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1 Introduction

In general, it is complicated to comprehend the figurations of elastic bodies,
in particular, if external factors and constraints are taken into considera‐

tion. The purpose of this paper is to briefly survey recent progress on an

�adhesion� problem of elastic curves.

1.1 Classical elastic curve problems

We first quickly review classical variational problems of elastic curves (with‐
out adhesion). Let us consider the shape of a thin inextensible rod of

clamped endpoints. Assume that the rod lies in a plane. For this prob‐
lem, one of the most classical formulations is the minimizing problem for

the total squared curvature energy, so‐called bending energy,

\displaystyle \int_{ $\gamma$}$\kappa$^{2}ds,
among planar curves  $\gamma$ of fixed length satisfying some boundary conditions.

Here  $\kappa$ denotes the curvature and  s denotes the arc length parameter of

 $\gamma$ . One typical example of boundary conditions is the clamped boundary
condition, i.e., the positions and tangential directions of endpoints are fixed.

This general variational formulation is due to D. Bernoulli in 1742, and the

family of solution curves are obtained by L. Euler in 1744 (see e.g. [12, 15, 22]
for the precise history). Solution curves are so‐called elasticae.

Any elastica  $\gamma$ satisfies the equation

 2$\kappa$_{ss}+$\kappa$^{3}- $\lambda \kappa$=0 (1.1)
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for some  $\lambda$ \in \mathbb{R} (depending on  $\gamma$). In fact, by the method of Lagrange
multipliers, for any elastica  $\gamma$ there is  $\lambda$\in \mathbb{R} such that  $\gamma$ is a critical point
of the modified total squared curvature energy

\displaystyle \int_{ $\gamma$}$\kappa$^{2}ds+ $\lambda$\int_{ $\gamma$}ds,
among curves satisfying the same boundary conditions as  $\gamma$ . Calculating the

first variation, we obtain the equation (1.1) (see e.g. [4, 24] for the precise
derivation).

The modified total squared curvature energy still has a physical meaning�
since the constant  $\lambda$ may be interpreted as tension (normalized by a bending
rigidity). Its minimizing problem has also been studied (see e.g. [2, 4, 13,
14

The minimizing problem for the modified total squared curvature may be

regarded as a modification of the length constraint in the classical problem
of Bernoulli and Euler. This modification is a �welcome relief�� since the

length constraint, which often makes the problem complicated, is removed.

When we minimize the modified total squared curvature we often impose the

natural assumption that  $\lambda$ is positive; for non‐positive  $\lambda$ the modified total

squared curvature is not bounded below unless we impose other constraints�.
The adhesion problem of elastic curves discussed in this survey is, roughly

speaking, the minimizing problem for the modified total squared curvature

containing an effect of adhesion.

1.2 Adhesion problem for elastic curves

Our adhesion problem is motivated by materials science. When soft ob‐

jects as membranes or filaments are sheeted on patterned (non‐flat) solid

substrates in small scale, it is observed that complex adhesion patterns can

occur [8, 19, 25]. To understand the principle of pattern formation for such

adhesion problems, in [21], Pierre‐Louis proposed a model formulated as an

energy minimizing problem in a one‐dimensional setting, i.e., it is assumed

that elastic bodies and substrates vary in one direction and are invariant in

the other direction. In this model, it is considered that the elastic bodies are

shaped by the competition between their elastic (bending) energy and at‐

tractive (adhesive) interaction with substrates. The adhesion effect is taken

into account as a difference of (surface) tension as wetting problems (cf. [7]).
There are many similar formulations in literature (e.g. [3, 6, 11, 20, 23]) even

for higher dimensional cases.

Let us recall the formulation by Pierre‐Louis [21] more precisely. Let

 $\Omega$ = \{y >  $\psi$(x)\} \subset \mathbb{R}^{2} , where  $\psi$ \in  C(\mathbb{R}) is a given continuous function

'
However, as mentioned in [13], we should note that the relevance between the afore‐

mentioned two minimizing problems is not trivial.
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Figure 1: Curves on a substrate.

