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Some mathematical considerations about a small intestine
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Abstract

A small intestine has a non-brunching tube structure and is packed in an abdominal cavity which is
a finite space. Therefore, a small intestine has a finite number of bending. To investigate this number of
tube-bending, I introduce some differential geometrical concepts into the arguments and conclude that a
small intestine has a given range of the number of a tube-bending.

1 Introduction

The role of a tube structure for a living organism is very important in the view of evolution. There is almost

no organism which has not a tube structure. Animals have a gastrointestinal tract, a capillary, a bronchus,
and plants have a conducting vessel, for example. So there are many mathematical researches about a tube
structure. Some studies are concerned with fractal dimension, some are with fluid dynamics, and some are
with vertex model. In this paper, I discuss some mathematical properties of a non-brunching tube in the
view of differential geometrical point: especially, the number of a tube bending of a small intestine.
Of course, there are many differential geometrical studies. These studies use theory of elasticity [1], which
is superior to investigate the dynamics of a tube structure. However, these method is too complicated to
investigate static properties. Therefore, in this paper, I introduce another differential geometrical concepts
to simplify the arguments of a tube structure about static properties like following.

dEbimi = adS
dByena = PK°dS
These energy are used to investigate a carbon nanotube or graphene [3]. In a vertex model which is very
common as the model for mathematical biology, a cell has, ideally, 6-vertices ; in another words, a shape of

a cell inclines to be hexagonal. This means a cell is equal to be a hexagon which vertex is a particle. In this
sense, we can identify a tube which is constituted with cells, with a carbon nano tube.

2 The first and second fundamental form of a cylinder and a tours.

Let the first fundamental form be g and the second be a h.
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Of course, we can represent these g and h with a notation of partial differentiation.

g = (pu'pu pu‘pu)
Py Pu Pv- Po

h = (puu'e puv'e>
Pyu-€ Pyy-€

Here, the denote p(u,v) is a position vector which represents a point on a surface and e is a norm vector of
that point.
A vector to a cylinder C is of the form

rcosu
plu,v) = rsinu
v

Therefore, The coefficients of the first and second fundamental form of C are
-~ r2 0
9= o0 1
—r2 0
(7 0)

We rotate a circle of radius r, lying in the z123-plane with the centre at (z1,23) = (R,0), about the zs-axis.

We denote by u the directed angle from positive direction of the z;-axis to a point P on the circle. We then
represent the tours T in the form
(R + rcosu)cosv
p(u,v) = | (R+ rcosu)sinv
rSiny

The coefficients of the first and second fundamental form are

B r? 0
g = 0 (R+ rcosu)?

ho— r 0
- 0 (R + rcosu)cosu

By using these notations, the area of the surface is represented as

Area(S) = / V911922 — g12921dS
D

And the Gaussian curvature which is the product of the two principal curvature is

hithaz — highay
911922 — 912921

K=

Therefore, the area and the Gaussian curvature of C, T are

Area(C) = 2mrh

Area(T) = 2n°r?
Ke =0
Kr = cosu,

r(R + rcosu)
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For simplicity, we regard a tube of a small intestine as composed with only a C' and T. That is, when a
tube bends, the part of bending is regarded as a half tours. Therefore, a tube of small intestine has a unit
which has a one cylinder part and a half tours part. Furthermore, R of the tours should be equal to r to
fulfill the space.

Let the space in which a small intestine be packed is the domain [0, L] x [0, H] x [0,7] € R3. The argument
we’ve have, Eping and Epenq of the unit of a tube are represented like following:
1
Eying = a(Area(C)+ §Area(T))
= 2mar(nrr+ H)

B
Ebena = ;Z-A

ketas = [ / O 2404
/D T - _/_ —o T2(1+ cosu) it
// cos u i
r“ (1 + cosu)? uav
A

Here, the notaiton A is

(A = const.)

L
A tube has the n units in the space. The unit has two r wide, so a number of the unit is o Thus, the total

energy E(r) of a tube is
E(r) = (Bbina+ Ebend) X n

B
L{raH + n(m — 2)ar + 2—r5-A}

‘We require that the total energy E(r) takes a minimum in the body.
dE(r)
dr

5 5
Left-side hand is 7(7 — 2)a — %A. So, when r is equal to { p

=0

mA}%(E 7o), E(r) takes a minimum.
A number of tube bending is equal to a number of the unit. Therefore, using a Gaussian symbol, a number
of a tube bending n is concluded following;

k)

2ry

=1

3 Discussions

Using the energies which I introduced, we can investigate static properties of a form very easily. But
we should validate this energies theoretically and practically. There are many mathematical researches and
principles about a form. For example, principle of least action or foam theory. In this paper, I introduce
two energy Fping and FEpeng. The former is, essentially, equivalence to the action function [2] . However, the
latter is not so clear whether the energy has some relation with existing energies or not. So I will seek for
this relation after this and extend the energies for not only a curvature but also a torsion in R3 space. At the
same time, to decide constant of proportionality which appears in this paper, I will investigate the number
of bending of a small intestine in the human body.
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