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ABSTRACT. In this note, we show that the axiom \mathrm{B}1-\mathrm{A}\mathrm{D}_{$\omega$_{1}} is inconsistent under ZF +

\mathrm{A}\mathrm{C}_{(v}(\mathbb{R}) . This answers the question of Löwe in [3, Question 52].

1. INTRODUCTION AND BASIC DEFINITIONS

In this note, we will prove the following:

Theorem 1.1 (\mathrm{Z}\mathrm{F}+\mathrm{A}\mathrm{C}_{ $\omega$}(\mathbb{R})) . The axiom \mathrm{B}1-\mathrm{A}\mathrm{D}_{ $\omega$ 1} is inconsistent.

The axiom \mathrm{B}1-\mathrm{A}\mathrm{D}_{$\omega$_{1}} is a natural strengthening of the Axiom of Blackwell determinacy (Bl‐
AD). For the background of this research topic, one can refer to the survey paper on Blackwell

determinacy [3]. We mostly follow the standard notations and we use basic notions from the

Jech�s textbook on set theory [1].
First, let us define what \mathrm{B}1-\mathrm{A}\mathrm{D}_{$\omega$_{1}} is.

Let X be a set with more than one element and assume \mathrm{A}\mathrm{C}_{ $\omega$}(^{ $\omega$}X ). By Prob(X), we denote

the set of all Borel probability measures on X with a countable support, i.e., the set of all

Borel probability measures p such that there is a countable set C\subseteq X with p(C)=1^{1} From

now on, we regard X as a discrete topological space and topologize  $\omega$ X as the product space.
For any finite sequence s of elements in X

, let [s] be the basic open set generated by s , i.e.,
[s]=\{x\in $\omega$ X;s\subseteq x\}.

Let X^{\mathrm{E}\mathrm{v}\mathrm{e}\mathrm{n}} (X^{\mathrm{O}\mathrm{d}\mathrm{d}}) be the set of finite sequences in X with even (odd) length. We call

a function  $\sigma$:X^{\mathrm{E}\mathrm{v}\mathrm{e}\mathrm{n}} \rightarrow Prob(X) a mixed strategy for player  I and a function  $\tau$:X^{\mathrm{O}\mathrm{d}\mathrm{d}} \rightarrow

Prob(X) a mixed strategy for player II. Given mixed strategies  $\sigma$ and  $\tau$ for players I and II

respectively, let  $\nu$( $\sigma$,  $\tau$):< $\omega$ X\rightarrow \mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}(X) as follows: For each finite sequence s of elements

in X,

 $\nu$( $\sigma$,  $\tau$)(s)=\left\{\begin{array}{ll}
 $\sigma$(s) & \mathrm{i}\mathrm{f} 1\mathrm{h}(s) \mathrm{i}\mathrm{s} \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n},\\
 $\tau$(s) & \mathrm{i}\mathrm{f} 1\mathrm{h}(s) \mathrm{i}\mathrm{s} \mathrm{o}\mathrm{d}\mathrm{d},
\end{array}\right.
where 1\mathrm{h}(s) is the length of s . Since some of the calculations in this paper require a lot of

parentheses, let us reduce their number by convention. If (x_{0}, x_{n}) is a finite sequence, we
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1We are going to amalgamate a sequence of such measures to produce a product measure on  $\omega$ X as we

construct the Lebesgue measure on  W $\omega$ . For this purpose, the condition of having a countable support is

essential.

数理解析研究所講究録
第2042巻 2017年 72-74

72



D. IKEGAMI

write [x_{0}, x_{n}] for the basic open set [(x_{0}, x_{n} Similarly, if x\in X and  $\mu$\in \mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}(X) , we

write  $\mu$(x) for  $\mu$(\{x\}) . Now, for each finite sequence s of elements in X , define

$\mu$_{ $\sigma,\ \tau$}([s])=\displaystyle \prod_{i=0}^{1\mathrm{h}(s)-1} $\nu$( $\sigma$,  $\tau$)(s\mathrm{r}i)(s(i)) .

By using \mathrm{A}\mathrm{C}_{ $\omega$}(\mathbb{R}\times^{ $\omega$}X) (which follows from \mathrm{A}\mathrm{C}_{ $\omega$}(^{ $\omega$}X) ), we can uniquely extend $\mu$_{ $\sigma,\ \tau$} to a Borel

probability measure on  $\omega$ X
, i.e., the probability measure whose domain is the set of all Borel

sets in  $\omega$ X . Let us also use $\mu$_{ $\sigma,\ \tau$} for denoting this Borel probability measure.

Let A be a subset o \mathrm{f}^{ $\omega$}X . A mixed strategy  $\sigma$ for player I is optimal in  A if for any mixed

strategy  $\tau$ for player II,  A is $\mu$_{ $\sigma,\ \tau$} ‐measurable and $\mu$_{ $\sigma,\ \tau$}(A)=1 . Similarly, a mixed strategy  $\tau$

for player II is optimal in  A if for any mixed strategy  $\sigma$ for player I,  A is $\mu$_{ $\sigma,\ \tau$} ‐measurable and

$\mu$_{ $\sigma,\ \tau$}(A) =0 . We say that A is Blackwell determined if either player I or II has an optimal
strategy in A . Finally, \mathrm{B}|-\mathrm{A}\mathrm{D}_{X} is the statement �for any subset A of  $\omega$ X, A is Blackwell

determined. �� 2

Note that we only need \mathrm{A}\mathrm{C}_{ $\omega$}(\mathbb{R}) to define \mathrm{B}1-\mathrm{A}\mathrm{D}_{$\omega$_{1}} because \mathrm{A}\mathrm{C}_{ $\omega$}(^{ $\omega$}$\omega$_{1} ) follows from \mathrm{A}\mathrm{C}_{ $\omega$}(\mathbb{R}) .

