  $\varphi$( $\beta$))\cup g_{ $\beta$}^{3\prime\prime}(b_{2}\cap $\beta$)
By (iv), the set above is counbounded in  $\kappa$. \square 

\square 
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4.3 Proof of the generalization
Now we can check what kind of chain condition B(rc) satisfies

Lemma 4.15. If 2^{ $\kappa$}=$\kappa$^{+}
, then \mathrm{B}( $\kappa$) is $\kappa$^{++} ‐Knaster.

Proof. Let A \in [\mathrm{B}( $\kappa$)]^{$\kappa$^{++}} Since the set of closed conditions is dense, we may assume

w.l.o.g. that all the conditions in A are closed. Assuming 2^{ $\kappa$} = $\kappa$^{+} , there are only $\kappa$^{+}

many possible isomorphism types, there is  A'\in [A]^{$\kappa$^{++}} which is pairwise isomorphic.
By lemma 4. 11\mathrm{a} , we have that A' is pairwise compatible. \square 

So by propositon 4.4 combined with lemma 4.15, we have that (under, for example,
GCH) \mathrm{B}( $\kappa$) preserves cardinals.

Let  E\sim be a \mathrm{B}( $\kappa$) ‐name such that |\vdash_{\mathrm{B} $\kappa$}
�

E\sim=\cup\{e^{p} : p\in G_{\mathrm{B}( $\kappa$)}\}
�

By the construction

of the side conditions g_{ $\beta$} and the assumption that  $\lambda$ is regular, it is easy to see that:

Lemma 4.16. Assuming  2^{ $\kappa$}=$\kappa$^{+}
,

we have

|\vdash If \mathcal{G} is a subgraph of \langle\check{W}, E }
\sim

of size \leq$\kappa$^{+} , then \mathrm{C}\mathrm{h}\mathrm{r}(\mathcal{G})\leq $\kappa$
�

Finally, we use lemma 4.11 to prove the last piece of the result.

Lemma 4.17. Assuming  2^{ $\kappa$}=$\kappa$^{+} , we have

|\vdash \langle\check{W},  E\rangle\sim has chromatic number $\kappa$^{++} �

Proof. Let p\in \mathrm{B}( $\kappa$) be such that p|\vdash\sim g:\check{W}\rightarrow$\kappa$^{+}
� We shall find a condition q\leq p

which forces \sim g not to be a good coloring of \langle\check{W} , E\rangle\sim.
For each  $\alpha$ \in  W , we can choose some closed condition p^{ $\alpha$} \leq  p , with  $\alpha$ \in  a^{ $\alpha$} , and

some $\zeta$_{ $\alpha$}<$\kappa$^{+} such that  p^{ $\alpha$}|\vdash \sim g( $\alpha$)=$\zeta$_{ $\alpha$}
�

Assuming 2^{ $\kappa$}=$\kappa$^{+} , there are only $\kappa$^{+} many

isomorphism types, since W is stationary in $\kappa$^{++} , there is a stationary S\subset W such that:

\bullet \{p^{ $\alpha$} :  $\alpha$\in S\} is pairwise isomorphic;

\bullet \exists $\zeta$<$\kappa$^{+}, \forall $\alpha$\in S,  $\zeta$_{ $\alpha$}= $\zeta$ ;

\bullet for each  $\alpha$,  $\beta$\in S , if  $\varphi$ : \mathrm{s}\mathrm{c}1(a^{ $\alpha$})\rightarrow \mathrm{s}\mathrm{c}1(a^{ $\beta$}) is an isomorphism, then  $\varphi$( $\alpha$)= $\beta$.

