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On some classification results of real singularities
up to the arc-analytic equivalence
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Abstract

This note is an expanded version of a talk given during the conference Singularity
theory of differential maps and its applications at the RIMS, Kyoto (December 6-9, 2016).

We first state the definition and some properties of the arc-analytic equivalence which
is an equivalence relation with no continuous moduli on Nash (i.e. real analytic and semi-
algebraic) function germs. It is a semialgebraic version of the blow-analytic equivalence
of T.-C. Kuo.

Then, we present an invariant of the arc-analytic equivalence which is constructed
following the motivic zeta function of Denef-Loeser.

Finally, we explain how to derive from it some classification results for Brieskorn poly-
nomials and more generally for some weighted homogeneous polynomials.
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1 The arc-analytic equivalence

H. Whitney [25, Example 13.1] noticed that the cross-ratio is a continuous modulus of the
family f; : ®2,0) — (R,0), ¢ € (0,1), defined by fi(x,y) = xy(y — xXy — tx). Particularly, two
distinct function germs of this family are never Cl-equivalent, i.e. if there exists a C1-
diffeomorphism ¢ : (R?,0) — (R?,0) such that fy = fyop then ¢ =¢'.

T.-C. Kuo [15] suggested the blow-analytic equivalence as a candidate to obtain a clas-
sification of real singularities without continuous moduli. He proved that this notion is an .
equivalence relation on real analytic function germs and that it admits no continuous mod-
uli for isolated singularities. Indeed, a family of real analytic function germs with isolated
singularities defines locally finitely many blow-analytic equivalence classes.

Up to now, the known invariants of the blow-analytic equivalence are the Fukui invari-
ants [12] and the Koike—Parusiniski zeta functions [14]. In order to construct richer invari-
ants, G. Fichou [8, 9] introduced a semialgebraic version of the blow-analytic equivalence
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called the blow-Nash equivalence. It is a relation on Nash * function germs with no contin-
uous moduli for isolated singularities. The notion of blow-Nash equivalence evolved and
stabilized to the following: two Nash function germs f,g : (R?,0) — (R,0) are blow-Nash
equivalent if, after being composed with Nash modifications T, they are Nash-equivalent
via a Nash-diffeomorphism which preserves the multiplicities of the Jacobian determinants
of the modifications. Initially, it was expected, but not known yet, whether this relation is
an equivalence relation on Nash function germs.

The goal of this section is to introduce the arc-analytic equivalence defined in [6]. It is
a characterization of the blow-Nash equivalence in terms of arc-analytic maps. It avoids
to involve Nash modifications and it is an equivalence relation. Moreover, A. Parusiriski
and L. Pdunescu [21] recently proved it admits no continuous moduli, even for families of
non-isolated singularities.

Definition 1.1 ([6, Definition 7.5]). Two Nash function germs f,g: (R4,0) — (R,0) are arc-
analytically equivalent if there exists a semialgebraic homeomorphism ¢ : (R%,0) — (R?,0)
such that
(@) g=fco, _
(ii) ¢ is arc-analytic, i.e. for y:(R,0) — (R%,0) real analytic, the composition ¢ovy is also
real analytic,
(iii) There exists ¢ >0 such that |detdg| > ¢ where dg is defined *.

Remark 1.2. By [4, Corollary 3.6], for ¢ as in the previous definition, the converse ¢! is also
arc-analytic and there exists & > 0 such that |detdg 1| > é where dg™* is defined. Particularly,
we get the following proposition.

Proposition 1.3 ([6, Proposition 7.7]). The arc-analytic equivalence is an equivalence relation on
Nash function germs (R%,0) — (R, 0).

The following proposition states that the arc-analytic equivalence is a characterization
of the blow-Nash equivalence. Particularly, the blow-Nash equivalence is an equivalence
relation as expected.

Proposition 1.4 ([6, Proposition 7.9]). Two Nash function germs are arc-analytically equivalent
if and only if they are blow-Nash equivalent.

The following result ensures that the arc-analytic equivalence has no continuous mod-
uli, even for families of non-isolated singularities. It is a consequence of [21, Theorem 8.5]
together with the proof of [21, Theorem 3.3] and formula [21, (3.9)].

Theorem 15 (Parusiniski-Piunescu). Let F : (RS x I,{0} x I) — (R, 0) be a Nash germ.’ Then the
germs. fy(x) = F(t,x): (R?,0) — (R, 0), t € I, define locally finitely many arc-analytic classes.

2 A motivic invariant of the arc-analytic equivalence

This section is devoted to the invariant of the arc-analytic equivalence introduced in [6]. This
invariant is constructed following the motivic zeta function of Denef-Loeser [7] but with co-
efficients in a real analogue of the Grothendieck ring introduced by Guibert-Loeser-Merle
[13]. It generalizes the motivic zeta functions of Koike-Parusinski [14] and of G. Fichou
[8,91. '

* A Nash function is a real analytic function with semialgebraic graph

A Nash modification is a proper surjective Nash map whose complexification is proper and bimeromorphic.

#K. Kurdyka [16, Théoréme 5.2] proved that a semialgebraic arc-analytic map is real analytic outside a set of
codimension 2.
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Definition 2.1 ([20, §4.2]). An .AS-set is a semialgebraic subset A P such that given a real
analytic arc y:(~1,1) — P satisfying y(~1,0) c A there exists £ > 0 such that y(0,¢) c A.

