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ABSTRACT. We give an exposition of Horowitz and Shelah�s proof that there

exists an effectively Borel maximal eventually different family (working in ZF

or less) and announce two related theorems.

1. INTRODUCTION

A. Two functions f_{0}, f_{1} on \mathbb{N} are called eventually different if and only if

\{n\in \mathrm{N}|f_{0}(n)=f_{1}(n)\}
is finite. A set \mathcal{E} is called an eventually different family (of functions from \mathbb{N} to \mathbb{N} )
if and only if \mathcal{E}\subseteq \mathrm{N}\mathrm{N} and any two distinct f_{0}, f_{1}\in \mathcal{E} are eventually different; such a

family is called maximal if and only if it is maximal with respect to inclusion among

eventually different families (we abbreviate maximal eventually different family by
medf).

In [2] Horowitz and Shelah prove the following (working in ZF).

Theorem 1.1 ([2]). There is a A_{1}^{1} maximal eventually different family.

This was surprising as the analogous statement is false in many seemingly similar

situations: e.g., infinite so‐called mad families cannot be \cdot analytic[5] (see also [9]).
In a more recent, related result [1] Horowitz and Shelah obtain a $\Delta$_{1}^{1} maximal

cofinitary group.

In this note we present a short and elementary proof of their first result, i.e., that

there is a $\Delta$_{1}^{1} maximal eventually different family. We also take the opportunity to

announce the following improvement of Theorem 1.1:

Theorem 1.2 ([8, 7 There is a $\Pi$_{1}^{0} maximal eventually different family.

The following question was asked by Asger Törnquist [10]: For F:\mathrm{N}\rightarrow \mathrm{N}\backslash \{0\}
such that \displaystyle \lim\inf_{n\rightarrow\infty}F(n) =\infty does there exist a Borel or even a compact medf
in the space \mathcal{N}_{F} ? Here the space \mathcal{N}_{F} is defined to be the closed subspace \mathcal{N}_{F} =

\{g\in \mathrm{N}\mathrm{N}| (\forall n\in \mathrm{N})g(n)<F(n)\} of Baire space \mathrm{N}\mathbb{N}.

To make the question entirely precise, we give the definition of (maximal) even‐

tually different families a broader context:

Deflnition 1.3. Let a function F:\mathbb{N}\rightarrow $\omega$+1 be given. A set \mathcal{E} is an eventually
different family in \mathcal{N}_{F} if and only if \mathcal{E} \subseteq \mathcal{N}_{F} and any two distinct g_{0}, g_{1} \in \mathcal{E} are

eventually different; such a family is called maximal (or short: a medf) if and only
if it is maximal among such families under inclusion.

2010 Mathematics Subject Classification. 03\mathrm{E}15, 03\mathrm{E}25, 03\mathrm{E}05.

Key words and phrases. effectively Borel, maximal eventually different family, maximal almost

disjoint family.

数理解析研究所講究録
第2042巻 2017年 99-105

99



DAVID SCHRITTESSER

We also announce the following results (see [7] for proofs).

Theorem 1.4 ([7]). Suppose F:\mathrm{N}\rightarrow( $\omega$+1)\backslash \{0\} is such that \displaystyle \lim_{n\rightarrow\infty}F(n)= $\omega$.
There is a perfect $\Pi$_{1}^{0}(F) maximal eventually different family in \mathcal{N}_{F}.

Corollary 1.5 ([7]). With F as above, there is a compact $\Pi$_{1}^{0}(F) medf in \mathcal{N}_{F} if
and only if  F(n)< $\omega$ for infinitely many  n\in \mathbb{N} . Moreover we have two cases:

(1) \displaystyle \lim\inf_{n\rightarrow\infty}F(n)< $\omega$ . In this case every medf is finite and there is a finite
medf consisting of constant functions.

(2) \displaystyle \lim_{n\rightarrow\infty}F(n) =  $\omega$ . In this case there is a perfect  $\Pi$_{1}^{0}(F) medf but no

countable medf.

We ask (\forall n\in \mathrm{N})F(n)>0 to preclude the trivial case of the empty space. When

\displaystyle \lim\inf_{n\rightarrow\infty}F(n) < $\omega$ there is  m such that \{n\in \mathbb{N}|F(n) =m\} is infinite and the

set \{c_{k} |k<m\} where c_{k} is the constant function with value k constitutes a medf.
So the question posed by Törnquist is only interesting if \displaystyle \lim_{n\rightarrow\infty}F(n)= $\omega$ holds.

