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1. Introduction

Magnetic reconnection is known as a process responsible for a very efficient magnetic field

dissipation in many plasma phenomena. In particular, it is expected to play an important
role for the acceleration of relativistic outflow. in high energy astrophysical phenomena ac‐

companying Poynting‐dominated plasmas (Begelman et al. 1984; Kennel& Coroniti 1984\mathrm{a},\mathrm{b} ;

Lyutikov & Blandford 2003). However, the classical theory of magnetic reconnection (Sweet
1958; Parker 1957) predicts that magnetic reconnection becomes very slow in high magnetic
Reynolds number plasmas (R_{\mathrm{m}}\sim 10^{10}) , and fails to explain observed dissipation timescale

in space and astrophysical phenomena. To solve this problem, a lot of efforts have gone into

finding a fast‐reconnection process that does not depend on the value of resistivity. Using
the equation of continuity, the reconnection rate can be expressed as

\displaystyle \frac{v_{\mathrm{i}\mathrm{n}}}{c_{A}}=\frac{$\rho$_{\mathrm{s}}}{$\rho$_{\mathrm{i}\mathrm{n}}}\frac{v_{\mathrm{s}}}{c_{A}}\frac{ $\delta$}{L} , (1)

where the subscript �in� and s
� indicate the inflow and outflow region, respectively, v_{\mathrm{i}\mathrm{n}}, v_{\mathrm{s}}

are the inflow and outflow velocity, respectively, c_{A} is the Alfvén velocity,  $\rho$ is the mass

density,  $\delta$ is the sheet thickness, and  L is the sheet length. This equation shows that fast

reconnection processes can be obtained by increasing the density ratio: $\rho$_{\mathrm{s}}/p_{\mathrm{i}\mathrm{n}} , (Brunel
et al. 1982), the outflow \mathrm{v}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{y}:\backslash v_{8}/c_{A} , and the aspect ratio of sheets:  $\delta$/L (Biskamp 1986;
Shibata& Tanuma 2001; Loureiro et al. 2007; Takamoto 2013).

Turbulence has been considered as a key process that can accelerate magnetic field

annihilation. In particular, many astrophysical objects are considered to be high Reynolds
number plasma, and it is natural to assume those plasma are in a turbulent state. It

was theoretically suggested that strong Alfvénic turbulence also increases the sheet aspect
ratio, and the reconnection rate becomes independent of the resistivity (Lazarian & Vishniac
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(1999), henceforth LV99). LV99 predicts the following expression of reconnection rate:

\displaystyle \frac{v_{\mathrm{i}\mathrm{n}}}{c_{A}}\simeq\min[(\frac{L}{l})^{1/2}, (\frac{l}{L})^{1/2}] (\frac{v_{l}}{c_{A}})^{2} (2)

where l and v_{l} are the energy injection scale and velocity dispersion of turbulence at the

injection scale, respectively. This was examined using magnetohydrodynamics (MHD) sim‐

ulation (Kowal et al. 2009). However, the numerical work was limited only in the non‐

relativistic incompressible regime, and the relativistic work has been performed only very

recently by the authors (Takamoto et al. 2015).

2. Simulation Setup

We modelled the evolution of a current sheet in a turbulent flow using 3‐dimensional

resistive relativistic magnetohydrodynamics (RRMHD). The initial current sheet is modelled

by the relativistic Harris sheet (Hoh 1966; Kirk & Skjaeraasen 2003)

whose magnetic field is expressed as

\mathrm{B}=B_{0}\tanh[z/ $\lambda$]\mathrm{e}_{x}+B_{G}\mathrm{e}_{y} , (3)

where  $\lambda$ is the half‐thickness of the initial sheet, and  B_{0} and B_{G} are the reconnecting magnetic
field and guide field component, respectively. The pressure inside of the sheet is assumed to

satisfy the pressure balance, and the upstream pressure is determined by the magnetization
parameter  $\sigma$ \equiv  B^{2}/4 $\pi \rho$ hc^{2} where h = 1+( $\Gamma$/( $\Gamma$-1))(p/pc^{2}) is the specific enthalpy of

relativistic ideal gas with  $\Gamma$= 4/3 , and p,  $\rho$, c are the gas pressure, mass density, and the

light velocity, respectively. The initial temperature is assumed uniform,  $\Theta$\equiv k_{\mathrm{B}}T/mc^{2}=1,
where k_{\mathrm{B}}, m are the Boltzmann constant and particle rest mass, respectively.

