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1 Introduction

Portfolio optimization problems first appeared in the theory of diversification investment

introduced by Markowitz in 1952. Analytical procedures for solving portfolio optimization

problems to accurately implement asset management so as to disperse the risk by diversifying

investment into several assets have become well known. Over the next few decades, several

issues related to portfolio optimization problems have been addressed, and recently several

models and the behavior of the minimal investment risk in portfolio optimization problems

have been thoroughly examined using analytical approaches which have been developed and

improved through multidisciplinary collaboration [1−7]. For instance, Ciliberti et al. analyzed

the minimal investment risk under an absolute deviation model and an expected shortfall

model using replica analysis in the absolute zero temperature limit [1, 2]. Kondor et al.

examined quantitatively the noise sensitivity of the optimal portfolio for several risk functions

[3]. Pafka et al. discussed the relation between predicted risk, realized risk, and true risk

in detail via a scenario ratio (between the number of scenarios and the number of assets)

[4]. Shinzato derived the statistics minimal investment risk and investment concentration

and showed that the minimal investment risk is attained and the investment concentration

constraint is satisfied (e.g., by a portfolio) and that these two statistics have the self‐averaging

property which is frequently used in statistical mechanical informatics analysis [5]. Shinzato

et al. developed a faster algorithm for solving portfolio optimization problems using a belief

propagation method [6]. Shinzato examined the portfolio optimization problem in the case that

each asset return rate is distributed independently and not identically using replica analysis [7].
These previous works have analyzed

1. Investment risk (as cost function)
2. Investment concentration (like Herfindahl‐Hirschman Index)
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of the optimal portfolio which can minimize the investment risk (not the expected investment

risk) with budget constraint [1−7]. As one of the natural extentions, we need to examine

the portfolio optimization with several constraints. As the first step of analyzing portfolio

optimization problems with several constraints, noting the risk minimization problem, we

develop a novel approach for solving a portfolio optimization problem with two representative

constraints, a budget constraint and a constraint on investment concentration, using replica

analysis. We will discuss the portfolio optimization problem with the constraints of budget

and investment concentration.

2 Preliminary

\bullet We will revisit stochastic optimization so as to clarify our target.

\bullet We will introduce the Boltzmann distribution approach with respect to the optimization

problem.
. We will explain replica analysis in order to discuss the portfolio optimization problem

with two constraints

We consider the minimization problem from the viewpoint of stochastic optimization. First,

we assume that with respect to controal parameter  w and random variable X , the real‐valued

function f(w, X) is prepared, where w \in  W, W is the feasible solution subset. Moreover

f(w, X) is bounded below on w \in  W (not always convex) and here the probability of ran‐

dom variable X is known. Then, w.r. \mathrm{t}. (w, X) , f(w, X) \geq \displaystyle \min_{w\in W}f(w, X) is held. Or

the optimal is defined as follows; w^{*}(X) = \displaystyle \arg\min_{w\in W}f(w, X) . From this, we can use

the following identity, f(w^{*}(X), X) = \displaystyle \min_{w\in W}f(w, X) . From f(w, X) \displaystyle \geq\min_{w\in W}f(w, X) and

f(w^{*}(X), X)=\displaystyle \min_{w\in W}f(w, X) , f(w, X) \geq f(w^{*}(X), X) is obtained. Then, we can average the

both sides with random variable as follows, E[f(w, X)] \geq E[f(w^{*}(X), X)] , where the notation

E[g(X)] means the expectation of g(X) . Since E[f(w, X)] \geq E[f(w^{*}(X), X)] is held when any

w\in W,

\displaystyle \min_{w\in W}E[f(w, X)] \geq E[f(w^{*}(X), X)] , (1)

is obtained. Further, from f(w^{*}(X), X)=\displaystyle \min_{w\in W}f(w, X) ,

\displaystyle \min_{w\in W}E[f(w, X)] \geq E[\min_{w\in W}f(w, X)] , (2)

is also obtained. That is, The minimum of average is not smaller than the average of minimum.