Note: This note is an abridged version of [8] in which we show that there exists

a \mathrm{I}\mathrm{I}_{1}^{0} (i.e., effectively closed) maximal eventually different family. In the related [7]
we present a further simplification of the construction, as well as provide an answer

to Törnquist�s question.

B. We fix some notation and terminology (generally, our reference for notation is

[3]). \exists^{\infty} �

means �there are infinitely many. . . ,� \mathrm{N}\mathrm{N} means the set of functions from

\mathrm{N} to \mathrm{N} and <\mathrm{N}\mathrm{N} means the set of finite sequences from \mathbb{N} ; we write 1\mathrm{h}(s) for the

length of s when s\in<\mathrm{N}\mathrm{N} . For s, t\in n\mathrm{N}, s^{-}t is the concatenation of s and t , i.e.,
the unique u\in \mathrm{h}\mathrm{t}(s)+1\mathrm{h}(t)\mathbb{N} such that s\subseteq u and (\forall k<1\mathrm{h}(t))u(1\mathrm{h}(s)+k)=t(k) .

We write f_{0}=^{\infty}f_{1} to mean that f_{0} and f_{1} are not eventually different (they are

infinitely equal). Two sets A, B\subseteq \mathbb{N} are called almost disjoint if and only if A\cap B

is finite, and an almost disjoint family is a set A\subseteq P(\mathrm{N}) any two elements of which

are almost disjoint.
It makes sense to talk about \triangle_{1}^{0}(F) for F: $\omega$\rightarrow $\omega$+1 as above because we may

identify F in an obvious way with a subset of \mathrm{H}( $\omega$) (the set of hereditarily finite

sets). Consult [6, 4, 3] for more on the (effective) Borel and projective hierarchies,
i.e., on \mathrm{I}\mathrm{I}_{1}^{0}, \mathrm{I}\mathrm{I}_{1}^{0}(F) , $\Delta$_{1}^{1} ,

. . . sets.

In this paper we work in the theory ZF (or in fact, in a not so strong subsystem
of second order arithmetic).
C. This note is organized as follows. In Section 2 we make some motivating obser‐

vations, leading to Lemma 2.5 which gives an abstract recipe for creating maximal

eventually different families. We take the opportunity to give a rough sketch of the

proof of Theorem 1.1 as given in [2].
We then give a simpler construction instantiating the recipe from Lemma 2.5

and yielding a medf which is $\Sigma$_{3}^{0}\vee$\Pi$_{3}^{0} in Section 3.

We close in Section 4 with some open questions.

Acknowledgements: The author gratefully acknowledges the generous support

from the DNRF Niels Bohr Professorship of Lars Hesselholt.

2. THE RECIPE

Deflnition 2.1. Fix a computable (\mathrm{i}.\mathrm{e}., $\Delta$_{1}^{0}) bijection n\mapsto s_{n} of \mathrm{N} with <\mathrm{N}\mathrm{N} and

write  s\mapsto \# s for its inverse. Given f : \mathrm{N}\rightarrow \mathrm{N} , let e(f):\mathbb{N}\rightarrow \mathrm{N} be the function

100



ON HOROWITZ AND SHELAH�S BOREL MAXIMAL EVENTUALLY DIFFERENT FAMILY

defined by

\mathrm{e}(f)(n)=\# f\mathrm{r}n.

Clearly \{\mathrm{e}(f) | f\in \mathrm{N}\mathbb{N}\} is an eventually different family. At first sight, it may

seem a naive strategy to make it also maximal by varying the definition of \mathrm{e}(f) so

that it leaves f intact on some infinite set. But this is just how [2] succeeds.

Definition 2.2. Let f:\mathbb{N}\rightarrow \mathrm{N}.

