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Abstract

We report our recent studies on Kirchhoff type elliptic equations
involving the critical Sobolev exponent. The interaction between the

Kirchhoff type nonlocality and the Sobolev criticality leads us to sev‐

eral new phenomena, techniques and results depending on the dimen‐

sion of the domain. More precisely, if the dimension is equal to 3, we

observe the multiplicity of solutions induced by the nonlocal coeffi‐

cient. If it is 4, we encounter an additional difficulty in proving the

existence of solutions because of the lack of the Ambrosetti‐Rabinowitz

type condition. With the aid of the well known nonexistence result

by the Pohozaev identity, we overcome this difficulty and give a pos‐

itive answer for the solvability. For higher dimension, the Kirchhoff

type nonlocality may break the. umiqueness of solutions of an associ‐

ated limiting problem. This crucially affects the behavior of Palais‐

Smale sequences. Because of this, we need nontrivial modification for

the concentration compactness analysis. Introducing a new technique
based on the method of the Nehari manifold and the fibering map,

we succeed in showing the existence of two solutions. This report is

based on our talk entitled �Two positive solutions of the Kirchhoff

type elliptic problem with critical nonlinearity in high dimension�� on

RIMS workshop �AnĐlysis on Shapes of Solutions to Partial Differen‐

tial Equations� on November 9‐11, 2016. This report includes ajoint
work with Prof. Shibata at Tokyo Institute of Technology.
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1 Introduction

1.1 A Kirchhoff type problem

We consider a Kirchhoff type elliptic problem.

\left\{\begin{array}{ll}
-(1+ $\alpha$\int_{ $\Omega$}|\nabla u|^{2}dx) $\Delta$ u= $\lambda$ u^{q}+u^{2^{*}-1}, u>0 & \mathrm{i}\mathrm{n}  $\Omega$,\\
u=0 & \mathrm{o}\mathrm{n} \partial $\Omega$,
\end{array}\right. (P)

where  $\Omega$ is a bounded domain in \mathbb{R}^{N} with smooth boundary \partial $\Omega$ and  N\geq 3.

Furthermore, we set 2^{*} = 2N/(N-2) ,
1 \leq  q < 2^{*}-1 and  $\alpha$,  $\lambda$ > 0 . In

this report, we give our recent results on the existence of solutions of (P).
(P) is usually called a Kirchhoff type equation because the principal term

has a coefficient which depends on the Dirichlet energy of the solution. An

equation of this type was first proposed by Kirchhoff [12] in 1876. It is a

wave equation which describes free vibration of elastic strings. On the other

hand, Berstein [4] first studied a similar equation from the mathematical

point of view. After a formulation by J.L. Lions [14], now a days many

mathematicians investigate the solvability and the asymptotic behavior of

solutions of such wave equations. See the survey [3] for more detail. We also

point out that a parabolic type equation related to (P) was introduced in

[7\mathrm{J} by the physical and biological motivation. After that, Chipot et al. [8]
studied its solvability and the asymptotic behavior of the solutions. Here we

remark tbat, in the introduction, they indicated two interesting points. The

first one is that the nonlocal coefficient may induce multiplicity of stationary
solutions. The second one is that the problem admits a Lyapunov functional.

Furthermore, the stationary problem permits a variational structure. That

is, we can study the existence of solutions via the variational method. After

their work, many researchers began to study the existence solutions of the

stationary problem involving nonlinear force terms. The first work on this

direction seems [1].

1.2 Sobolev critical problems
In view of variational studies on such nonlinear elliptic problems, one of

the most interesting problems occurs when we consider the Sobolev critical

nonlinearity u^{2^{*}-1} as in (P).. Because of the lack of the compactness of the

Sobolev embedding H_{0}^{1}( $\Omega$) \mapsto L^{2^{*}}( $\Omega$) ,
a serious difficulty occurs in proving
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the existence of solutions. Furthermore, it is known that if  $\alpha$=0,  $\lambda$\leq 0 and

 $\Omega$ is star‐shaped, (P) has no solution differently from the subcritical case.

Hence to prove the existence of solutions for the critical case becomes a very

challenging and interesting problem. By these facts, (P) with  $\alpha$=0 has been

extensively studied by many authors. Here let us give the celebrated result

by Brezis‐Nirenberg [5] which first showed the existence of solutions of (P)
for  $\lambda$>0 . Define $\lambda$_{1}=$\lambda$_{1}( $\Omega$)>0 as the first eigenvalue of - $\Delta$ on  $\Omega$.

Theorem 1.1 (Brezis‐Nirenberg 83 [5] ). For the case  $\alpha$=0 , we have the

following.