From the argument in the previous work [5], for any X,

\displaystyle \min_{w\in W}f(w, X)=E[\min_{w\in W}f(w, X)] , (3)
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is guaranteed mathematically (we call self‐averaging). Thus, from \displaystyle \min_{w\in W}E[f(w, X)] \geq

 E[\displaystyle \min_{w\in W}f(w, X

\displaystyle \min_{w\in W}E[f(w, X)]\geq\min_{w\in W}f(w, X) , (4)

is rewritten. The solution of ordinary research (OR) is determined as w^{\mathrm{O}\mathrm{R}}=\displaystyle \arg\min_{w\in W}E[f(w, X
From \displaystyle \min_{w\in W}E[f(w, X)]\geq\min_{w\in W}f(w, X) and w^{\mathrm{O}\mathrm{R}}=\displaystyle \arg\min_{w\in W}E[f(w, X)],

E[f(w^{\mathrm{O}\mathrm{R}}, X)]\displaystyle \geq\min_{w\in W}f(w, X) , (5)

is also obtained. In the case of cost management, E[f(w^{\mathrm{O}\mathrm{R}}, X)] in the left hand side is the

cost of the solution which can not always minimize the cost. \displaystyle \min_{w\in W}f(w, X) in the right hand

side is the cost of the optimal solution which the investor wants to know. In the previous

work [5])

opportunity loss=\displaystyle \frac{E[f(w^{\mathrm{O}\mathrm{R}},X)]}{\min_{w\in W}f(w,X)}=\frac{ $\alpha$}{ $\alpha$-1} , (6)

3 Portfolio optimization problem

This talk considers optimally diversified investment in N assets in an investment market

with no restrictions on short selling. w_{i} is the amount of asset i (=1, \cdots , N) in the portfolio

and the full portfolio of N assets is denoted \vec{w}=\{w_{1}, \cdots , w_{N}\}^{\mathrm{T}}\in \mathrm{R}^{N} , where \mathrm{T} indicates the

transpose of a vector or matrix. x_{i $\mu$} is the return rate of asset i under period (or scenario)

 $\mu$ (=1, \cdots , p) . For simplicity of our discussion, similar to in the previous work, it is assumed

that each return rate x_{i $\mu$} is independently and identically normally distributed with mean 0

and variance 1 [5]. X= \displaystyle \{\frac{x_{l} $\mu$}{\sqrt{N}}\} \in \mathrm{R}^{N\times p} is the return rate matrix where under this assumption,

given the p return rate vectors \vec{x}_{1}, \cdots

, \vec{x}_{p}\in \mathrm{R}^{N}, \vec{x}_{ $\mu$}=\{x_{1 $\mu$}, \cdot\cdot , x_{N $\mu$}\}^{\mathrm{T}}\in \mathrm{R}^{N}.
In the mean‐variance model, the investment risk \mathcal{H}(\vec{w}|X) of portfolio \vec{w} is defined as follows:

\displaystyle \mathcal{H}(\vec{w}|X)=\frac{1}{2N}\sum_{ $\mu$=1}^{p}(\sum_{i=1}^{N}w_{i}(x_{i $\mu$}-0))^{2}
=\displaystyle \frac{1}{2N}\sum_{ $\mu$=1}^{p}(\sum_{\dot{x}=1}^{N}w_{i}x_{i $\mu$})^{2} (7)

where E[x_{x $\mu$}] = 0 and E[x_{i $\mu$}^{2}] = 1 . Note that the necessary and sufficient condition for the

optimal portfolio for portfolio optimization problem to be uniquely determined given in [5] is

that J = XX^{\mathrm{T}} \in \mathrm{R}^{N\times N} be a non‐singular matrix, that is, the rank of matrix J be N or

simply p>N . However, since J does not always need to be a regular matrix to guarantee a

unique optimal portfolio for a portfolio optimization problem with several constraints, as in
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the present work, we do not adopt the regular matrix assumption here. The investment risk

\mathcal{H}(\vec{w}|X) is rewritten as follows;