A. Let \mathrm{B}(f)=\{2n+1|s_{n}\subseteq f\}.
B. For a set B\subseteq \mathbb{N} , let ë (f, B):\mathrm{N}\rightarrow \mathbb{N} be the function defined by

ë(f, B)(n)= \left\{\begin{array}{ll}
f(n) & \mathrm{i}\mathrm{f} n\in B,\\
\# f\mathrm{t}n & \mathrm{i}\mathrm{f} n\not\in B.
\end{array}\right.
Remark 2.3. Note for later that f is recursive in ë (f, \mathrm{B}(f)) as ë (f; \mathrm{B}(f)) \mathrm{r}2\mathrm{N}=
\mathrm{e}(f) \lceil 2\mathrm{N}.

The family \mathcal{E}_{0} = \{"\""{e}"(f, \mathrm{B}(f)) | f \in \mathrm{N}\mathbb{N}\} is obviously maximal in the sense that

(\forall h\in \mathrm{N}\mathrm{N})(\exists g \in F) h=^{\infty}g . Interestingly, \mathcal{E}_{0} is also in some sense close to being
eventually different: For if ë (f, \mathrm{B}(f))(n) = ë (f\prime, \mathrm{B}(f'))(n) for infinitely many n,

almost all of these n must lie in \mathrm{B}(f)\cup \mathrm{B}(f') and hence as \{\mathrm{B}(f) |f\in \mathrm{N}\mathrm{N}\} is an

almost disjoint family,

(\exists^{\infty}n\in \mathrm{B}(f))f(n)=\mathrm{e}(f')(n)

or the same holds with f and f' switched.

The brilliant idea of Horowitz and Shelah is the following: Ensure maximality
with respect to f which look like \mathrm{e}(f') on an infinite set using \mathrm{e}(f') ; restrict the use

of ë to f which don�t look like they arise from \mathrm{e} on some infinite subset of \mathrm{B}(f) to

avoid the situation described above. We make these ideas precise in the following
definition and in Lemma 2.5 below.

Definition 2.4. Let a function f : \mathrm{N} \rightarrow \mathrm{N} and X \subseteq \mathbb{N} be given. We say f is

\infty ‐coherent on  X if and only if there is f' \in \mathrm{N}\mathrm{N} and infinite X' \subseteq  X such that

f\mathrm{r}X'=e(f') \mathrm{r}x^{J}.

We can now give a general recipe for constructing a medf.

Lemma 2.5. Suppose that T\subseteq \mathrm{N}\mathrm{N} and \mathrm{C}:\mathrm{N}\mathrm{N}\rightarrow \mathcal{P}(\mathbb{N}) is a f?unction such that

(A) If f\not\in T, there is an infinite set X'\subseteq \mathrm{C}(f) and f'\in \mathrm{N}\mathbb{N} such that f[X'=
\mathrm{e}(f') \lceil X' ; i. e., f \dot{u}\infty ‐coherent on \mathrm{C}(f) .

(B) If f\in T, for no f'\in \mathrm{N}\mathrm{N} does f agree with e(f') on infinitely many points
in \mathrm{C}(f) ; i. e., f is not \infty ‐coherent on \mathrm{C}(f) .

(C) \{\mathrm{C}(f) |f\in T\} is an almost disjoint family.

Then

\mathcal{E}=\{\ddot{\mathrm{e}}(f, \mathrm{C}(f)) |f\in T\}\cup\{\mathrm{e}(f) |f\not\in T\}
is a maximal eventually different family.

Of course the challenge here is to define \mathrm{C} and T so that \mathcal{E} is $\Delta$_{1}^{1} ; before we

discuss this aspect, we prove the lemma.
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For the sake of this proof it will be convenient to define the map \dot{\mathrm{e}} : \mathrm{N}\mathrm{N}\rightarrow \mathrm{N}\mathrm{N} as

follows: For f\in \mathrm{N}\mathbb{N} let \dot{\mathrm{e}}(f) be the function defined by

\dot{\mathrm{e}}(f)= \left\{\begin{array}{ll}
"\""{e}" (f, \mathrm{C}(f)) & \mathrm{i}\mathrm{f} f\in T,\\
\mathrm{e}(f) & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right. (1)

Clearly \mathcal{E}=\{\dot{\mathrm{e}}(f) |f\in \mathrm{N}\mathrm{N}\}.