2. PROOF OF THEOREM

Proof of Theorem 1.1. To derive a contradiction, let us assume \mathrm{B}1-\mathrm{A}\mathrm{D}_{$\omega$_{1}}.
We will prove the following two claims, which will be inconsistent to each other:

Claim 1. There is no injection from $\omega$_{1} to \mathcal{P}( $\omega$) .

Claim 2. There is an injection from $\omega$_{1} to \mathcal{P}( $\omega$) .

Proof of Claim 1. We will use the following fact:

Fact 2.1. Assume BI‐AD. Then $\omega$_{1} is measurable.

Proof. See e.g., [2, Corollary 4.19]. \square 

Let  $\mu$ be a normal measure on  $\omega$_{1} and towards a contradiction, suppose there is an injection
f:$\omega$_{1}\rightarrow P( $\omega$) .

We will derive a contradiction by the following arguments: for each natural number n,

let X_{n} = \{ $\alpha$ < $\omega$_{1} | n\in f( $\alpha$)\} . Since  $\mu$ is a measure on  $\omega$_{1} , for each n , either X_{n} \in  $\mu$ or

 $\omega$_{1}\backslash X_{n}\in $\mu$ . Let  X=\cap\{X_{n} |X_{n}\in $\mu$\}\cap\cap\{$\omega$_{1}\backslash X_{n} |X_{n}\not\in $\mu$\} . Then since  $\mu$ is  $\sigma$‐complete,
 X is also in  $\mu$ . Hence one can pick  $\alpha$,  $\beta$\in X with  $\alpha$\neq $\beta$.

We argue that f( $\alpha$)=f( $\beta$) , which would contract the assumption that f is injective. In

fact, for each natural number n,

n\in f( $\alpha$) \Leftrightarrow  $\alpha$\in X_{n} \Leftrightarrow  $\beta$\in X_{n} \Leftrightarrow n\in f( $\beta$) ,

2This formulation of Blackwell determinacy axioms does not involve imperfect information games; the

original formulation due to Blackwell did, but these axioms turned out to be equivalent to the version we

defined here which could be described as �perfect information determinacy with mixed strategies�. The

imperfect information axiom would allow the players to move simultaneously, but at each move at least

one of the players would have only finitely many choices. The proof of [4] adapts to show that the perfect
information axiom implies the imperfect information one. Vervoort�s proof in [5] shows that optimal strategies
exist for the perfect information games. For more details, cf. [3, §5].
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where the second equivalence holds because both  $\alpha$ and  $\beta$ are in  X . Therefore, f( $\alpha$) =

f( $\beta$) . \square 

Proof of Claim 2. We will construct an injection g:$\omega$_{1}\rightarrow \mathcal{P}( $\omega$) using determinacy of Black‐

well games with choosing countable ordinals.

Let us consider the following game \mathcal{G} : Player I chooses a countable ordinal  $\alpha$ at first and

then Player II chooses either  0 or 1  $\omega$‐many times and produces a real  y\subseteq $\omega$ . Player II wins

if the real  y codes  $\alpha$ . Otherwise Player I wins.

This game can be formulated as a game in the definition of \mathrm{B}1-\mathrm{A}\mathrm{D}_{ $\omega$ 1} and therefore, one of

the players has an optimal strategy in the game \mathcal{G}.
Notice that Player I cannot have an optimal strategy in the game \mathcal{G} because of the following

argument: Suppose  $\sigma$ is an optimal strategy in the game \mathcal{G} for Player I and then by the

definition of a mixed strategy, there is an ordinal  $\alpha$<$\omega$_{1} such that  $\sigma$(\emptyset)(\{ $\alpha$\})>0 . Then let

$\tau$_{0} be the mixed strategy for Player II in the game \mathcal{G} such that $\tau$_{0} let II play a real y coding
a with measure 1. Then the probability of the payoff set in the \mathcal{G} via $\mu$_{ $\sigma,\ \tau$ 0} is less than 1 and
hence the mixed strategy  $\sigma$ is not optimal.

Hence Player II has an optimal strategy  $\tau$ in the game \mathcal{G} instead. We will produce an

$\omega$_{1} ‐sequence (x_{ $\alpha$} | $\alpha$<$\omega$_{1}) of distinct reals using this strategy  $\tau$ in the following way:
Given a countable ordinal  $\alpha$ , let  $\tau$_{ $\alpha$} be the mixed strategy of Player II in the game \mathcal{G} after

Player I plays  $\alpha$ with probability 1. Then  $\tau$_{ $\alpha$} can be regarded as a Borel probability on the

Baire space and hence it can be seen as a real x_{ $\alpha$}.

We claim that the function g( $\alpha$)=x_{ $\alpha$} is injective. Let  $\alpha$< $\beta$ be countable ordinals. Then

the strategy  $\tau$_{ $\alpha$} concentrates on reals coding  $\alpha$ with probability 1 while  $\tau$_{ $\beta$} concentrates on

reals coding  $\beta$ with probability 1. Therefore,  $\tau$_{ $\alpha$} and $\tau$_{ $\beta$} are distinct and so are x_{ $\alpha$} and x_{ $\beta$} , as

desired.

\square 

\square 
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