\displaystyle \mathcal{H}(\vec{w}|X)=\frac{1}{2N}\sum_{ $\mu$=1}^{p}(\sum_{i=1}^{N}w_{i}x_{i $\mu$})^{2}
=\displaystyle \frac{1}{2}\sum_{\dot{ $\iota$}=1}^{N}\sum_{j=1}^{N}w_{i}w_{j} (\frac{1}{N}\sum_{ $\mu$=1}^{p}x_{i $\mu$}x_{j $\mu$})
=\displaystyle \frac{1}{2}\vec{w}^{\mathrm{T}}J\vec{w} , (8)

where i , jth component of J=\{J_{ij}\}\in \mathrm{R}^{N\times N} is defined as follows,

J_{ij}=\displaystyle \frac{1}{N}\sum_{ $\mu$=1}^{p}x_{i$\mu$^{X}j $\mu$} . (9)

In the previous work [5], we consider the optimal portfolio which can minimize the invest‐

ment risk,

\displaystyle \mathcal{H}(\vec{w}|X)=\frac{1}{2}\vec{w}^{\mathrm{T}}J\vec{w} , (10)

with the budget constraint,

\displaystyle \sum_{i=1}^{N}w_{i}=N . (11)

When p>N , this optimal solution is

\displaystyle \vec{w}^{*}=\frac{NJ^{-1}\vec{e}}{e\rightarrow \mathrm{r}J^{-1}\vec{e}} , (12)

where \vec{e}= \{1, 1, \cdots , 1\}^{\mathrm{T}} \in \mathrm{R}^{N} is used. Using \vec{w}^{*} = \displaystyle \frac{NJ^{-1}\vec{e}}{\mathrm{e}\rightarrow \mathrm{r}J^{-1}\vec{e}} , the minimal investment risk

\mathcal{H}(\vec{w}^{*}|X) is calculated as follows;

\displaystyle \mathcal{H}(\vec{w}^{*}|X)=\frac{1}{2}(\vec{w}^{*})^{\mathrm{T}}J(\vec{w}^{*})
=\underline{N^{2}} (13)2訝 J^{-1}\vec{e}'

where J=XX^{\mathrm{T}} \in \mathrm{R}^{N\times N} . In order to assess it accurately, we need to calculate the inverse

matrix of J , however, since the computation amount O(N^{3}) is required, it is hard to implement

this approach.

In a similar way, we also consider the optimal portfolio which can minimize the investment

risk,

\displaystyle \mathcal{H}(\vec{w}|X)=\frac{1}{2}\vec{w}^{\mathrm{T}}J\vec{w} , (14)
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with the constraints of budget and investment concentration as follows;

\displaystyle \sum_{i=1}^{N}w_{i}=N , (15)

\displaystyle \sum_{\dot{ $\iota$}=1}^{N}w_{\dot{l}}^{2}=N $\tau$ , (16)

where Eq. (15) means budget constraint and Eq. (16) means investment concentration con‐

straint and  $\tau$\geq 1 . The minimal investment risk is assessed as follows;

\displaystyle \mathcal{H}(\vec{w}^{*}|X)=\frac{N^{2_{e}^{\lrcorner} $\Gamma$}(J- $\theta$ I_{N})^{-1}J(J- $\theta$ I_{N})^{-1}\vec{e}}{2(e\rightarrow \mathrm{r}(J- $\theta$ I_{N})^{-1}\vec{e})^{2}} , (17)

where the optimal portfolio \vec{w}^{*} is determined as follows,

面 *=\displaystyle \frac{N(J- $\theta$ I_{N})^{-1}\vec{e}}{e\rightarrow \mathrm{r}(J- $\theta$ I_{N})^{-1}\vec{e}} , (18)

and parameter  $\theta$ satisfies

 N $\tau$=\displaystyle \frac{N^{2_{e}\ovalbox{\tt\small REJECT}}(J- $\theta$ I_{N})^{-2}\vec{e}}{(e^{ $\Gamma$}\rightarrow(J- $\theta$ I_{N})^{-1}\vec{e})^{2}} , (19)

where I_{N}\in \mathrm{R}^{N\times N} is the identity matrix.