Proof of Lemma 2.5. To show \mathcal{E} consists of pairwise eventually different functions,
fix distinct g_{0} and g_{1} from \mathcal{E} and suppose g_{i}=\dot{\mathrm{e}}(f_{i}) for each i\in\{0 , 1 \} . Clearly we

can disregard

N= {n\in \mathrm{N}|g_{0}(n)=\mathrm{e}(f_{0})(n) and g_{1}(n)=\mathrm{e}(f_{1})(n) }

as g_{0} and g_{1} can only agree on finitely many such n.

If n\not\in N then it must be the case that for some i\in\{0 , 1 \}, f_{i}\in T and n\in \mathrm{C} (fi);
suppose i=0 for simplicity. By (C) we may restrict our attention to \mathrm{C}(f_{0})\backslash \mathrm{C}(f_{1})
where g_{0} agrees with f_{0} and g_{1} agrees with \mathrm{e}(f_{1}) . But f_{0} and \mathrm{e}(f_{1}) can�t agree on

an infinite subset of \mathrm{C}(f_{0})\backslash \mathrm{C}(f_{1}) by (B).
It remains to show maximality. So let f:\mathbb{N}\rightarrow \mathrm{N} be given. If f \in  T we have

\dot{\mathrm{e}}(f) \mathrm{r}\mathrm{C}(f)=f\lceil.\mathrm{C}(f) and \dot{\mathrm{e}}(f)\in \mathcal{E} by definition.

If on the other hand f\not\in T there is f'\in \mathrm{N}\mathbb{N} such that \mathrm{e}(f') agrees with f on an

infinite subset of \mathrm{C}(f) . As \dot{\mathrm{e}}(f')\in \mathcal{E} it suffices to show f=^{\infty}\dot{\mathrm{e}}(f') .

If f'\not\in T as well this is clear as \dot{\mathrm{e}}(f')=\mathrm{e}(f') . If on the contrary f'\in T, we have

f\neq f' and so \mathrm{C}(f)\cap \mathrm{C}(f') is finite by (C). So \dot{\mathrm{e}}(f') agrees with \mathrm{e}(f') for all but

finitely many points in \mathrm{C}(f) and hence agrees with f on infinitely many points. \square 

Note that letting T= { f\in \mathrm{N}\mathbb{N}| f is not \infty-coherent on \mathrm{B}(f) } and \mathrm{C}(f)=\mathrm{B}(f)
the requirements of Lemma 2.5 are trivially satisfied; but the resulting \mathcal{E} will not

be Borel (only $\Pi$_{1}^{1}\vee$\Sigma$_{1}^{1} ). On the other hand if T is \mathrm{A}_{1}^{1} and \mathrm{C}:\mathrm{N}\mathbb{N}\rightarrow \mathcal{P}(\mathbb{N}) is $\Sigma$_{1}^{1},
then \mathcal{E} is clearly $\Sigma$_{1}^{1} , and in fact it follows that \mathcal{E} is $\Delta$_{1}^{1} in this case because it is a

medf and so

h\not\in \mathcal{E} \Leftrightarrow (\exists g\in^{\mathrm{N}}\mathbb{N})h\neq g\wedge h=^{\infty}g\wedge g\in \mathcal{E}.
(Of course the function \mathrm{C} : \mathrm{N}\mathrm{N}\rightarrow \mathcal{P}(\mathbb{N}) is also automatically $\Delta$_{1}^{1}. ) We may view the

task at hand to be: find a reasonably effective process producing from a function

f either a subset of \mathrm{B}(f) where f agrees with some \mathrm{e}(f') or a set \mathrm{C}(f) \subseteq \mathrm{B}(f) on

which f can be seen effectively to not be oo‐coherent.

From this we can sketch what is arguably the core of Horowitz and Shelah�s con‐

struction from [2]. The present author has not verified whether their construction

yields an arithmetic family.