(i) Let N=3 and  $\Omega$ be a ball. Then, if  q=1 , (P) has at least one solution

if and only if  $\lambda$\in($\lambda$_{1}/4, $\lambda$_{1}) . On the other hand, if q\in(1,3], (P) admits

at least one solution for sufficiently large  $\lambda$> 0 and if  q\in (3,5)_{f} (P)
permits at least one solution for all  $\lambda$>0.

(ii) Assume N\geq 4 . Then, if q_{\mathrm{t}}= 1 , (P) possesses at least one solution if
and only if  $\lambda$\in (0, $\lambda$_{1}) . On the other hand, if  q\in (1,2^{*}-1) , (P) has

at least one solution for all  $\lambda$>0.

Our question is what happens on these existence and nonexistence results

on (P) if it has a Kirchhoff type nonlocal coefficient, i.e.,  $\alpha$>0.

1.3 A previous work and our aim

Before our study, we could find an interesting work by G.M. Figueiredo
[10]. We remark that he treated more general problem than (P). Especially,
he considered a nonlocal coefficient which generalizes that in (P). By a

truncation argument, he got an existence result on his problem. A direct

consequence is the following.

Theorem 1.2 (G.M.Figueiredo�13 [10]). If N\geq 3,  $\alpha$>0 and q\in(1,2^{*}-1) ,

(P) permits at least one solution if  $\lambda$>0 is sufficiently large.

When we compare Theorems 1.2 with 1.1, we get some natural questions.
The first one is what happens on the case  $\alpha$>0 and q=1 since Figueiredo�s
assumption on the nolinearity admits only superlinear case q>1 . Of course

it was treated by Brezis‐Nirenberg for the case  $\alpha$=0 . The second one is that

if we can prove the existence solutions for  $\alpha$>0 and small  $\lambda$>0 . It is not

clear from Theorem 1.2 if the condition  $\lambda$>0 to be large is essential for the
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case  $\alpha$> 0 . Notice that Brezis‐Nirenberg showed the existence of solutions

for all  $\lambda$ > 0 if q > 1 and  $\alpha$ = 0 . The last one is that if we can get the

multiplicity of solutions induced by the nonlocal coefficient as was pointed
out by [8] for the nonhomogeneous case. Our aim is to give answers for these

questions.

1.4 Variational Setting

Here, to start our argument, we give the variational setting for our problem.
Let us define the energy functional associated to (P). For any u \in  H_{0}^{1}( $\Omega$) ,

we set

I(u)=\displaystyle \frac{1}{2}\Vert u\Vert^{2}+\frac{ $\alpha$}{4}\Vert u\Vert^{4}-\frac{ $\lambda$}{q+1}\int_{ $\Omega$}u_{+}^{q+1}dx-\frac{1}{2^{*}}\int_{ $\Omega$}u_{+}^{2^{*}}dx,
where |u\Vert :=(\displaystyle \int_{ $\Omega$}|\nabla u|^{2}dx)^{1/2} and u_{+}:=\displaystyle \max\{0, u\} . We emphasize that the

forth order term  $\alpha$\Vert u||^{4}/4 appears as a result of taking  $\alpha$ > 0 . By a usual

elliptic estimate and the maximum principle, we have that every critical point
u of I (i.e., I'(u) = 0) is nothing but a solution of (P). Hence in order to

prove the existence of solutions of (P), we only have to show the existence

of critical points of I . From now on, let us prove that. When we look for

critical points of I
,

we usually first observe the geometry of I . As we will see

later, the interaction between the forth order term  $\alpha$\Vert u\Vert^{4}/4 and the critical

term \displaystyle \int_{ $\Omega$}u_{+}^{2^{*}}dx/2^{*} crucially affects that. Here, notice that

2^{*}\left\{\begin{array}{l}
=6>4 \mathrm{i}\mathrm{f} N=3,\\
=4 \mathrm{i}\mathrm{f} N=4,\\
<4 \mathrm{i}\mathrm{f} N\geq 5.
\end{array}\right.
Then it is natural to divide our study into three cases, i.e., N = 3 ,

4 and

N \geq  5 . In the following sections we give our results on each case. As an

introduction, we here summarize interesting points for each case as follows.

(i) If N=3 , we observe a multiplicity result which is induced by the non‐

local coefficient. In other words, we see that it can break the uniqueness
of solution of (P) for the case  $\alpha$=0.

(ii) If N=4 , we encounter an additional difficulty in proving the existence

of solutions because of the lack of the Ambrosetti‐Rabinowitz type
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condition if  $\alpha$>0 . In particular, it is not clear there exists a bounded�

Palais‐Smale sequence for I . With the help of Pohozaev�s nonexistence

result, we construct a desired bounded Palais‐Smale sequence for I.

Consequently, we get a positive answer for the existence of solutions of

(P).