4 Boltzmann distribution approach

We here reconsider this optimal problem using Bayesian inference. The optimization prob‐
lem is formulated as follows;

\mathcal{H}(\vec{w}|X) s.t. \left\{\begin{array}{l}
\sum_{\dot{ $\iota$}=1}^{N}w_{i}=N\\
\sum_{i=1}^{N}w_{i}^{2}=N $\tau$
\end{array}\right. (20)

We prepare W=\displaystyle \{\vec{w}\in \mathrm{R}^{N}|\sum_{i=1}^{N}w_{i}=N, \sum_{i=1}^{N}w_{l}^{2}=N $\tau$\} as the feasible portfolio subset. In

the context of Bayesian inference, constraint W is regarded as a prior P_{0}(\vec{w}) and \mathcal{H}(\vec{w}|X) is

also regarded as the loglikelihood.

Let us denote the Boltzmann distribution (or the posterior probability or the conditional

probability) as follows;

P(\displaystyle \vec{w}|X)=\frac{P_{0}(\vec{w})e^{- $\beta$ \mathcal{H}(\vec{w}|X)}}{Z(X, $\beta$)} , (21)
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where

P_{0}(\vec{w})=\left\{\begin{array}{l}
1 \vec{w}\in W\\
0 \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}
\end{array}\right. (22)

Z(X,  $\beta$)=\displaystyle \int_{-\infty}^{\infty}d\vec{w}P_{0}(\vec{w})e^{- $\beta$ \mathcal{H}(\vec{w}|X)} , (23)

are used. We call Z(X,  $\beta$) the partition function and  $\beta$(>0) the inverse temperature. From

the property of exponential,

\mathcal{H}(\vec{w}_{a}|X)<\mathcal{H}(\vec{w}_{b}|X) \Leftrightarrow P(\vec{w}_{a}|X)>P(\vec{w}_{b}|X) ,

From \mathcal{H}(\vec{w}_{a}|X) <\mathcal{H}(\vec{w}_{b}|X)\Leftrightarrow P(\vec{w}_{a}|X) >P(\vec{w}_{b}|X) ,
in the case of sufficiently large  $\beta$, \vec{w}^{*} =

\displaystyle \lim_{ $\beta$\rightarrow\infty}\int_{-\infty}^{\infty}d\vec{w}P(\vec{w}|X)\vec{w} is held. Furthermore, \displaystyle \mathcal{H}(\vec{w}^{*}|X)=\lim_{ $\beta$\rightarrow\infty}\int_{-\infty}^{\infty}d\vec{w}P(\vec{w}|X)\mathcal{H}(\vec{w}|X)
is also held. In addition, using the partition function Z(X,  $\beta$) ,

-\displaystyle \frac{\partial}{\partial $\beta$}\log Z(X,  $\beta$)=\int_{-\infty}^{\infty}d\vec{w}P(\vec{w}|X)\mathcal{H}(\vec{w}|X) , (24)

is obtained. From

\displaystyle \mathcal{H}(\vec{w}^{*}|X)=\lim_{ $\beta$\rightarrow\infty}\int_{-\infty}^{\infty}d\vec{w}P(\vec{w}|X)\mathcal{H}(\vec{w}|X) , (25)

-\displaystyle \frac{\partial}{\partial $\beta$}\log Z(X,  $\beta$)=\int_{-\infty}^{\infty}d\vec{w}P(\vec{w}|X)\mathcal{H}(\vec{w}|X) , (26)

then

\displaystyle \mathcal{H}(\vec{w}^{*}|X)=\lim_{ $\beta$\rightarrow\infty}\{-\frac{\partial}{\partial $\beta$}\log Z(X,  $\beta$)\} , (27)

is obtained. Further, since the minimal investment risk \mathcal{H}(\vec{w}^{*}|X) is satisfied with self‐averaging

property, we will examine the following;

\mathcal{H}(\vec{w}^{*}|X)=E[\mathcal{H}(\vec{w}^{*}|X)]

=\displaystyle \lim_{ $\beta$\rightarrow\infty}\{-\frac{\partial}{\partial $\beta$}E[\log Z(X,  $\beta$)]\} . (28)

5 Replica analys |\mathrm{s}

So as to assess the minimal investment risk \mathcal{H}(\vec{w}^{*}|X) , we need to evaluate analytically