(substrate function). For a planar curve  $\gamma$ as in Figure 1, i.e., constrained

in the closure St, the total energy is defined as

 E[ $\gamma$]=$\epsilon$^{2}\displaystyle \int_{ $\gamma$}$\kappa$^{2}ds+\int_{ $\gamma$} $\Theta$( $\gamma$)ds . (1.2)

Here  $\epsilon$ > 0 is a given constant, and the function  $\Theta$ : \overline{ $\Omega$}\rightarrow \mathbb{R} is a contact

potential function defined as  $\Theta$\equiv 1 in  $\Omega$ and  $\Theta$\equiv $\alpha$ on \partial $\Omega$ , where  $\alpha$\in(0,1)
is a given constant3. Then our problem is formulated as

\displaystyle \min_{ $\gamma$\in A}E[ $\gamma$] , (1.3)

where A is a suitable space of admissible curves. The constant  $\epsilon$>0 corre‐

sponds to (normahzed) bending rigidity of curves. Intuitively, the larger  $\epsilon$

is, the more gently minimizing curves bend. The constant a corresponds to

adhesivity. The smaller  $\alpha$ is, the easier minimizing curves become to adhere.

There are many mathematical studies on. variational problems including
a contact potential (cf. [1, 5, 16 however they deal with first order energies.
Our above energy contains the curvature which is second order.

Concerning our problem (1.3), besides [21], there are at least three math‐

ematical papers [10, 17, 18]. In this survey we overview the results of these

four papers.

One immediately notices that the above formulation is not sufficient

since \mathcal{A} is not defined precisely. The paper of Pierre‐Louis [21] is a physical
paper and does not define A mathematically. In the mathematical papers

[10, 17, 18], the space A is defined, but the definition depends on the papers.

3\mathrm{T}\mathrm{h}\mathrm{e} original energy in [21] is more general; in fact, the potential may take zero or a

negative value. In our formulation, non‐positive cases are omitted to avoid some mathe‐

matical difficulties.

52



2 Results on adhesion problem

In this section; we overview the papers [10, 17, 18, 21] chronologically.

2.1 Formulation and boundary conditions

As mentioned in Introduction, the problem (1.3) is formulated by Pierre‐

Louis [21], In this paper, the precise definition of admissible curves (as
regularity or boundary condition) is not taken care, but it is assumed that

any curve  $\gamma$ \in \mathcal{A} is the graph \{y = h(x)\} of a height function h (as the

upper right of Figure 1),
The paper [21] first states that the minimization (1.3) invokes a free

boundary problem concerning elasticae. (This part does not use the fact

that a curve  $\gamma$ is a graph.) In fact, any mimmizing curve can be locally
perturbed in the free part ( \mathrm{i}.\mathrm{e}. , the part that the curve is in  $\Omega$ ) and the total

energy  E is nothing but the modified total squared curvature there, thus

the minimizing curve satisfies the equation (1.1). with  $\lambda$=1/$\epsilon$^{2} . Of course,

a curve follows the graph of  $\psi$ in the bounded part (i.e., the part that

the curve is on \partial $\Omega$). At the contact points (free boundary), a minimizing
curve satisfies boundary conditions. The boundary conditions depend on

the regularity of the substrate  $\psi$ near contact points. For example, if the

case that  $\psi$ is sufficiently smooth at least of class  C^{2} at a contact point, then

the minimizing curve has the same position and tangential direction as the

substrate, and the curvature.has a jump there. More precisely, $\kappa$_{F}-$\kappa$_{B}=

\sqrt{1- $\alpha$}/ $\epsilon$ holds, where  $\kappa$_{F} is the hmit of the upward curvature from the

free part and \hslash B from the bounded part. This kind of jump condition for

curvature has also appeared in e.g. [3, 6, 11, 20, 23]. If  $\psi$ is not smooth, the

conditions become more involved. See [21] for details.

As a main contribution of the paper [21], critical points of the energy

(1.2) are precisely analyzed by using a small slope approximation, i.e., it is

assumed that the derivative of a height function |h'| is sufficiently small and

the equation (1.1) is linearized by this assumption. In this part, only special
substrates, as sinusoidal and �fakir‐carpet� substrates, are mainly consid‐

ered. This part essentially depends on the small slope approximation (and
also the graph representation of curves). Moreover, relevance to existing
experimental results is also mentioned.