(iii) If N \geq  5
,

the nonlocal coefficient may break the uniqueness of the

limiting problem associated to (P). This crucially affects the concen‐

tration compactness analysis on Palais‐Smale sequences. Introducing
new techniques utilizing the method of the Nehari manifold and the

fibering map, we overcome this difficulty and succeed in proving the

multiplicity of solutions of (P).

1.5 organization of this report

This report is consisted of 4 sections. In Sections 2 and Section 3, we briefly
discuss our previous studies on the cases N = 3 and 4. In Section 4, we

give our recent result and its proof on the higher dimensional case. In the

following we define the Sobolev constant S>0 by

S= \displaystyle \mathrm{i}\mathrm{n}\mathrm{f}\frac{\int_{ $\Omega$}|\nabla u|^{2}dx}{2}
u\displaystyle \in H_{0}^{1}( $\Omega$)\backslash \{0\}(\int_{ $\Omega$}|u|^{2^{*}}dx)^{\overline{2^{*}}}

2 Dimension 3

Let us first see our result on the case N=3 . The case q=1 is treated in [17]
and q>1 is in [15]. Here we give a result from [17] where a new multiplicity
result induced by the nonlocal coefficient is obtained. We note that the case

q=1 is very delicate as is known for the case  $\alpha$=0 . Following the argument
in [5], we also assume  $\Omega$ is a ball; The next one is a direct consequence of

Theorem 5.1 in [17]. For simplicity we only consider the case  $\alpha$>0 is small.

Theorem 2.1 (N. 15 [17] ). Let N=3, q=1 and  $\Omega$ be a ball. In addition,
we assume  $\alpha$>0 is small enough. Then, there exist constants c_{i}=c_{i}( $\alpha$) >0

for i = 1
,
2 such that c_{i}( $\alpha$) \rightarrow  0 as  $\alpha$ \rightarrow  0 for i = 1 , 2 and satisfy the

following.

(i) If $\lambda$_{1}/4+c_{1}( $\alpha$)< $\lambda$\leq$\lambda$_{1} , (P) has at least one solution.
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(ii) If $\lambda$_{1}< $\lambda$<$\lambda$_{1}+c_{2}( $\alpha$) , (P) admits at least two solutions.

Comparing this result with Theorem 1.1, we observe the effect of the

nonlocal coefficient on the existence of solutions of (P). First notice that

even if  $\lambda$\geq$\lambda$_{1} , (P) can have solutions if  $\alpha$>0 in contrast to the case  $\alpha$=0.

Furthermore, we obtain the existence of multiple solutions when  $\lambda$>$\lambda$_{1} is not

too large. We recall that if  $\alpha$=0 and  $\Omega$ is a ball, (P) admits the uniqueness
of solutions. See, for example, [22], Hence we may say \mathrm{t}_{\backslash }\mathrm{h}\mathrm{e} nonlocal coefficient

can break the uniqueness of solutions of our critical problem.
Now, in order to understand why the nonlocal coefficient can induce the

multiplicity of solutions, let us see the geometry of I . To this end, we define

the fibering map [9\mathrm{J}[6] . For all u\in H_{0}^{1}( $\Omega$)\backslash \{0\} , set

f_{u}(t) :=I (tu) (t>0) .

As a test function, we choose u=$\phi$_{1} , the first eigenfunction of - $\Delta$ on  $\Omega$.

We may assume $\phi$_{1}>0 in  $\Omega$ . Then noting \displaystyle \Vert$\phi$_{1}\Vert^{2}=$\lambda$_{1}\int_{ $\Omega$}$\phi$_{1}^{2}dx , we have

h_{1}(t)=\displaystyle \frac{t^{2}}{2}(1-\frac{ $\lambda$}{$\lambda$_{1}}) \displaystyle \Vert$\phi$_{1}\Vert^{2}+\frac{ $\alpha$ t^{4}}{4}\Vert$\phi$_{1}\Vert^{4}-\frac{ $\lambda$ t^{q+1}}{q+1}\int_{ $\Omega$}u_{+}^{q+1}dx-\frac{t^{2^{*}}}{2^{*}}\int_{ $\Omega$}u_{+}^{2^{*}}dx.
Clearly, if  $\alpha$ = 0, f_{$\phi$_{1}} has a non zero critical point if and only if  $\lambda$ < $\lambda$_{1}.
But, setting  $\alpha$>0 ,

it can admit that even if  $\lambda$=$\lambda$_{1} . Moreover, if  $\lambda$>$\lambda$_{1} is

not too large, f_{$\phi$_{1}} permits both a local minimum point and a maximum one.

This observation leads us to expect that I has two critical points. Actually,
using standard techniques from the critical point theory and carrying out the

concentration compactness analysis of associated Palais‐Smale sequences, we

obtain the desired result as in Theorem 2.1. For more detail, see [17]. In

addition, we remark that a bifurcation diagram for this case is obtained in

[18]. See Section 3.5 there.