E[\log Z(X,  $\beta$ since it is not easy to average the logarithm function of the partition function,
we apply replica trick \displaystyle \log Z=\lim_{n\rightarrow 0\frac{Z^{n}-1}{n}} , then,

E[\displaystyle \log Z(X,  $\beta$)]=\lim_{n\rightarrow 0}\frac{E[Z^{n}(X, $\beta$)]-1}{n} , (29)
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is obtained. Or we allow to use

E[\log Z(X,  $\beta$)]= \left\{\begin{array}{l}
\lim_{n\rightarrow 0}\frac{\log E[Z^{n}(X, $\beta$)]}{n}\\
\lim_{n\rightarrow 0}\frac{\partial}{\partial n}\log E[Z^{n}(X,  $\beta$)]
\end{array}\right. (30)

In any case, we need to assess E[Z^{n}(X,  $\beta$ For any  n\in \mathrm{R} , it is difficult to assess E[Z^{n}(X,  $\beta$

however, when  n\in \mathrm{Z} , it is comparatively easy to calculate it as follows;

E[Z^{n}(X,  $\beta$)]=E [ (\displaystyle \int_{-\infty}^{\infty}d\vec{w}P_{0}(\vec{w})e^{- $\beta$ \mathcal{H}(\vec{w}|X)}) れ]
=E [\displaystyle \prod_{a=1}^{n}(\int_{-\infty}^{\infty}d\vec{w}_{a}P_{0}(\vec{w}_{a})e^{- $\beta$ \mathcal{H}(\vec{w}_{a}|X)})]
=\displaystyle \int_{-\infty}^{\infty}\prod_{a=1}^{n}d\vec{w}_{a}P_{0}(\vec{w}_{a})E[e^{- $\beta \Sigma$_{a=1}^{n}\mathcal{H}(\vec{w}_{a}|X)}] . (31)

From this, the configuration average is implemented first. Thus, we use the saddle point

method,

\log E[Z^{n}(X,  $\beta$)]

\simeq\vec{k} ) $\theta$^{\rightarrow},Q_{w},Q_{w}^{-}
Extr { -N^{d}e^{ $\Gamma$}\displaystyle \vec{k}-\frac{N $\tau$}{2}\mathrm{T}\mathrm{r} $\Theta$+\frac{N}{2}\mathrm{T}\mathrm{r}Q_{w}\tilde{Q}_{w}-\frac{p}{2} log det |I+ $\beta$ Q_{w}|

‐ \displaystyle \frac{N}{2} logdet |\displaystyle \tilde{Q}_{w}- $\Theta$|+\frac{N}{2}\vec{k}^{\mathrm{T}}(\tilde{Q}_{w}- $\Theta$)^{-1}\vec{k}}, (32)

is assessed, where \vec{k}=\{k_{1}, k_{2}, \cdots , k_{n}\}^{\mathrm{T}}, \vec{e}=\{1, 1, \cdots , 1\}^{\mathrm{T}}\in \mathrm{R}^{n} and  $\Theta$= diag \{$\theta$_{1}, $\theta$_{2}, \cdots , $\theta$_{n}\},
Q_{w}=\{q_{wab}\}, \tilde{Q}_{w}=\{\tilde{q}_{wab}\}\in \mathrm{R}^{n\times n} are used and I\in \mathrm{R}^{n\times n} is the identity matrix. Moreover,

the notation \mathrm{E}\mathrm{x}\mathrm{t}\mathrm{r}_{m9(m)} means the extremum of 9(m) with respect to m and k_{a} and $\theta$_{a}

auxiliary variables which are related to the budget constraint and investment concentration

constraint of ath replica, respectively. In addition, q_{wab}= \displaystyle \frac{1}{N}\sum_{i=1}^{N}w_{ia}w_{ib} is prepared. In the

case that the number of assets N is sufficiently large,

 $\Phi$(n)= \displaystyle \lim \underline{1}\log E[Z^{n}(X,  $\beta$)]
N\rightarrow\infty N