2.2 Singular perturbation

In the author�s paper [17], a singular perturbation problem  $\epsilon$ \rightarrow  0 is con‐

sidered. This paper would be the first mathematical paper on our adhesion

problem of elastic curves. In [17], following Pierre‐Louis [21], it is assumed

that admissible curves are the graphs of functions. More precisely, the set

of admissible curves \mathcal{A} consists of the graphs of functions u \in  H^{2}(I) with
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a Dirichlet boundary condition4, where I is a bounded open interval. In

addition, the substrate function  $\psi$ is assumed to be smooth at least of class

 C^{2} . In [17] the value  $\alpha$ in the potential  $\Theta$ may not be a constant (\mathrm{i}.\mathrm{e}. , the

value of  $\Theta$|_{\partial $\Omega$} may depend on the position) but in this survey we assume

that it is a constant.

The hmit  $\epsilon$\rightarrow 0 means that the bending rigidity becomes small. When

 $\epsilon$=0 , the higher order energy vanishes thus the problem �degenerates� in

a sense. In fact, as  $\epsilon$\rightarrow 0 , the jump condition for curvature (given in the

previous section) formally yields that the curvature diverges at the contact

points as in Figure 2. This formal observation is valid in the sense that

when  $\epsilon$=0 any minimizer of (1.2) (in a suitable space of admissible curves)
has �edge�� singularities at contact points (see [17] for details). The angle  $\theta$

between a minimizing curve and a substrate is determined by the adhesion

coefficient  $\alpha$ ; Young�s equation \cos $\theta$= $\alpha$ holds. In this view the limit  $\epsilon$\rightarrow 0

is a singular limit.

The limit  $\epsilon$\rightarrow 0 is a reduction in a sense since the case  $\epsilon$=0 is rather

easy. If  $\epsilon$=0 then the boundary conditions are up to first order as Young�s
equation. Moreover, by (1.1), a minimizing curve satisfies  $\kappa$=0 in the free

part, thus each connected component of the curve in the free part is just a

segment. These conditions restrict candidates of minimizers. Note that in

this case admissible curves are no longer H^{2}.

However, just by taking  $\epsilon$ = 0 , the effect of the bending energy com‐

pletely vanishes. When $\epsilon$^{J}\mathrm{i}\mathrm{s} small but non‐zero, what is the main effect of

the bending energy? To answer this question is the main purpose of the pa‐

per [17]. The answer is natural; when  $\epsilon$=0 the curvature of a minimizing
curve. is singular only at the contact points, hence when  $\epsilon$ \ll  1 the main

effect of the perturbation by bending depends only on the free boundary.
Roughly speaking, the main theorem of [17] states that, for fixed a and

smooth  $\psi$ , the total energy  E=:E_{ $\epsilon$} is expanded as

E_{ $\epsilon$}\approx E_{0}+ $\epsilon$ F+o( $\epsilon$)

in a sense of  $\Gamma$‐expansion with respect, to the  W^{1,1} ‐topology5, where F[ $\gamma$]=
4(\sqrt{2}-\sqrt{1+ $\alpha$})N and N denotes the number of contact points. Since  $\alpha$=

\cos $\theta$ , the energy  F depends only on the number and their angles of contact

points. If  $\alpha$ depends on the position, then  F is defined in terms of the

zero‐dimensional Hausdorff measure.

The above expansion roughly means that in the case of small  $\epsilon$ a min‐

imizing curve mainly minimizes  E_{0} and, as the next order effect, also min‐

4The fact is that the paper [17] considers W^{2,1} functions but, for our energy minimizing
problem, the H^{2} and W^{2,1} settings are equivalent.

\mathrm{s}_{\mathrm{T}\mathrm{o}} be more precise, in order to state  $\Gamma$‐expansion, all the energies  E_{ $\epsilon$}, E_{0}, F have

to be defined for any W^{1,1} ‐fUnction (with a boundary condition). This is justified by a

simple penalty method. See [17] for details.
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Figure 2: Minimizer on a smooth substrate for small  $\epsilon$.

imizes F ; in our case (  $\Theta$|_{\partial $\Omega$} \equiv const.) the number of contact points (edge
singularities) should be mim

\cdot

mized.