3 Dimension 4

In this section, we give our result on 4 dimensional case. We refer readers

to [16]. As is noted there, if N =4
,

we encounter an additional difficulty
which comes from the fact that the nonlinearity may lack the Ambrosetti‐

Rabinowitz type condition. The condition is known as a sufficient condition

to ensure the boundedness of Palais‐Smale sequences. The original one for

28



the semilinear problem is found in [2]. On the other hand, for the case

 $\alpha$ > 0 ,
it is summarized, for example, in Section 1 of [13]. See conditions

(f) , (f0), (f_{1}) and (f_{2}) there. Because of the lack of such a condition it is

difficult to construct a bounded Palais‐Smale sequences for the case N=4

if  $\alpha$>0 . This seems make the problem very challenging. Here we give our

result on the interesting case q> 1 in which the nonlinearity actually does

not satisfy the Ambrosetti‐Rabinowitz type condition.

Theorem 3.1 (N. 14 [16] ). Let N=4 and 1 <q<3 . Then if 1/(2S^{2}) <

 $\alpha$< 1/S^{2} and  $\Omega$ is star‐shaped, (P) admits at least one solution if  $\lambda$>0 is

sufficiently small.

Theorem 3.1 compensates the result in Theorem 1.2 for the case N=4

since we get a solution for small  $\lambda$>0 here. But some additional conditions

are assumed in Theorem 3.1. The first one is the condition on  $\alpha$>0 to Ue

small and not too small. The condition  $\alpha$< 1/S^{2} is natural for the energy
functional I to admit the mountain pass geometry [2]. But, the assumption
 $\alpha$>1/(2S^{2}) seems technical. It is supposed for the concentration compact‐
ness analysis. See Lemma 3.2 in [16]. The second one is the assumption
on the domain  $\Omega$ to be star‐shaped. Although this seems also technical, it

allows us to utilize Pohozaev�s nonexistence result in constructing a bounded

Palais‐Smale sequence. Here let us see the argument. After this, we call

(u_{n}) \subset H_{0}^{1}( $\Omega$) \mathrm{a} (\mathrm{P}\mathrm{S})_{c} sequence for I if I(u_{n}) \rightarrow  c\in \mathbb{R} and I'(u_{n}) \rightarrow 0 in

H^{-1}( $\Omega$) as n\rightarrow\infty.

Lemma 3.2 (N. 14[16] ). Let N=4, q>1,  $\Omega$ be star‐shaped. In addition,
suppose  $\alpha$ \not\in \{1/(kS^{2}) k \in \mathbb{N}\} . Then every (PS)_{c} sequence (u_{n}) for I is

bounded in H_{0}^{1}( $\Omega$) .

Proof. The original proof is given in that for Theorem 1.6 in [16]. We argue

by contradiction. Suppose \rfloor|u_{n}\Vert\rightarrow\infty as  n\rightarrow\infty . Then put  w_{n} :=u_{n}/\Vert u_{n}\Vert.
Since \Vert w_{n}\Vert = 1

,
there exists a function w_{0} \in  H_{0}^{1}( $\Omega$) such that w_{n}

\rightarrow
 w_{0}

weakly in H_{0}^{1}( $\Omega$) up to subsequences. Notice that w_{n} satisfies

(\displaystyle \frac{1}{\Vert u_{n}\Vert^{2}}+ $\alpha$)\int_{ $\Omega$}\nabla w_{n}\cdot\nabla hdx=\frac{ $\lambda$}{\Vert u_{n}\Vert^{3-q}}\int_{ $\Omega$}w_{n}^{q}hdx+\int_{ $\Omega$}w_{n}^{3}hdx+o(1) (1)

for all h\in H_{0}^{1}( $\Omega$) where o(1)\rightarrow 0 as  n\rightarrow\infty . It follows that

 $\alpha$\displaystyle \int_{ $\Omega$}\nabla w_{0}\cdot\nabla hdx=\int_{ $\Omega$}w_{0}^{3} hdx,
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for all h\in H_{0}^{1}( $\Omega$) . Then as  $\Omega$ is star‐shaped, we have  w_{0}=0 by the Pohozaev

identity [20]. Moreover, we note that (1) implies (w_{n}) is an approximate so‐

lutions sequence for a semilinear critical problem. Then the result by Struwe

[21] ensures that there exists a number l\in \mathrm{N} and for every i\in\{1, 2, \cdot\cdot , l\},
sequences of values (R_{n}^{i}) \subset \mathbb{R}^{+} , points (x_{n}^{i}) \subset\overline{ $\Omega$} with R_{n}^{i}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x_{n}^{i}, \partial $\Omega$) \rightarrow\infty

as  n\rightarrow\infty , and a nonnegative function  v_{i}\in D^{1,2}(\mathbb{R}^{4}) satisfying