=\vec{k}, $\theta$,Q_{w},Q_{w}^{-}\rightarrow
Extr { -e^{ $\Gamma$}\displaystyle \vec{k}\lrcorner-\frac{ $\tau$}{2} Tr  $\Theta$+\displaystyle \frac{1}{2}\mathrm{T}xQ_{w}\tilde{Q}_{w}-\frac{ $\alpha$}{2} log det |I+ $\beta$ Q_{w}|

‐ \displaystyle \frac{1}{2} log det |\displaystyle \tilde{Q}_{w}- $\Theta$|+\frac{1}{2}\vec{k}^{\mathrm{T}}(\tilde{Q}_{w}- $\Theta$)^{-1}\vec{k}}, (33)

is obtained where  $\alpha$=p/N\sim O(1) . When a, b(=1,2, \cdots , n) ,
we assume the following;

(q_{wab},\tilde{q}_{wab})=\left\{\begin{array}{ll}
($\chi$_{w}+q_{w},\tilde{ $\chi$}_{w}-\tilde{q}_{w}) & a=b\\
(q_{w}, -\tilde{q}_{w}) & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}
\end{array}\right. (34)

(k_{a}, $\theta$_{a})=(k,  $\theta$) , (35)
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where it is called the ansatz of replica symmetry solution. We substitute the replica symmetry

solution into Eq. (33), then

 $\Phi$(n)=k )  $\theta,\chi$_{w},q_{w},\overline{ $\chi$}_{w}
Extr

) \displaystyle \overline{q}_{w}\{-nk-\frac{n $\tau \theta$}{2}+\frac{n($\chi$_{w}+q_{w})(\tilde{ $\chi$}_{w}-\tilde{q}_{w})}{2}
-\displaystyle \frac{n(n-1)q_{w}\tilde{q}_{w}}{2}-\frac{n-1}{2}\log(\tilde{ $\chi$}_{w}- $\theta$)-\frac{1}{2}\log(\tilde{ $\chi$}_{w}- $\theta$-n\tilde{q}_{w})
+\displaystyle \frac{nk^{2}}{2(\tilde{ $\chi$}_{w}- $\theta$-n\tilde{q}_{w})}-\frac{(n-1) $\alpha$}{2}\log(1+ $\beta \chi$_{w})-\frac{ $\alpha$}{2}\log(1+ $\beta \chi$_{w}+n $\beta$ q_{w})\} , (36)

is obtained. Note that n in Eq. (36) is integer at first, but it might assume that n at present

form is real. From this,

 $\phi$=\displaystyle \lim_{N\rightarrow\infty}\frac{1}{N}E[\log Z(X,  $\beta$)]
=\displaystyle \lim_{N\rightarrow\infty}\frac{1}{N}\lim_{n\rightarrow 0}\frac{\partial}{\partial n}\log E[Z^{n}(X,  $\beta$)]
=k, $\theta,\chi$_{w},q_{w},\overline{ $\chi$}_{w},\tilde{q}_{w}

Extr { -k-\displaystyle \frac{ $\tau \theta$}{2}+\frac{($\chi$_{w}+q_{w})(\tilde{ $\chi$}_{w}-\tilde{q}_{w})}{2}+\frac{q_{w}\tilde{q}_{w}}{2}
-\displaystyle \frac{1}{2}\log(\tilde{ $\chi$}_{w}- $\theta$)+\frac{\tilde{q}_{w}+k^{2}}{2(\tilde{ $\chi$}_{w}- $\theta$)}-\frac{ $\alpha$}{2}\log(1+ $\beta \chi$_{w})-\frac{ $\alpha \beta$ q_{w}}{2(1+ $\beta \chi$_{w})}\} , (37)

is analyzed. From \displaystyle \mathcal{H}(\vec{w}^{*}|X)=\lim_{ $\beta$\rightarrow\infty}\{-\frac{\partial}{\partial $\beta$}E[\log Z(X,  $\beta$ and  $\phi$=\displaystyle \lim_{N\rightarrow\infty}\frac{1}{N}E[\log Z(X,  $\beta$)]

 $\epsilon$=\displaystyle \lim_{N\rightarrow\infty}\frac{1}{N}\mathcal{H}(\vec{w}^{*}|X)
= \left\{\begin{array}{ll}
\frac{ $\alpha \tau$+ $\tau$-1-2\sqrt{ $\alpha \tau$( $\tau$-1)}}{2} & 1-\frac{1}{ $\tau$}\leq $\alpha$\\
 0 & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}
\end{array}\right. (38)

is assessed.