The evolution of the plasma is calculated using a 3‐dimensional RRMHD scheme devel‐

oped by Takamoto & Inoue (2011) which solves the full RRMHD equations in a conservative

fashion using the constrained transport algorithm. This allows us to treat the mass density,
momentum, energy, and divergence of magnetic field to be conserved within machine round‐

off error. The resistivity,  $\eta$ , was assumed to be constant, typically  $\eta$/Lc=10^{-4} . We followed

the similar simulation setup used in Kowal et al. (2009). The numerical box is assumed

[-L/2, L/2]\times[0, L]\times[-L, L] where  L=20 $\lambda$ . Note that the \mathrm{z}‐direction size of the numerical

box is twice larger than x,y‐direction to reduce the influence by turbulence on the recon‐

nection inflow around \mathrm{z}‐boundaries. We divided the numerical box into the homogeneous
numerical cells with size:  $\Delta$=L/512 . The timestep size is set as: \triangle t=0.1 $\Delta$/c . We set the

periodic boundary condition in \mathrm{y}‐direction and free boundary condition \mathrm{x} and \mathrm{z}‐direction.
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In our model, we drive turbulence using a similar method described by Mac Low (1999).
We add a divergence‐free 3‐velocity field,  $\delta$\vec{v}, and an electric field determined consistently
to the injected velocity at time intervals  $\Delta$ t_{\mathrm{i}\mathrm{n}\mathrm{j}} in a box region located around the current

sheet: [-l_{x}, l_{x}]\times[0, L]\times[-l_{z}, l_{z}] where l_{x}, l_{z} are a scale length that is sufficiently larger than

the injected turbulence eddy scale; The velocity field is described as:  $\gamma \delta$ v^{i}=\displaystyle \sum_{\vec{k}}P(k)\sin(\vec{k}.
\vec{x}+$\phi$_{\vec{k}}^{i}) where  $\gamma$ is the Lorentz factor of the injected velocity,  i covers \{x, y, z\} , and $\phi$_{\vec{k}}^{i} is

a random phase. The one‐dimensional power spectrum of the velocity field is assumed flat,
k^{2}P(k) \propto k^{0} . In our model, the only Alfvén mode velocity is injected. The more detailed

explanation is provided in (Takamoto et al. 2015).

3. Results

The left‐panel of Figures 1 are the observed reconnection rates v_{\mathrm{R}} which is measured

using a method proposed by Kowal et al. (2009) (see Equation (13) in this paper); this allows

us to measure the effective value of E_{y}/B_{0} in the 3‐dimensional case, which provides us a

reconnection inflow velocity less contaminated by turbulent flows than the direct measure of

inflow velocity, v_{z} The top panel shows the reconnection rate with respect to the injected
turbulent velocity in various kinds of magnetized plasmas. This shows that the turbulent

reconnection rate shows 3 characteristic behaviors depending on the injected turbulent ve‐

locity v_{\mathrm{i}\mathrm{n}\mathrm{j}}/c_{A} : (1) increasing region following LV99; (2) saturation region giving maximum

rate; (3) decreasing region. When the injected turbulent velocity is sufficiently small, incom‐

pressible approximation can be applied, and the reconnection rate grows following Equation
(2). On the other hand, when injected velocity becomes comparable to the Alfvén velocity,
turbulence becomes compressible and the reconnection rate deviates from the incompressible
theory. Interestingly, the injection velocity v_{\mathrm{i}\mathrm{n}\mathrm{j}}/c_{A} at the maximum rate becomes smaller as

the magnetization parameter increases. We will discuss the relation of this tendency to the

compressible effects in the next section. Note that the error bar in the panel seems decreas‐

ing with  $\sigma$ . We consider this is because the kinetic energy of turbulence becomes smaller

comparing with the magnetic field energy as the magnetization parameter  $\sigma$ increases. This

maximum reconnection rate also indicate that it will be possible to reach around 0.1 to 0.2

if injection scales are comparable to the sheet length as indicated by Equation (2). The

dependence of reconnection rate on turbulent strength is reported in Takamoto et al. (2015).
This showed the reconnection rate becomes independent of the plasma resistivity but only
on the turbulent strength whose value is around  v_{\mathrm{R}}/c_{A}\sim 0.05 . and even comparable to the

relativistic Petschek reconnection rate (Lyubarsky 2005).
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Fig. 1.— Left: Observed reconnection rate in its steady state. Reconnection rate with

respect to the injected turbulent velocity. Right: The ratio of fast to Alfvén mode velocity
power in terms of the non‐relativistic fast Mach number of the Alfvén mode component. This

indicates that the compressible mode increases with Alfvén Mach number, and becomes more

important with increasing  $\sigma$‐parameter.