2.3 Discretization

In the next mathematical paper [10], Kemmochi considered a discretization

problem for our adhesion problem. In [10], it is still assumed that admissible

curves are the graphs of  H^{2}‐functions u on the unit interval I=(0,1) , and

a periodic boundary condition is imposed; u(0)=u(1) and u'(0)=u'(1) . \mathrm{A}

substrate function  $\psi$ is also assumed to be smooth.

A main purpose of the discretization is to propose a way of numerical

calculation, or more simply, to simplify the mim
\cdot

mizing problem. The prob‐
lem is discretized in the sense that admissible curves are taken as (periodic)
polygonal line functions of step size  h . In addition, each term in the total

energy (1.2) is suitably modified. In particular, the discontinuous adhesion

effect and the obstacle (substrate) constraint is modified to be smooth by
introducing two new parameters  $\delta$ and  $\rho$ . Then the main theorem of [10]
states that for fixed  e

,
a and  $\psi$ , under the assumption of uniformly bounded

slope ( \mathrm{i}.\mathrm{e}. , for some S> 0 any admissible function u satisfies \Vert u'\Vert_{\infty} \leq S),
the modified energy E_{h, $\delta,\ \rho$}  $\Gamma$‐converges to the original total energy  E with

respect to the H^{1} ‐topology. The uníformly bounded slope assumption is

essential in the proof.
Some numerical calculations are also exhibited by using the discretiza‐

tion. A remarkable calculation shows a �blowing‐up� example for a special
substrate (as a �single‐needle�� substrate). Here �blowing‐up� means that

the slope of a function diverges. This result indicates that the graph setting
is not suitable for our adhesion problem. As mention in [10], the existence

of such a case has been expected by the author, but Kemmochi�s paper [10]
is the first one to indicate it expressly.

2.4 Graph representation

All the previous works [10, 17, 21] assume that any admissible curve is

represented by a graph. This yields strong topological and morphological
constraints which make the problem easier to analyze, however its adequacy

55



is nontrivial. In fact, as mentioned in the previous subsection, Kemmochi

[10] shows a numerical example with blowing‐up slope. The recent paper [18]
by the author addresses the first rigorous study on the adequacy. This paper

mathematically proves the existence of a situation such that any minimizer

is not a graph.
In [18], we impose the periodic boundary condition as [10], but admissible

curves are not assumed to be the graphs of functions; the space of admissible

curves \mathcal{A} is taken as the set of regular H^{2}‐Sobolev curves  $\gamma$=(x, y) : I\rightarrow\overline{ $\Omega$},
where I=(0,1) , with

x(0)=0, x(1)=1, y(0)=y(1) , \dot{ $\gamma$}(0)=\dot{ $\gamma$}(1) .

A substrate function  $\psi$ is assumed to have the same period as admissible

curves, i.e.,  $\psi$(x)= $\psi$(x+1) for any x\in \mathbb{R}.

This non‐graph setting is actually very natural in the sense that for any

given e,  $\alpha$ and  $\psi$ there exists a minimizer for (1.3). (The uniqueness is not

expected in general.) The main problem in [18] is to consider the graph
representation of global minimizers. The paper [18] exhibits some sufficient

conditions regarding the parameters  e,  $\alpha$,  $\psi$ for the graph representation of

mimmizers, and also examples of the parameters such that any minimizer is

overhanging (non‐graph).

2.4.1 Graph minimizers

We easily notice that minimizers are only straight lines in the following
limiting cases;  $\epsilon$=\infty,  $\alpha$=1 , and  $\psi$\equiv 0 . By this observation, when  $\epsilon$\gg 1,
 $\alpha$ \approx  1 or  $\psi$ \approx  0 , we expect that any minimizer is nearly flat and hence

a graph curve, i.e., x'(t) > 0 for any t \in \overline{I}. In fact, the following two

statements are proved in [18].

Theorem 2.1. Suppose that ($\pi$^{2}$\epsilon$^{2}+1) $\alpha$ \geq  1 . Then, independently of  $\psi$,
any minimizer is a graph curve.

Theorem 2.2. Suppose that  $\psi$ \in  W^{2,\infty}(\mathbb{R}) and \Vert$\psi$''\Vert_{\infty}^{2} \leq \displaystyle \frac{8$\pi$^{2}}{8/ $\alpha$+1/$\epsilon$^{2}} . Then

any minimizer is a graph curve.