6 Discussion

When 1-\displaystyle \frac{1}{ $\tau$} \leq $\alpha$ , we calculate

\displaystyle \frac{ $\alpha \tau$+ $\tau$-1-2\sqrt{ $\alpha \tau$( $\tau$-1)}}{2}=\frac{ $\alpha$-1}{2}+\frac{(\sqrt{ $\alpha$( $\tau$-1)}-\sqrt{ $\tau$})^{2}}{2} . (39)

From this finding and the minimal investment risk per asset of the mean‐variace model with

budget constraint only, \displaystyle \frac{ $\alpha$-1}{2} , discussed in [5], it is interpreted that \displaystyle \frac{(\sqrt{ $\alpha$( $\tau$-1)}-\sqrt{ $\tau$})^{2}}{2} is the risk

term induced from the investment concentration constraint. Moreover, when \sqrt{ $\alpha$( $\tau$-1)}-
\sqrt{ $\tau$}=0 , then  $\tau$= \displaystyle \frac{ $\alpha$}{ $\alpha$-1} is obtained.

 $\tau$=$\chi$_{w}+q_{w}=\displaystyle \frac{1}{N}\sum_{\dot{ $\iota$}=1}^{N}w_{i}^{2} , (40)

31



where $\chi$_{w} +q_{w} is the diagonal of Q_{w} ,
that is, q_{w $\alpha$ a} . In similar way, we assess the mini‐

mal expected investment risk per asset $\epsilon$^{\mathrm{O}\mathrm{R}}=N\displaystyle \rightarrow\infty \mathrm{h}\mathrm{m}\frac{1}{N}\min_{\vec{w}\in W}E[\mathcal{H}(\vec{w}|X)] using the approach of

ordinary reseach (OR),

 $\epsilon$= \left\{\begin{array}{ll}
\frac{ $\alpha \tau$+ $\tau$-1-2\sqrt{ $\alpha \tau$( $\tau$-1)}}{2} & 1-\frac{1}{ $\tau$}\leq $\alpha$\\
 0 & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}
\end{array}\right. (41)

0R  $\alpha \tau$

 $\epsilon$ =\overline{2} � (42)

Thus, the opportunity loss \displaystyle \frac{$\epsilon$^{\mathrm{O}\mathrm{R}}}{ $\epsilon$},

\displaystyle \frac{$\epsilon$^{\mathrm{O}\mathrm{R}}}{ $\epsilon$}= \left\{\begin{array}{ll}
\frac{ $\alpha \tau$}{ $\alpha \tau$+ $\tau$-1-2\sqrt{ $\alpha \tau$( $\tau$-1)}} & 1-\frac{1}{ $\tau$}\leq $\alpha$\\
+\infty & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}
\end{array}\right. (43)

where  $\tau$- 1 -2\sqrt{ $\alpha \tau$( $\tau$-1)} \leq  0 is held when 1 - \displaystyle \frac{1}{ $\tau$} \leq  $\alpha$ and  $\tau$ \geq  1 . In order to verify

our proposed approach based on the assumption of a replica symmetry solution (or simply

replica analysis), we compare the results derived using the proposed method with those from

numerical simulation and those obtained using the standard approach in ordinary research

(OR). From Eq. (17) to Eq. (19), given X = \displaystyle \{\frac{x_{l} $\mu$}{\sqrt{N}}\} \in \mathrm{R}^{N\times \mathrm{p}} and J=XX^{\mathrm{T}} , the minimal

investment risk per asset  $\epsilon$ is,

 $\epsilon$=\displaystyle \frac{1}{N}\mathcal{H}(\vec{w}^{*}|X)=\frac{Ne\rightarrow \mathrm{r}(J- $\theta$ I_{N})^{-1}J(J- $\theta$ I_{N})^{-1\rightarrow}e}{2(e\rightarrow \mathrm{r}(J- $\theta$ I_{N})^{-1}\vec{e})^{2}} , (44)