4. Theoretical Considerations

LV99 obtained the following relation:  $\delta$/L\propto(v_{l}/c_{A})^{2}\propto v_{\mathrm{i}\mathrm{n}\mathrm{j}}/c_{A} using the incompressible
MHD turbulence cascade law. Hence, in the present compressible RMHD turbulence case,

it is expected the above relation should be modified. More precisely, the LV99�s relation can

be rewritten as:

\displaystyle \frac{ $\delta$}{L}\sim (\frac{2$\epsilon$_{\mathrm{i}\mathrm{n}\mathrm{j}}t}{c_{A}^{3}})^{1/2}\min[(\frac{L}{l})^{1/2}:(\frac{l}{L})^{1/2}] , (4)

and substituting, $\epsilon$_{\mathrm{i}\mathrm{n}\mathrm{j}} \sim  v_{l}^{4}/2lc_{A} ,
recovers Equation (2). Hence, if we find an expression

of the energy injection rate $\epsilon$_{\mathrm{i}\mathrm{n}\mathrm{j}} including compressible effects, Equation (4) may give us a

new expression of the sheet width. Recently, Banerjee & Galtier (2013) obtained an exact

relation of energy cascade rate in the non‐relativistic isothermal MHD turbulence. In the

strong background average magnetic field limit, the relation reduces to:

-4 $\epsilon$=\nabla\cdot\vec{F}+B_{0}^{2}S (5)

where the divergence \nabla is performed on the correlation length which plays a role of the eddy
scale length, \vec{F} is the energy flux vector including compressible effects with order of B_{0}^{2} , and S

is a source or sink term due to the compressible effects. This indicates that the compressible
effects cannot be neglected in the strong background magnetic field, and the energy cascade

rate should be redefined as an effective mean total energy cascade rate: $\epsilon$_{\mathrm{e}\mathrm{f}\mathrm{f}} \equiv $\epsilon$+B_{0}^{2}S/4,
and this will give us the necessary correction term in Equation (4). Performing the Taylor
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expansion of $\epsilon$_{\mathrm{e}\mathrm{f}\mathrm{f}} in v_{\mathrm{i}\mathrm{n}\mathrm{j}}/c_{A}<1 up to 2nd‐order, the corrected sheet width can be written as:

\displaystyle \frac{ $\delta$}{L}\simeq\min[(\frac{L}{l})^{1/2}, (\frac{l}{L})^{1/2}] [\frac{v_{\mathrm{i}\mathrm{n}\mathrm{j}}}{c_{A}}-C_{1}(\frac{v_{\mathrm{i}\mathrm{n}\mathrm{j}}}{c_{A}})^{2}] , (6)

where C_{1} is a coefficient resulting from the expansion.

The 2\mathrm{n}\mathrm{d}‐order correction, that decreases reconnection rate, can be explained as follows.

The turbulent reconnection theory in LV99 considers the MHD turbulence results in a wider

current sheet because of the wandering motion of the magnetic field driven by Alfvén waves.

Hence, $\epsilon$_{\mathrm{i}\mathrm{n}\mathrm{j}} in Equation (4) is equivalent to the Alfvén wave power, V_{A}^{2} , where V_{A} is the

Alfvén wave component of the velocity. In the compressible regime, a part of injected energy

is distributed into the fast wave, and $\epsilon$_{\mathrm{i}\mathrm{n}\mathrm{j}} in Equation (4) should be rewritten as:

V_{A}^{2}\simeq v_{\mathrm{i}\mathrm{n}\mathrm{j}}^{2}-V_{f}^{2} , (7)

where V_{f} is the fast wave component of the velocity. The behavior of the fast mode V_{f}^{2} is

described in the right‐panel of Figure 1, which shows the fast mode is actually a increasing
function of Alfvén mode velocity, that is, injection velocity Takamoto & Lazarian (2016).
More complete explanation is given in Takamoto et al. (2015). Interestingly, Takamoto &

Lazarian (2016) also found that the fast mode component increases with the background
Poynting energy. This indicates the critical‐balance MHD would be invalid at some  $\sigma$‐value,
and a strong‐coupling regime between fast and Alfvén modes will appear around  $\sigma$\sim 10.

5. Discussion And Conclusion

In this paper, we investigated turbulent reconnection in relativistic plasmas from the

matter dominated to Poynting dominated cases using the relativistic resistive MHD model.

The results show that the turbulence can enhance magnetic reconnection even in relativistic

plasmas, and can be a candidate for a fast reconnection process. We found the reconnec‐

tion rate in turbulence shows the following 3 characteristic phase depending on the velocity
of the injected turbulence: (1) LV99 region (incompressible turbulence); (2) saturation re‐

gion giving maximum rate; (3) reducing due to the compressibility. The saturation occurs

when the compressible component become dominant, typically around  v_{\mathrm{c}}^{2}/v_{\mathrm{i}}^{2}>0.4\sim at which

the maximum reconnection rate is about 0.05. This shows that the LV99 expressions for

incompressible fluid should be modified to account for compressibility.

Finding a fast reconnection process is one of the most important topics in plasma physics,
and a considerable number of studies have been conducted on it for a long time. Turbulence is

23



a very general process in high‐Reynolds number plasmas, so that turbulent reconnection can

appear in many kinds of phenomena, such as astrophysical phenomena, nuclear fusion, and

laser plasma. In particular, our work investigated the extension of turbulent reconnection

to relativistic plasma with compressible turbulence, which allows us to apply this process to

many high energy astrophysical phenomena, such as flares in pulsar wind nebulae, gamma

ray bursts, and relativistic jets.
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