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Abstract

A small intestine has a non‐Urunching tube structure and is packed in an abdominal cavity which is

a finite space. Therefore, a small intestine has a finite number of bending. To investigate this number of

tube‐bending, I introduce some differential geometrical concepts into the arguments and conclude that a

small intestine has a given range of the number of a tube‐bending.

1 Introduction

The role of a tube structure for a living organism is very important in the view of evolution. There is almost

no organism which has not a tube structure. Animals have a gastrointestinal tract, a capillary, a bronchus,
and plants have a conducting vessel, for example. So there are many mathematical researches about a tube

structure. Some studies are concerned with fractal dimension, some are with fluid dynamics, and some are

with vertex model. In this paper, I discuss some mathematical properties of a non‐brunching tube in the

view of differential geometrical point: especially, the number of a tube bending of a small intestine.

Of course, there are many differential geometrical studies. These studies use theory of elasticity [1], which

is superior to investigate the dynamics of a tube structure. However, these method is too complicated to

investigate static properties. Therefore, in this paper, I introduce another differential geometrical concepts
to simpliỉy the arguments of a tube structure about static properties like following.

dE_{bind} =  $\alpha$ dS

dE_{bend} =  $\beta$ K^{2}dS

These energy are used to investigate a carbon nanotube or graphene [3]. In a vertex model which is very

common as the model for mathematical biology, a cell has, ideally, 6‐vertices ; in another words, a shape of

a cell inclines to be hexagonal. This means a cell is equal to be a hexagon which vertex is a particle. In this

sense, we can identify a tube which is constituted with cells, with a carbon nano tube.

2 The first and second fundamental form of a cylinder and a tours.

Let the first fundamental form be g and the second be a h.

g = \left(\begin{array}{ll}
g_{11} & g_{12}\\
g_{21} & g_{22}
\end{array}\right)

h = \left(\begin{array}{ll}
h_{\mathrm{l}1} & h_{12}\\
h_{21} & h_{22}
\end{array}\right)
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Of course, we can represent these g and h with a notation of partial differentiation.

g = \left(\begin{array}{llll}
p_{\mathrm{u}} & p_{u} & p_{u} & p_{v}\\
p_{v} & p_{u} & p_{v} & p_{v}
\end{array}\right)

h = \left(\begin{array}{llll}
p_{uu} & e & p_{uv} & e\\
p_{vu}\cdot & e & p_{vv} & e
\end{array}\right)
Here, the denote p(u, v) is a position vector which represents a point on a surface and e is a norm vector of

that point.
A vector to a cylinder C is of the form

p(u, v) = \left(\begin{array}{l}
rcosu\\
rsinu\\
v
\end{array}\right)
Therefore, The coefficients of the first and second fundamental form of C are

g= \left(\begin{array}{ll}
r^{2} & 0\\
0 & 1
\end{array}\right)
h= \left(\begin{array}{ll}
-r^{2} & 0\\
0 & 0
\end{array}\right)

We rotate a circle of radius r , lying in the x_{1}x_{3}‐plane with the centre at (x_{1}, x3)=(R, 0) , about the x_{3}-axis.

We denote by u the directed angle from positive direction of the x_{1} ‐axis to a point P on the circle. We then

represent the tours T in the form

p(u, v)= \left(\begin{array}{l}
(R+rcosu)cosv\\
(R+rcosu)sinv\\
rsinu
\end{array}\right)
The coefficients of the first and second fundamental form are

g = \left(\begin{array}{ll}
r^{2} & 0\\
0 & (R+rcosu)^{2}
\end{array}\right)

h = \left(\begin{array}{ll}
r & 0\\
0 & (R+rcosu)cosu
\end{array}\right)
By using these notations, the area of the surface is represented as

Area (S)=\displaystyle \int_{D}\sqrt{g_{11}g_{22}-g_{12}g_{21}}dS
And the Gaussian curvature which is the product of the two principal curvature is