Proof of Theorem 1.1. Given f : \mathbb{N}\rightarrow \mathbb{N} define a coloring of unordered pairs from

\mathbb{N} as follows (supposing without loss of generality that k<k

c(\{k, k = \left\{\begin{array}{ll}
0 & \mathrm{i}\mathrm{f} s_{f(k)} \subseteq s_{f(k')},\\
1 & \mathrm{i}\mathrm{f} \neg (s_{f(k)} \subseteq s_{f(k')}) .
\end{array}\right.
Let T consist of those f\in \mathbb{N}\mathbb{N} such that there is an infinite set X\subseteq \mathrm{B}(f) which is

1‐homogeneous, i.e., c assigns the color 1 to every unordered pair from X . By the

Infinite Ramsey Theorem f \not\in  T if and only if there is an infinite 0‐homogeneous
X \subseteq \mathrm{B}(f) , whence T is $\Delta$_{1}^{1} and (A) holds. For f \in T let \mathrm{C}(f) pick some infinite
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1‐homogeneous X\subseteq \mathrm{B}(f) ; for f\not\in T let \mathrm{C}(f)=\mathrm{B}(f) . Then (B) and (C) hold by
definition and by Lemma 2.5, \mathcal{E} is a medf.

By the proof of the Infinite Ramsey Theorem, the function \mathrm{C} : \mathrm{N}\mathbb{N}\rightarrow \mathcal{P}(\mathrm{B}(f))
can be chosen to be $\Sigma$_{1}^{1} . Thus \mathcal{E} as defined in Lemma 2.5 is $\Delta$_{1}^{1}. \square 

In the next section, we essentially replace the appeal to the Infinite Ramsey
Theorem by a simple instance of the law of excluded middle.

3. A MAXIMAL EVENTUALLY DIFFERENT FAMILY WITH A SIMPLE DEFINITION

We now give a simpler construction of a family satisfying the requirements of

Lemma 2.5.

Definition 3.1 (The medf S).
A. Let f:\mathrm{N}\rightarrow \mathrm{N} . Define a binary relation \prec f on \mathbb{N} by

m\prec J_{m'} \Leftrightarrow [ (1\mathrm{h}(s_{f(m)})=m)\wedge(1\mathrm{h}(s_{f(m')})=m')\wedge(s_{f(m)} \rightarrow\subset s_{f(m')})]
B. Let T be the set of f:\mathrm{N}\rightarrow \mathrm{N} such that

(\forall n\in \mathrm{B}(f))(\exists m\in \mathrm{B}(f)\backslash n)(\forall m'\in \mathrm{B}(f)\backslash m)\neg(m\prec fm') (2)
We also say f is tangled to mean f\in T.

C. For f\not\in T , define \mathrm{C}(f) to be \mathrm{B}(f) and for f\in T define

\mathrm{C}(f)=\{m\in \mathrm{B}(f) | (\forall m'\in \mathrm{B}(f)\backslash m)\neg(m\prec mf
D. Let \mathcal{E} be defined from T and \mathrm{C} as in Lemma 2.5, i.e.,

\mathcal{E}=\{\dot{\mathrm{e}}(f) |f\in^{\mathrm{N}}\mathbb{N}\}
where \dot{\mathrm{e}}(f) is the function defined as in (1):

\dot{\mathrm{e}}(f)= \left\{\begin{array}{ll}
"\""{e}" (f, \mathrm{C}(f)) & \mathrm{i}\mathrm{f} f\in T,\\
\mathrm{e}(f) & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
We want to call the following to the readers attention:

(i) \{\mathrm{C}(f) |f\in \mathrm{N}\mathbb{N}\} is an almost disjoint family (as \mathrm{C}(f) \subseteq \mathrm{B}(f) by definition).
(ii) When f is tangled, \mathrm{C}(f) is an infinite set by (2) and for no f'\in \mathrm{N}\mathbb{N} does f

agree with \mathrm{e}(f') on infinitely many (or in fact, just two) points in \mathrm{C}(f)-\mathrm{i}.\mathrm{e}.,
f is not oo‐coherent on \mathrm{C}(f) .

Lemma 3.2. The set \mathcal{E} is a maximal eventually different family.

Proof. We show that Lemma 2.5 can be applied. Requirements (C) and (B) hold

by (i) and (ii) above. For (A), suppose f is not tangled, i.e.,

(\exists n\in \mathrm{B}(f))(\forall m\in \mathrm{B}(f)\backslash n)(\exists m'\in \mathrm{B}(f)\backslash m)m\prec m'f.
Let m_{0} be the least witness to the leading existential quantifier above; by recursion

let m_{i+1} be the least m' in \mathrm{B}(f) above m_{i} such that m_{i} \prec fm' . Letting f' =

\cup\{s_{f(m_{i})} |i\in \mathrm{N}\} yields a well‐defined function in \mathrm{N}\mathrm{N} such that f=^{\infty}\mathrm{e}(f') , i.e., f
is oo‐coherent on \mathrm{C}(f) . \square 

It is obvious that \mathcal{E} is $\Delta$_{1}^{1} . We now show a stronger result.