where  $\tau$=\displaystyle \frac{N^{\vee $\Gamma$}e(J- $\theta$ I_{N})^{-2}\vec{e}-}{(\overline{e}^{\mathrm{T}}(J- $\theta$ I_{N})1\vec{e})}.
As the numerical setting; The number of assets N=500 and the number of periods p=1000,

that is,  $\alpha$=p/N=2 ; As the sample sets, C= 100 return rate matrices, X^{1}, X^{2}
, , X^{100},

are prepared where X^{c}= \displaystyle \{\frac{x_{\mathrm{t} $\mu$}^{c}}{\sqrt{N}}\} \in \mathrm{R}^{N\times p};x_{i $\mu$}^{c} is independently and identically assigned with

the probability with mean 0 and variace 1, respectively; $\epsilon$^{\mathrm{C}}= \displaystyle \frac{1}{N}\mathcal{H}(\vec{w}^{*}|X^{c}) is evaluated with

respect to each return rate matrix; The minimal investment risk per asset is estimated by

 $\epsilon$=\displaystyle \frac{1}{c}\sum_{c=1}^{c}$\epsilon$^{c}.
Our analytical procedure is:

1. Stochastic optimization: E[f(w^{\mathrm{O}\mathrm{R}}, X)] \displaystyle \geq\min_{w\in W}f(w, X) .

2. Boltzmann distribution: P(\vec{w}|X) = \displaystyle \frac{P_{\mathrm{O}}(\vec{w})e^{- $\beta$?\{(\vec{w}|X}}{Z(X, $\beta$)}
)

and − \displaystyle \frac{\partial}{\partial $\beta$}\log Z(X,  $\beta$) =

\displaystyle \int_{-\infty}^{\infty}d\vec{w}P(\vec{w}|X)\mathcal{H}(\vec{w}|X) .

3. Self‐averaging: \displaystyle \mathcal{H}(\vec{w}^{*}|X)=E[\mathcal{H}(\vec{w}^{*}|X)]=\lim_{ $\beta$\rightarrow\infty}\{-\frac{\partial}{\partial $\beta$}E[\log Z(X,  $\beta$)]\}.
4. Replica trick: We estimate E[Z^{n}(X,  $\beta$)] of n\in \mathrm{R} using E[Z^{n}(X,  $\beta$)] of n\in \mathrm{Z}.

5. Replica symmetry ansatz: q_{wab}=$\chi$_{w}+q_{w} if a=b ,
otherwise q_{wab}=q_{w}.

6. Numerical simulations: Our proposed approach is supported.
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Figure 1 Minimal investment risk per asset  $\epsilon$ at  $\alpha$ = p/N = 2 results from replica

analysis (orange line), numerical simulation (sky‐blue asterisks with error bars), and op‐

erations research approach (green dashed line) versus investment concentration  $\tau$ . Results

of replica analysis are consistent with the averages obtained from a numerical experiment

with 100 samples and  N=500 assets.

7 Conclusion and the future works

In this talk, we have discussed the minimal investment risk per asset for a portfolio opti‐

mization problem with a budget constraint and an investment concentration constraint, using

replica analysis, which was developed for and improved during interdisciplinary research. Un‐

like the minimal investment risk per asset and portfolio optimization problem with a budget

constraint which has been discussed in previous work, we assessed quantitatively the deviation

of the minimal investment risk per asset from the budget constraint only case caused by the

inclusion of an investment concentration constraint. In contrast, the standard operations

research approach failed to identify accurately the minimal investment risk of the portfolio

optimization problem, since the obtained optimal portfolio only minimizes the expected in‐

vestment risk, not the investment risk, making it clear that this approach cannot provide

investors information about the optimal investment strategy.

As the future work, we need to improve and develop the model in order to be able to

treat a more realistic depiction of the investment market. For instance, we need to analyze

the portfolio optimization problem in an investment market comprising a risk‐free asset and

assets of varying risk levels. As alternative constraints to a budget constraint or an investment

concentration constraint, we need to consider, for instance, an expected return constraint for

the case that the return rate is not normalized and linear inequality constraints.
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