- $\alpha \Delta$ v_{i}=v_{i}^{3} in \mathbb{R}^{4},

such that up to subsequences,

1=\displaystyle \Vert w_{n}\Vert^{2}=\sum_{i=1}^{l}\Vert v_{i}\Vert_{1,2}^{2}+o(1) , (2)

where o(1)\rightarrow 0 as  n\rightarrow\infty . Since \tilde{v}_{i} :=1/$\alpha$^{1/2}v_{i}\in D^{1,2}(\mathbb{R}^{4}) is a nonnegative
solution of

- $\Delta$\tilde{v}=\tilde{v}^{3} in \mathbb{R}^{4}, \tilde{v}(x)\rightarrow 0 as |x|\rightarrow\infty,

the uniqueness result by [11] suggests that for every i \in \{1, 2, \cdots , l\} , there

exist a constant $\epsilon$_{i}>0 and a point x_{i}\in \mathbb{R}^{4} such that

\displaystyle \tilde{v}_{i}=\frac{8^{\frac{1}{2}}$\epsilon$_{i}}{$\epsilon$_{i}^{2}-|x-x_{i}|^{2}}.
Therefore we have

\Vert v_{i}\Vert_{D^{1,2}(\mathbb{R}^{4})}^{2}= $\alpha$\Vert\tilde{v}_{i}\Vert_{D^{1,2}(\mathbb{R}^{4})}^{2}= $\alpha$ s^{2},
for all i\in\{1, 2, \cdots)l\} . Finally recalling (2), we get

1=l $\alpha$ S^{2},

which is impossible by our assumption on  $\alpha$ . We finish the proof. \square 

Thanks to this lemma, we can, as usual, carry out the concentration

compactness argument for the bounded Palais‐Smale sequence. But, as is

noted there, we then add an assumption on  $\alpha$ > 0 to be not too small.

In our opinion, these additional conditions should be avoided. It seems an

interesting future problem. For more detail for the proof of Theorem 3.1, see

[16].
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4 Higher dimension

Finally, we shall consider the higher dimensional case. Let N\geq 5 . We here

only deal with the case  $\alpha$>0 is small, which is, as we will see later, the most

interesting and difficult case. To give our result, we set $\lambda$_{*}=$\lambda$_{1} if q=1 and

$\lambda$_{*}=\infty if  1<q<2^{*}-1 . The next theorem is obtained in [19].

Theorem 4.1 (N.‐Shibata [19] Submitted). Let N\geq 5 and 1\leq q<2^{*}-1.
Then there exists a constant $\alpha$_{0} > 0 such that for all  $\alpha$ \in (0, $\alpha$_{0}) and  $\lambda$ \in

(0, $\lambda$_{*}) , (P) has at least two solutions.

Notice that in Theorem 4.1, we prove the existence of solutions for  $\lambda$\in

(0, $\lambda$_{*}) for which Brezis‐NirenUerg showed the existence of at least one solu‐

tion in Theorem 1.1. A different point is that we get at least two solutions.

We can say this multiplicity actually comes from the effect of the nonlocal

coefficient since we know that if  $\alpha$ = 0, q= 1 and  $\Omega$ is a ball, (P) has at

most one solution [22]. Because we consider a general bounded domain  $\Omega$,
of course, we obtain the existence of two solutions even if  $\Omega$ is a ball. In

fact, we will see that we can obtain a global minimizer of  I in addition to a

mountain pass type critical point. Finally, we shall show Theorem 4.1. In the

following, we choose q=1 for simplicity. For the case q> 1 , the argument
is similar.

Let us first observe the geometry of I . As in Section 2, we consider the

fibring map.

f_{$\phi$_{1}}(t)=\displaystyle \frac{t^{2}}{2}(1-\frac{ $\lambda$}{$\lambda$_{1}}) \displaystyle \Vert$\phi$_{1}\Vert^{2}+\frac{ $\alpha$ t^{4}}{4}\Vert$\phi$_{1}\Vert^{4}-\frac{ $\lambda$ t^{2}}{2}\int_{ $\Omega$}$\phi$_{1}^{2}dx-\frac{t^{2^{*}}}{2^{*}}\int_{ $\Omega$}$\phi$_{1}^{2^{*}}\backslash dx.
Noting 2<2^{*} <4 if N\geq 5 ,

we can conclude that if  $\alpha$>0 is small enough,
f_{$\phi$_{1}} admits just two critical points for all  $\lambda$\in (0, $\lambda$_{1}) . In addition, the first

one is a unique local maximum and second one is a global minimum. This

observation allows us to expect the existence of at least two critical points of
I. Actually, the Sobolev inequalities show that I satisfies the mountain pass

geometry and is coercive.

