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Abstract

In this research announcement we present some recent results of the authors on

the adiabatic theorem for a system without a spectral gap [4].
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Introduction. Consider a quantum mechanical system consisting of a quantum dot

coupled to a reservoir. The dot energy varies adiabatically in time starting in a bound

state. Assuming that the energy of the bound state stays away from the continuous

spectrum for all times, the survival probability of the bound state is one by the standard

adiabatic theorem, i.e. the one for systems with a spectral gap.

In [4] we study the case where the bound state dives into the continuous spectrum for

a macroscopic time during the adiabatic variation of the dot energy which returns to its

initial value at the end. The gapless adiabatic theorem [1, 8, 9] yields that the survival

probability is also one if the bound state exists all the time and its spectral projection is

twice differentiable. However, the survival probability should be zero if the bound state

becomes a resonance at some point. This conjecture is based on heuristics and related

to the adiabatic pair creation [7] and memory effects in quantum mesoscopic transport

[2, 3]. Except for some rather technical and/or restrictive results [3, 6, 7], these heuristics

have not been proven rigorously.
In the following section we will outline some new results on the adiabatic theorem

for a Wigner‐Weisskopf atom recently obtained in [4]. The main result states that the

survival probability vanishes in the adiabatic limit, i.e. the adiabatic theorem breaks

down for a large class of couplings between the quantum dot and the reservoir when the

bound state dives into the continuous spectrum during the adiabatic tuning of the dot

energy. In addition, a detailed spectral analysis of the model is given and a �threshold

adiabatic theorem� is proved. Admittedly the considered setting is much simpler than

most physically interesting models [3, 6, 7]. However, we believe that the methods used

in [4] have the potential to work in the case of many Schrödinger and Dirac operators as

well.

Model and results. We consider a simple model of a one‐level atom coupled to a

reservoir, a Wigner‐Weisskopf model of an atom. On the Hilbert space \mathcal{H}=L^{2}(\mathbb{R}^{3})\oplus \mathbb{C}
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we define the Hamiltonian

H_{ $\tau$}(E)= \left\{\begin{array}{ll}
- $\Delta$ & 0\\
0 & E
\end{array}\right\} + $\tau$\left\{\begin{array}{ll}
0 & | $\varphi$\rangle\\
\langle $\varphi$| & 0
\end{array}\right\}
It represents a quantum dot with dot energy E \in \mathbb{R} coupled to the reservoir \mathbb{R}^{3} . The

coupling between both systems is controlled by the parameter  $\tau$\in \mathbb{R} and the normalized

coupling function  $\varphi$\in L^{2}(\mathbb{R}^{3}) . In the uncoupled case,  $\tau$=0 , the particle can either sit in

the quantum dot with energy E or move freely in the reservoir.

In the following we always assume that the coupling function  $\varphi$ satisfies \displaystyle \int_{\mathbb{R}^{3}}(1 +

 x^{2})^{w}| $\varphi$(x)|^{2}dx<\infty for all  w\in \mathbb{R} and that there is  $\nu$\in \mathbb{N} such that |k|^{- $\nu$}\hat{ $\varphi$}(k) is contin‐

uous at k=0 . Here \hat{ $\varphi$} denotes the usual Fourier transform of  $\varphi$ . Note that the second

condition implies that all derivatives of \hat{ $\varphi$} with degree less than  $\nu$ are zero at  k=0 . In

particular, we always have \hat{ $\varphi$}(0)=0.
In [4, Section 2] we analyze the spectrum of the instantaneous operator H_{ $\tau$}(E) . Ob‐

viously, [0, \infty[ is the essential spectrum of H_{ $\tau$}(E) . We show that for any value of  $\tau$\neq 0
there exists a critical value E_{c}>0 such that the operator H_{ $\tau$}(E) has exactly one simple
negative eigenvalue for every E < E_{c} . Moreover, H_{ $\tau$}(E_{c}) has the eigenvalue 0 embed‐

ded at the threshold. If the operator H_{ $\tau$}(E) has an eigenvalue  $\lambda$(E) , P(E) denotes the

corresponding eigenprojection and  $\Psi$(E) a corresponding normalized eigenfunction.
We study the Heisenberg time‐evolution of the bound state for  $\tau$\neq 0 when the dot

energy E varies adiabatically in time. The time‐evolution operator for H_{ $\tau$}(E( $\eta$ t)) is

determined by the time‐dependent Schrödinger equation

i\displaystyle \frac{\partial}{\partial t}U_{ $\eta$}(t, t_{0})=H_{ $\tau$}(E( $\eta$ t))U_{ $\eta$}(t, t_{0}) , U_{ $\eta$}(t_{0}, t_{0})=\mathrm{I}\mathrm{d},
for t, t_{0}\in \mathbb{R} . To model an adiabatic switching, E is made time‐dependent, t\mapsto E( $\eta$ t) ,

with

a parameter  $\eta$>0 . Then the adiabatic limit is  $\eta$\downarrow 0 . Initially the atom is assumed to be in

a bound state and the following conditions on the function E hold: E : [−1, 0]\rightarrow \mathbb{R} is

C^{2}([-1,0 There exists  s_{m}\in (-1,0) such that E is strictly increasing on [-1, s_{m}] and

strictly decreasing on [s_{m}, 0] . Its maximal value E_{m}=E(s_{m}) is positive while E(-1)=
E(0) <0 . Moreover, given any intermediate value  E\in (E(-1), E_{m}) ,

there exist exactly
two points s<s_{m}<s

� such that E(s)=E(s')=E.
The main result [4, Theorem 1.3] is summarized as follows:

Theorem 1. Let  $\varphi$ and  E fulfill the assumptions stated above and  $\tau$>0 small enough.