Lemma 3.3. The set \mathcal{E} is in the Boolean algebra generated by the $\Sigma$_{3}^{0} sets in \mathrm{N}^{\mathrm{N}}.

Proof. By construction g\in \mathcal{E} if and only if the following holds of g (see Remark 2.3):
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(I) (\forall n\in \mathbb{N}) 1\mathrm{h}(s_{g(2n)})=2n , and

(II) (\forall n\in \mathbb{N})(\forall m\leq n)s_{g(2m)} \subseteq s_{g(2n)} , and letting f=\displaystyle \bigcup_{n\in 2\mathrm{N}}s_{g(2n)},
(III) either the following three requirements hold:

(a) f is tangled and

(b) (\forall n\in \mathbb{N})n\in \mathrm{C}(f)\Rightarrow g(n)=f(n) and

(c) (\forall n\in \mathbb{N})n\not\in \mathrm{C}(f)\Rightarrow g(n)=\mathrm{e}(f)(n) ;

(IV) or both of the following hold:

(a) f is not tangled and

(b) (\forall n\in \mathbb{N})g(n)=\mathrm{e}(f)(n) .

As \mathrm{C}(f) is $\Pi$_{1}^{0}(f) for f\in T and (IIIa) is $\Pi$_{3}^{0}(f) , clearly (III) is \mathrm{I}\mathrm{I}_{3}^{0}(g, f) . Likewise

(IV) is $\Sigma$_{3}^{0}(g, f) . As f is recursive in g , (111) can be expressed by a $\Pi$_{3}^{0}(g) formula

and (IV) can be expreŚsed by a $\Sigma$_{3}^{0}(g) formula (substitute each expression of the

form f(n)=m by s_{g(2n+2)}(n)=m and f\mathrm{r}n by s_{g(2n)} [n). \square 

4. QUESTIONS

1. Is it the case that for some F : \mathbb{N}\rightarrow \mathbb{N} there is a compact $\Pi$_{1}^{0}(F) maximal

cofinitary group in \mathcal{N}_{F} ?
2. For which F is the answer to the previous question �yes� (if any)?
3. Is there a natural, minimal fragment of second order arithmetic which

proves there is a $\Pi$_{1}^{0} eventually different family (or, respectively, a $\Pi$_{1}^{0} max‐

imal cofinitary group)?
4. For any set X let X^{[\infty]} denote the set of infinite subsets of X . Given any

F:\mathbb{N}\rightarrow\{\mathrm{N}\}\cup \mathrm{N} and a medf \mathcal{E} on \mathcal{N}_{F} consider the co‐ideal

C_{\mathcal{E}}=\{X\in P(\mathbb{N}) | {g[X|g\in \mathcal{E}\} is a medf in \displaystyle \prod_{n\in E}F(n) }.
Is there a closed medf \mathcal{E} in \mathcal{N} or \mathcal{N}_{F} (under some assumption on F) such

that C_{\mathcal{E}}=\mathbb{N}^{[\infty]} ?

To make Question 4 precise, we make the following (slightly artificial) definition:

Definition 4.1. Any two functions g_{0}, g_{1} with a countably infinite domain X are

called eventually different if and only if \{x\in X|g_{0}(x)=g_{1}(x)\} is finite.

Given  E\subseteq $\omega$ and  F:E\rightarrow $\omega$+1, \displaystyle \prod_{n\in E} F(n) of course means

\{f:E\rightarrow \mathbb{N} | (\forall n\in E)f(n) <F(n)\}.
A set \mathcal{E} is an eventually different family in \displaystyle \prod_{n\in E} F(n) if and only if \displaystyle \mathcal{E}\subseteq\prod_{n\in E}F(n)
and any two distinct g_{0}, g_{1} \in \mathcal{E} are eventually different; such a family is called

maximal (or short: a medf) in \displaystyle \prod_{n\in E}F(n) if and only if it is maximal among such

families under inclusion.
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