4.1 Palais‐Smale condition and the limiting problem
Now it suffices to show the Palais‐Smale condition for I [2] . But since we

are considering the critical case, a crucial difficulty occurs in proving the
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compactness of Palais‐Smale sequences for I . This is caused by the lack of

the compactness of the Sobolev embedding H_{0}^{ $\iota$}( $\Omega$)\mapsto L^{2^{*}}( $\Omega$) . Here, applying
the blow up analysis by Struwe [21], which was done for the case  $\alpha$=0

,
we

obtain the next description of Palais‐smale sequences for I . Set \Vert v\Vert_{1,2} =

(\displaystyle \int_{\mathbb{R}^{N}}|\nabla v|^{2}dx)^{1/2}.
Proposition 4.2 (N. 14 [16] ). Let (u_{n}) \subset H_{0}^{1}( $\Omega$) \subset D^{1,2}(\mathbb{R}^{N}) be a H_{0}^{1}( $\Omega$)-
bounded PS sequence for I. Then (u_{n}) has a subsequence which converges

strongly in H_{0}^{1}( $\Omega$) or otherwise, there exist a nonnegative function u_{0} \in

 H_{0}^{1}( $\Omega$) which is a weak limit of (un), a number k\in \mathbb{N} and further, for every

i\in\{1, 2, . . . , k\} , sequences of values (R_{n}^{i}) \subset (0, \infty) , points (x_{n}^{i}) \subset $\Omega$ and a

nonnegative function  v_{i}\in D^{1,2}(\mathbb{R}^{N}) which satisfies

‐ \displaystyle \{1+ $\alpha$(\Vert u_{0}\Vert^{2}+\sum_{j=1}^{k}\Vert v_{j}\Vert_{1,2}^{2})\} $\Delta$ u_{0}= $\lambda$ u_{0}+u_{0}^{2^{*}-1} in  $\Omega$
, (3)

-\displaystyle \{1+ $\alpha$(\Vert u_{0}\Vert^{2}+\sum_{j=1}^{k}\Vert v_{j}\Vert_{1,2}^{2})\} $\Delta$ v_{\dot{b}}=v_{i}^{2^{*}-1} in \mathbb{R}^{N}
, (4)

such that up to subsequences,  R_{n}^{i}\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x_{n}^{i}, \partial $\Omega$)\rightarrow\infty as  n\rightarrow\infty,

\displaystyle \Vert u_{n}-u_{0}-\sum_{i=1}^{k}(R_{n}^{i})^{\frac{N-2}{2}}v_{i}(R_{n}^{i}(\cdot-x_{n}^{i}))\Vert_{1,2}=o(1) , (5)

\displaystyle \Vert u_{n}\Vert^{2}=\Vert u_{0}\Vert^{2}+\sum_{i=1}^{k}\Vert v_{i}\Vert_{1,2}^{2}+o(1) , (6)

\displaystyle \int_{ $\Omega$}(u_{n})_{+}^{2^{*}}dx=\int_{ $\Omega$}u_{0}^{2^{*}}dx+\sum_{i=1}^{k}\int_{\mathbb{R}^{N}}v_{i}^{2^{*}}dx+o(1) , (7)

and

I(u_{n})=\displaystyle \tilde{I}(u_{0})+\sum_{i=1}^{k}\tilde{I}_{\infty}(v_{i})+o(1) , (8)

where o(1)\rightarrow 0 as  n\rightarrow\infty and we put

ĩ (u_{0}) :=\displaystyle \frac{1}{2}\Vert u_{0}\Vert^{2}+\frac{ $\alpha$}{4}(\Vert u_{0}\Vert^{2}+\sum_{j=1}^{k}\Vert v_{j}\Vert_{1,2}^{2}) \Vert u_{0}\Vert^{2}

‐ \displaystyle \frac{ $\lambda$}{q+.1}\int_{ $\Omega$}u_{0}^{q+1}dx-\frac{1}{2^{*}}\int_{ $\Omega$}u_{0}^{2^{*}}dx,
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\displaystyle \tilde{I}_{\infty}(v_{i}):=\frac{1}{2}\Vert v_{i}\Vert_{1,2}^{2}+\frac{ $\alpha$}{4}(\Vert u_{0}\Vert^{2}+\sum_{j=1}^{k}\Vert v_{j}\Vert_{1,2}^{2}) \displaystyle \Vert v_{i}\Vert_{1,2}^{2}-\frac{1}{2^{*}}\int_{\mathbb{R}^{N}}v_{i}^{2^{*}}dx.
We interpret this proposition as follows. (5) implies that the lack of

compactness of Palais‐Smale sequences is caused by the functions v_{i} for  i\in

\{1, 2, \cdots , k\} which satisfy the equations in whole space (4). (After this, we

call the equation (4) a limiting problem.) Hence we can conclude that the

existence of solutions of the limiting problem is crucial for the compactness of

Palais‐Smale sequences. Here let us check it for the simplest case. If u_{0}=0
and k=1