Consider all the functions f_{ $\xi$} restricted to S . Since they are regressive and S is sta‐

tionary, for each  $\xi$ \in  $\kappa$ there is some  $\alpha$_{ $\xi$} \in  $\lambda$ such that  f_{ $\xi$}^{-1}(\{$\alpha$_{ $\xi$}\}) is stationary. Notice

that we cannot for all  $\xi$ <  $\kappa$ choose such an  $\alpha$_{ $\xi$} uniquely. The reason for it is that

if we could do so, it would be possible to construct a nonstationary set N such that

\forall $\alpha$\in  S\backslash N, \forall $\xi$ <  $\kappa$, f_{ $\xi$}( $\alpha$) =$\alpha$_{ $\xi$} , which contradicts the definition of f_{ $\xi$} . Therefore, there

is some $\xi$^{*} <  $\kappa$ and distinct  $\gamma$, $\gamma$' < $\kappa$^{+} such that f_{$\xi$^{*}}^{-1}(\{ $\gamma$\}) and f_{$\xi$^{*}}^{-1}(\{$\gamma$'\}) are stationary
subsets of S.

Choose $\alpha$^{*} \in  f_{$\xi$^{*}}^{-1}(\{ $\gamma$\}) and $\beta$^{*} \in  f_{$\xi$^{*}}^{-1}(\{$\gamma$'\}) such that $\alpha$^{*} < $\beta$^{*} . Fix an isomorphism
 $\varphi$ : \mathrm{s}\mathrm{c}1(a^{$\alpha$^{*}})\rightarrow \mathrm{s}\mathrm{c}1(a^{$\beta$^{*}}) . Notice that  $\gamma$\in \mathrm{d}\mathrm{o}\mathrm{m}( $\varphi$) because p^{$\alpha$^{*}} is a closed condition. Recall

that, by lemma 4.9, \mathrm{s}\mathrm{c}1(a^{$\alpha$^{*}})\cap \mathrm{s}\mathrm{c}1(a^{$\beta$^{*}}) is an initial segment of both \mathrm{s}\mathrm{c}1(a^{$\alpha$^{*}}) and \mathrm{s}\mathrm{c}1(a^{$\beta$^{*}}) ,
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thus  $\varphi$ \mathrm{r}_{\mathrm{s}\mathrm{c}1(a^{$\alpha$^{*}})\cap \mathrm{s}\mathrm{c}1(a^{$\beta$^{*}})} is the identity function. Since  $\varphi$($\alpha$^{*})=$\beta$^{*} and  $\varphi$ preserves  f_{$\xi$^{*}}
(definition 4.10), we have

 $\varphi$( $\gamma$)= $\varphi$(f_{$\xi$^{*}}($\alpha$^{*}))=f_{$\xi$^{*}}( $\varphi$($\alpha$^{*}))=f_{$\xi$^{*}}($\beta$^{*})=$\gamma$'\neq $\gamma$

hence  $\gamma$\not\in \mathrm{s}\mathrm{c}1(a^{$\alpha$^{*}})\cap \mathrm{s}\mathrm{c}1(a^{$\beta$^{*}}) . Therefore, since \mathrm{s}\mathrm{c}1(a^{$\alpha$^{*}})\cap \mathrm{s}\mathrm{c}1(a^{$\beta$^{*}}) is an initial segment of

\mathrm{s}\mathrm{c}1(a^{$\alpha$^{*}}) , we have

a^{$\alpha$^{*}}\cap a^{$\beta$^{*}} \subset $\gamma$=f_{$\xi$^{*}}($\alpha$^{*})<$\alpha$^{*}<$\beta$^{*}= $\varphi$($\alpha$^{*})
Therefore, p^{$\alpha$^{*}} and p^{$\beta$^{*}} satisfy (4.2.1), so by lemma 4.11, there is a condition q \leq

 p^{$\alpha$^{*}}, p^{$\beta$^{*}} such that \{$\alpha$^{*}, $\beta$^{*}\}\in e^{q} . Thus

q|\vdash\sim g($\alpha$^{*})=\sim g($\beta$^{*}) and \{$\alpha$^{*}, $\beta$^{*}\}\in E\sim,,

so q is the desired condition. \square 

This concludes the proof of theorem 4.1. However, the proof of theorem 4.1 arose the

question of whether it is possible to further generalize the result, i.e.:

Question 2. For any regular cardinals  $\kappa$ and  $\lambda$ , with  $\lambda$>$\kappa$^{+_{2}} is it consistent the existence

of a graph of size and chromatic number  $\lambda$ such that all subgraphs of  size\leq $\kappa$^{+} have

chromatic number \leq$\kappa$^{9}
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