Theorem 2.1 immediately implies that, if we fix  $\epsilon$ and take  $\alpha$ \approx  1 , or

fix a and take  $\epsilon$\gg 1 , any minimizer is a graph curve. Theorem 2.2 states

that, for any  $\epsilon$ and  a which may be small, if the substrate  $\psi$ is sufficiently
flat in the second order sense  $\psi$'' \approx  0 then \mathrm{o}\mathrm{u}\mathrm{r}\nearrow problem still admits only
graph curve minimizers. The proofs in [18] rely only on energy arguments;
we obtain a lower bound for the energy of all non‐graph curves and choose

suitable graph curves so that, under the assumptions in the theorems, their

energies are less than the lower bound.
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Figure 3: Fakir carpet of height  h and period 1.

2.4.2 Overhanging minimizers

On the other hand, it turns out that there is a combination of  $\epsilon$\ll 1,  $\alpha$\ll 1

and �almost singular��  $\psi$ of special shape such that any minimizer of (1.3)
is overhanging, i.e.,  x'(t) <0 for some t\in\overline{I}.

Theorem 2.3. Let h> 0 and m_{h} := \displaystyle \frac{\min\{1,h\}}{1+2h} . Then for any  $\alpha$ < m_{h} and

 $\epsilon$< \displaystyle \frac{(1+2h)(m_{h}- $\alpha$)}{20 $\pi$} there exists  $\psi$ \in  C^{\infty}(\mathbb{R};[0, h]) such that any minimizer is

overhanging.

Theorem 2.4. Let h>0 and m_{h} :=\displaystyle \frac{\min\{1,h\}}{1+2h} . Then for any  $\alpha$<m_{h} there

exists  $\psi$ \in \mathrm{L}\mathrm{i}\mathrm{p}(\mathbb{R};[0, h]) such that for any small  $\epsilon$ > 0 any minimizer is

overhanging.

A difference between the above two theorems indicates that the regular‐
ity of  $\psi$ is essential for the uniformity of  $\epsilon$ . In particular, for any fixed  $\alpha$ and

sufficiently smooth  $\psi$ (at least more than Lipschitz) if we take  $\epsilon$ sufficiently
small then there �may� not exist an overhanging minimizer.

These theorems are also proved by only energy arguments. Substrates

 $\psi$ are taken as slightly modified fakir carpets (the shape of a singular fakir

carpet is as in Figure 3). The key step is a classification of non‐overhanging
curves by using the shape of  $\psi$ to obtain a lower bound for their energies.
We then construct an overhanging competitor whose energy is less than the

lower bound provided that  $\epsilon$,  $\alpha$\ll 1.

2.4.3 Self‐intersections

The paper [18] also mentions some problems about self‐intersections. One

notices that our admissible curves may have a self‐crossing (as in the lower

right of Figure 1) which is not suitable for membrane problems. However, as

in [18], our problem can be adapted to membrane problems by considering
the mim

\cdot

mizing problem on a subset  A'\subset A . The set A' is taken as the H^{2_{-}}
weak closure of the set of curves without self‐intersection. Then any curve

in \mathcal{A}' has no self‐crossing (it may have only self‐contacts). The existence of

minimizers in \mathcal{A}' is proved by a similar argument for A.
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3 Perspectives

The adhesion problem of elastic curves is developing, thus there are still

many remaining problems. Some of them are mentioned in [18] precisely.
One main remaining problem is, as mentioned in Section 2.4.2, the graph
representation of minimizers for given  $\alpha$ , smooth  $\psi$ , and sufficiently small  $\epsilon$.

We announce that our forthcoming paper addresses this open case.

Original physical membrane problems are two‐dimensional, thus it is

natural to consider challenging higher‐dimensional problems. For the gener‐

alization we need to return to modeling. A simple mathematical generaliza‐
tion is to consider the Willmore energy (the total squared mean curvature)
as the bending energy. The adhesion energy can be simply generalized by a

weighted surface energy (a weighted area functional). A more suitable set‐

ting for cell membranes would be the Helfrich energy (cf. [9] and references

therein) with an adhesion effect. Such an energy has appeared in literature,
e.g. in [3, 6, 23], with a volume term.
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