, (4) becomes

\left\{\begin{array}{l}
-(1+ $\alpha$\int_{\mathbb{R}^{N}}|\nabla V|^{2}dx) $\Delta$ V=V^{2^{*}-1}, V>0 \mathrm{i}\mathrm{n} \mathbb{R}^{N},\\
V\in D^{1,2}(\mathbb{R}^{N}) .
\end{array}\right. (9)

First notice that for every solution V we can regard the nonlocal coefficient

as just a constant. Then it clearly follows from the uniqueness result [11]
that V must be the Talenti function [23] multiplied by suitable constants.

Then an easy calculation shows that the existence and nonexistence of such

constants. We get the next result.

Proposition 4.3 (N.‐Shibata [19]). There exists a constant $\alpha$_{*}>0 such that

(i) if  $\alpha$>$\alpha$_{*} , (9) has no solution,

(ii) if  $\alpha$=$\alpha$_{*} , (9) admits a unique solution (up to dilation and translation),

(iii) if  $\alpha$\in(0, $\alpha$_{*}) , (9) permits just two solutions (up to dilation and trans‐

lation).

We remark that if  $\alpha$=0
, (P) has a unique solution up to dilation and

translation [11]. From this proposition, \backslash \mathrm{w}\mathrm{e} conclude the following. If  $\alpha$>0

is very large, (i) implies that Palais‐Smaile sequences can not include the

concentration part in (5) since there exists no solution of (9). That is, all

Palais‐Smale sequences must be compact. This suggests that if  $\alpha$ > 0 is

large the \cdot

problem is rather very easy. If  $\alpha$ = $\alpha$^{*} , since (9) has a unique
solution by (ii), the situation is very similar to the case  $\alpha$=0 . Actually, we

do not encounter any additional difficulty in this case. Now, an interesting
phenomenon occurs if  $\alpha$ > 0 is small. In this case, the nonlocal coefficient

breaks the uniqueness of solutions of (9) as in (iii). Furthermore, we can

clearly check that one of the solution correspond to a mountain pass type
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critical point of associated functional and the other does a global minimum

one. As a consequence, it is not clear if the energy \tilde{I}_{\infty}(v_{i}) in (8) has a positive
energy or a negative one. Recall that if  $\alpha$=0 , the solution is unique and it

always has a positive energy. Hence we can immediately conclude from (8)
that if  $\alpha$=0 and a Palais‐Smale sequence is not compact, it must have the

energy greater than a positive value. This was a crucial fact in the argument
for the case  $\alpha$=0 . But, if  $\alpha$ > 0 is small, even if a Palais‐Smale sequence

is not compact, we can not immediately obtain such a lower bound for the

energy because of the reason mentioned above. Now, the usual concentration

compactness argument does not seem enough for our proof. Hence we need a

new idea. In the following we introduce our idea utilizing the method of the

Nehari manifold and the fibering map [9][6]. After this, we always assume

 $\alpha$\in (0, $\alpha$_{*}) since it is the interesting case. Moreover, we suppose V_{1} and V_{2}
are the solutions of (9) such that c^{*}:=I^{\infty}(V_{1})>I^{\infty}(V_{2}) .

4.2 Proof for a mountain pass type solution

Lastly we give the outline of the proof of Theorem 4.1. Here we only demon‐

strate the existence of a mountain pass type solution. For the global mini‐

mizer, see [19]. Because of the difficulty mentioned above, the usual mountain

pass lemma does not seem work well for our aim. Then, instead of that we

utilize the method of the Nehari manifold together with the fibring map.

First we define the Nehari manifold,

\mathcal{N}:=\{u\in H_{0}^{1}( $\Omega$)\backslash \{0\} | f_{\mathrm{u}}'(1)=0\},

and its submanifold

\mathcal{N}^{-}:=\{u\in \mathcal{N}| f_{u}''(1)<0\}.

We solve a minimization problem on \mathcal{N}- More precisely, we prove the

following.

1. We construct a minimizing (\mathrm{P}\mathrm{S})_{c} sequence on \mathcal{N}- , i.e., a sequence

(u_{n}) \subset \mathcal{N}- such that I(u_{n}) \rightarrow  c^{-} :=\displaystyle \inf_{u\in \mathcal{N}-}I(u) and I'(u_{n}) \rightarrow  0 in

H^{-1}( $\Omega$) as n\rightarrow\infty.