(i) There is a critical dot energy E_{c} \in (0, E_{m}) such that  $\lambda$(E_{\mathrm{c}}) = 0 is an embedded

simple eigenvalue of H_{ $\tau$}(E_{c}) with corresponding eigenprojection P(E_{c}) . For every
E< E_{c} there exists a unique discrete negative eigenvalue  $\lambda$(E) corresponding to a

smooth eigenprojection P(E) with

\Vert P'(E)\Vert \displaystyle \leq\frac{C}{(E_{c}-E)^{3/4}} and \displaystyle \lim_{E\uparrow E_{\mathrm{c}}}\Vert P(E)-P(E_{\mathrm{c}})\Vert=0 . (1)

(ii) There exists a class of functions  $\varphi$ for which the instantaneous Hamiltonian  H_{ $\tau$}(E)
has purely absolutely continuous spectrum when E_{c}<E\leq E_{m} , and

\displaystyle \lim_{ $\eta$\downarrow 0}|\langle $\Psi$(E(0))|U_{ $\eta$}(0, -1/ $\eta$) $\Psi$(E(-1))\rangle|^{2}=0 . (2)
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In other words, the survival probability goes to zero if the instantaneous bound state

becomes a resonance during the adiabatic tuning of E Examples of allowed func‐
tions are those that satisfy \nabla\hat{ $\varphi$}(0)\neq 0 or \hat{ $\varphi$}(k)=e^{-|k|^{-2}} near k=0.

(iii) Assume that \hat{ $\varphi$}(k) = 0 on B_{ $\delta$}(0) for some  $\delta$ > 0 and that 0 < E_{m} < $\delta$^{2} . Then

H_{ $\tau$}(E(s)) has a simple eigenvalue  $\lambda$(E(s)) for every  s\in [-1, 0] . The eigenvalue is

discrete and negative outside [s_{c}, s_{c}'] and embedded in the continuous spectrum inside

[s_{c}, s_{c} Moreover,

\displaystyle \lim_{ $\eta$\downarrow 0}|\langle $\Psi$(E(0))|U_{ $\eta$}(0, -1/ $\eta$) $\Psi$(E(-1))\}|^{2}=1 . (3)

So the adiabatic theorem holds in this case.

(iv) Fix  $\alpha$>0 . There exist K>0_{f} independent of  $\alpha$
,

and  $\eta$_{0}( $\alpha$) >0 such that for every

 $\eta$<$\eta$_{0}( $\alpha$) and s\in(s_{\mathrm{c}}, s_{c}') with |s-s_{\mathrm{c}}|\leq $\alpha \eta$^{\frac{4}{2 $\nu$+7}},

|\langle $\Psi$(E_{\mathrm{c}})|U_{ $\eta$}(s/ $\eta$, s_{c}/ $\eta$) $\Psi$(E_{c}))|^{2}\geq 1- $\alpha$ K. (4)

Ergo, the critical eigenvector survives in the supercritical regime for small micro‐

scopic times of order $\eta$^{\frac{4}{2 $\nu$+7}}.
The assumptions have to ensure that there is an (embedded) bound state at the

spectral threshold. The problem is still open if the bound state turns into a resonance at

the threshold.

Important ingredients in the spectral analysis are a Feshbach formula for the resolvent

of H_{ $\tau$}(E) [4 , Equation (2.6)] and an asymptotic expansion of the free resolvent (- $\Delta$-z)^{-1}
at the threshold z=0 as presented in [5]. In particular, they yield the spectral projections
of the bound state via the Riesz resolvent formula. Other steps are the decomposition
of the Heisenberg time evolution using the Dyson equation [4, Subsection 4.1] and an

enhanced propagation estimate [4, Proposition 4.2]

\langle $\zeta$|\mathrm{e}^{-\mathrm{i}tH_{ $\tau$}(E_{a})} $\zeta$)\leq const (1+|t|)^{-5/2} (5)

for E_{a}>E_{c} where  $\zeta$=[_{1}^{0} ] is the basis vector in the quantum dot. As part of the proofs
of (ii) and (iii) we show that the instantaneous bound state is a good approximation to

the �true� Heisenberg time evolution up to the threshold [4, Theorem 1.3(ii)].

The results above easily extent to a quantum dot with N energy levels and hence

\mathcal{H} = L^{2}(\mathbb{R}^{3})\oplus \mathbb{C}^{N} . Suppose that initially the system has N discrete eigenvalues and

only one of them dives into the continuum during the adiabatic tuning. Then a particle
in the diving state scatters away while the N-1 other eigenvalues stay away from the

continuum and therefore their states remain.

Moreover, we may allow for any odd dimension d in the reservoir. Then the conditions

on \hat{ $\varphi$} can be relaxed for  d\geq  5 or must be more restrictive for d= 1 . The crucial point
here is that the propagation estimate (5) holds in d \geq  5 for any Hamiltonian, while in

d=1 and 3 the estimate, normally with exponent -3/2 resp. -1/2 , has to be enhanced

which is ensured by the behavior of \hat{ $\varphi$} at k=0.

Despite the fact that the overall survival probability goes to zero in the adiabatic limit

according to (ii) the critical eigenfunction may survive for a long microscopic time t= $\eta$ s

69



in the supercritical regime. An extreme example is  $\varphi$ with \hat{ $\varphi$}(k)=\exp(-|k|^{2}) near k=0.

Then (4) holds for any  $\nu$\geq 1 . Nevertheless the survival probability at the terminal point
is zero in the adiabatic limit.
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