K=\displaystyle \frac{h_{11}h_{22}-h_{12}h_{21}}{g_{11}g_{22}-g_{12}g_{21}}
Therefore, the area and the Gaussian curvature of C, T are

Area (C) = 2 $\pi$ rh

Area (T) = 2$\pi$^{2}r^{2}

K_{C} = 0
cosu

K_{T} =
r(R+rcosu)
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For simplicity, we regard a tube of a small intestine as composed with only a C and T . That is, when a

tube bends, the part of bending is regarded as a half tours. Therefore, a tube of small intestine has a unit

which has a one cylinder part and a half tours part. Furthermore, R of the tours should be equal to r to

fulfill the space.

Let the space in which a small intestine be packed is the domain [0, L]\times[0, H]\times[0, r] \in R^{3} . The argument
we�ve have, E_{bind} and E_{bend} of the unit of a tube are represented like following:

E_{bind} =  $\alpha$(Area(C)+\displaystyle \frac{1}{2}Area(T))
= 2 $\pi \alpha$ r( $\pi$ r+H)

E_{bend} = \displaystyle \frac{\sqrt{}}{r^{4}}A
Here, the notaiton A is

\displaystyle \int_{D}K_{T}^{2}dS = \int_{u=0}^{\mathrm{u}=2 $\pi$}\int_{v=0}^{v= $\pi$}\{\frac{cosu}{r^{2}(1+cosu)}\}^{2}dudv
= \displaystyle \frac{1}{r^{4}}\int\int\frac{cos^{2}u}{(1+cosu)^{2}}dudv
\displaystyle \equiv \frac{1}{r^{4}}A

(A=const.)

A tube has the n units in the space. The unit has two r wide, so a number of the unit is \displaystyle \frac{L}{2r} . Thus, the total

energy E(r) of a tube is

E(r) = (E_{bind}+E_{bend}) \times n

= L\displaystyle \{ $\pi \alpha$ H+ $\pi$( $\pi$-2) $\alpha$ r+\frac{ $\beta$}{2r^{5}}A\}
We require that the total energy E(r) takes a minimum in the body.

\displaystyle \frac{dE(r)}{dr}=0
Left‐side hand is  $\pi$( $\pi$-2) $\alpha$-\displaystyle \frac{5 $\beta$}{2r^{6}}A . So, when r is equal to \displaystyle \{\frac{5 $\beta$}{2 $\pi$( $\pi$-2) $\alpha$}A\}^{\frac{1}{6}}(\equiv r_{o}) , E(r) takes a minimum.

A number of tube bending is equal to a number of the unit. Therefore, using a Gaussian symbol, a number

of a tube bending n is concluded following;

n=[\displaystyle \frac{L}{2r_{o}}]
3 Discussions

Using the energies which I introduced, we can investigate static properties of a form very easily. But

we should validate this energies theoretically and practically. There are many mathematical researches and

principles about a form. For example, principle of least action or foam theory. In this paper, I introduce

two energy E_{bind} and E_{bend} . The former is, essentially, equivalence to the action function [2] However, the

latter is not so clear whether the energy has some relation with existing energies or not. So I will seek for

this relation after this and extend the energies for not only a curvature but also a torsion in R^{3} space. At the

same time, to decide constant of proportionality which appears in this paper, I will investigate the number

of bending of a small intestine in the human body.

162



References

[1] Guillermo R. Lázaro, Ignacio Pagonabarraga, Aurora Hernández‐Machado, Phase‐field theories for math‐

ematical modeling of biological membranes, Chemistry and Physics of Lipids 185 (2015) 46‐60.

[2] V.I.Arnold, Mathematical Methods of Classical Mechanics, 2th ed., Springer (1989).

[3] Amarui Libèrio de Lima, et al., Soliton instability and fold formation in laterally compressed few‐layer
graphene, Nanotechnology, (2015) 26.

163