2. Assuming c^{-}<c^{*} , we show (u_{n}) contains a subsequence which weakly
converges to a function u_{0} and u_{0}\neq 0.
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3. Using the fact u_{0}\neq 0 in (ii) we show u_{n}\rightarrow u_{0} strongly in H_{0}^{1}( $\Omega$) up to

subsequences.

4. We prove c^{-}<c_{*} by the estimate using the Talenti function.

For Step 1, we should be careful of the boundary of \mathcal{N}- which is defined by,

$\lambda$^{p}:=\{u\in \mathcal{N}|f_{u}''(1)=0\}.

Notice that if  $\alpha$=0
,

we have \mathcal{N}_{0}=\emptyset . But if  $\alpha$>0 it may not be an empty
set. This causes a difficulty in constructing a desired minimizing Palais‐

Smale sequence. Then we need the following lemma to avoid the minimizing
sequence to get close to the boundary \mathcal{N}_{0}.

Lemma 4.4. There exists a constant $\alpha$_{1} > 0 such that for all  $\alpha$ \in (0, $\alpha$_{1}) ,

there exists a constant C( $\alpha$)>0 such that  C( $\alpha$)\rightarrow\infty as  $\alpha$\rightarrow 0 and

c^{-}<C( $\alpha$)\displaystyle \leq\inf_{u\in \mathcal{N}^{0}}I(u)
For the proof, see Proposition 3.2 in [19]. Then, the essential idea to

accomplish Step 2 is similar to the case  $\alpha$=0 although the argument becomes

more delicate. We refer the reader to Lemma D. 1 in [19]. Here we only remark

that if  $\alpha$ = 0 , (3) implies that u_{0} is a solution of (P). Hence the proof is

finished by this step since we can get u_{0} \neq  0 here. But as is observed in

(3), if  $\alpha$ > 0, u_{0} is not a solution of (P) in general because of the nonlocal

dependence. Therefore, we must prove the strong convergence of (u_{n}) as in

Step 3. This is the most important argument on our proof. Now, let us give
the outline. We assume u_{0}\neq 0 and (u_{n}) has no subsequence which strongly
converges in H_{0}^{1}( $\Omega$) on the contrary. Then we define a function on t>0 by

f^{*}(t):=\displaystyle \lim_{n\rightarrow\infty}f_{u_{n}}(t) .

We then decompose f^{*}(t) by using (6) and (7). That is, noting the formulas

and setting

\displaystyle \tilde{f}_{u0}(t):=\frac{\Vert u_{0}\Vert^{2}}{2}t^{2}+\frac{ $\alpha$ A||u_{0}\Vert^{2}}{4}t^{4}-\frac{ $\lambda$\int_{ $\Omega$}u_{0}^{2}dx}{2}t^{2_{-P}}\frac{\int_{ $\Omega$}u_{0}^{2^{*}}dx}{2^{*}}t^{2^{*}},
and

\displaystyle \tilde{f}_{\infty}(t)=\sum_{i=1}^{k}(\frac{\Vert v_{i}\Vert_{1,2}^{2}}{2}t^{2}+\frac{ $\alpha$ A\Vert v_{i}\Vert_{1,2}^{2}}{4}t^{4}-\frac{\int_{\mathbb{R}^{N}}v_{i}^{2^{*}}dx}{2^{*}}t^{2^{*}}) ,
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where A:=\displaystyle \lim_{n\rightarrow\infty}\Vert u_{n}\Vert^{2} , we get

f^{*}(t)=\tilde{f}_{u_{0}}(t)+\tilde{f}_{\infty}(t) .

Now, using (3), we can first deduce that f_{u0}'(1) <0 . This implies that there

exists a constant t_{0}\in(0,1) such that t_{0}u_{0}\in \mathcal{N}- Moreover notice that since

we constructed a Palais‐Smale sequence (u_{n}) on \mathcal{N}- , we have additional

information f_{u_{n}}''(1) <0 . Using this, (3) and (4), we can next conclude that

(f^{*})'(1) = (\tilde{f}_{\infty})'(1) =0 and (f^{*})''(1) , (\overline{f}_{\infty})''(1) \leq  0 . Then, these facts lead

us to conclude that f^{*}(t) and \tilde{f}_{\infty}(t) are increasing on (0,1) . Lastly we get
by the definition that

c^{-}\leq I(t_{0}u_{0})=f_{u0}(t_{0})<f_{u_{0}}^{*}(t_{0})+f_{\infty}^{*}(t_{0})=f^{*}(t_{0})<f^{*}(1)=c^{-},
which is a contradiction. This completes Step 3. Finally, Step 4 is proved by
carrying out the energy estimate by the Talenti function similarly to the case

 $\alpha$=0 . See Lemma 4.3 in [19]. This completes the proof for the existence of

a mountain pass type critical of I . For more detailed discussion, we refer the

reader to [19].
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