Remark 2.2 ([20, §4.2]). The .AS-subsets of Pi form the boolean algebra spanned by semi-
algebraic arc-symmetric (in the sense of K. Kurdyka [16]) subsets of Pg. Particularly, AS is
stable by u,n,\.

Definition 2.3. We denote by K¢(AS) the free abelian group spanned by symbols [A], A €
AS modulo:
(i) If there is a bijection A — B with AS-graph then [A]=[B].
(ii) If B is a closed AS-subset of A then [A]=[A\B]+[B].
Moreover, Ko(AS) has a ring structure induced by the cartesian product:
(iii) [A xB]=[A][B].
We denote by 0 = [@] the class of the empty set which is the unit of the addition, by 1 =[{*}]
the class of the point which is the unit of the product and by L 45 = [R] the class of the affine
line.

Notation 2.4. We denote by M 45 = Ko(AS) [IL;IS] the localization of Ko(AS) with respect

to {Liyg,ieN}. \
The interest of working with .AS-sets here is the existence of the virtual Poincaré poly-
nomial.

Theorem 2.5 ([17][8][18]). There exists a unique ring morphism p : Ko( AS) — Z[u), called the
virtual Poincaré polynomial, such that, if A € AS is compact and non-singular then B([A]) =
Y dimH;(A,Zg)u'.

Moreover, the virtual Poincaré polynomial encodes the dimension since, if A € AS is nonempty,
degS([A]) = dim A (and the leading coefficient is positive).

Remark 2.6 ([22]). Notice that if we omit the arc-symmetric condition to work with all semi-
algebraic sets then we may deduce from the cell decomposition that every additive invariant
of the semialgebraic sets up to semialgebraic homeomorphism factorises through the Euler
characteristic with compact support. In this situation, it is impossible to recover the dimen-
sion, since, for example, 1.(S?) = 0 (whereas S* is nonempty). Notice also that for an AS-set
A, BIAD = -1) = y(A).

Definition 2.7. We denote by Ko(ASg+) the free abelian group spanned by symbols [¢x :
X —R*], where X and the graph Iy, are in AS, modulo the relations:

(i) If there is a bijection & : X — Y with .AS-graph such that ¢x = ¢y ok then

lpx: X —=R*]=[gy:Y = R"]
(ii) fY c X is a closed .AS-subset then
[px : X = R*'1=lpxix\y : X \Y = R*1+[pxy : Y — R"]

The fiber product induces a ring structure by adding the relation:
(iii) [X xg+ Y = R*]={px : X = R*1[gy : Y — R*]

The cartesian product induces a Ko(AS)-algebra structure by adding the relation:
(iv) [Allpx : X - R*]1=[pxopry:A xX —R*]

We denote by 0 = [@] the class of the empty set which is the unit of the addition, by

1=[id:R* — R*]
the class of the identity which is the unit of the product and by
L=Lgst=[pry:RxR* - R*]

the class of the affine line.
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Remark 2.8. The group considered in [6] is equivariant since it is assumed that X is equipped
with an action of R* compatible with ¢x in some sense. We also work with equivariant iso-
morphism classes and thus it is necessary to add technical relations in order to identify
some classes.

This equivariant aspect is omitted in this note to simplify the presentation. However it is
necessary to prove that the convolution formula of [6] is compatible with the one of [14]. We
also believe that it is needed for a better comprehension of the so-called real motivic Milnor
fiber.

Notation 2.9. We set M = Ko(ASg+)[L™1]. Notice that M has a natural structure of M 45-
algebra.

Proposition 2.10 ([6, §3]). There exists a unique morphism - : M — M 4s of M gs-modules
induced on symbols by

[px : X = R*] —[X]
It is called the forgetful morphism.

Proposition 2.11 ([6, Proposition 4.16]). For € € {+,-}, there exists a unique morphism F¢ : M —
M 45 of M ss-algebras induced on symbols by

[ox : X — R*] — [px ()]

Remark 2.12. The forgetful morphism is not compatible with the ring structures since the
one on M is induced by the fiber product whereas the one on M 45 is induced by cartesian
product. This is highlighted by computing (1) =u +1# 1 = (1)

However, the morphisms F* are compatible with the ring structures since the fiber prod-
uct over one point coincides with the cartesian product.

Definition 2.13. Let f : (R%,0) — (R, 0) be a Nash function germ. We define the local motivic
zeta function of f by

Zp(T)= ¥ [ac}: Xalf) — R*|L™T" e MIT]

n>1

where X,(f) = {y =ait+... +ant", a; €R?, f(y(t)) = ct™ ++--, ¢ # 0} and ac? :X.(f) = R* isthe
angular component map defined by act(y) =ac(f oy):=c.

Theorem 2.14 ([6, Theorem 7.11]). If f,g : (R%,0) — (R,0) are two arc-analytically equivalent
Nash function germs then Z ((T) = Zg(T).

The heuristic idea of the proof is the following. First, let s be a formal variable and
set T'=L"*°. Then, after some small changes, Z;(T) may be seen as a motivic integral with
parameter s, whatever it means:

Zf(T) — |L-01'd¢ f-s
LR2,0)

Now assume that f and g are arc-analytically equivalent, then there exists ¢ as in Def-
inition 1.1. By a result of Bierstone-Milman [2] and A. Parusiriski [19], there exists o :
(M,E) — (R%,0) a finite sequence of algebraic blowings-up with non-singular centers such
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that & = ¢ oo is Nash. Therefore we have the following commutative diagram

(M,E)
®4,0) ¢ ®,0)
\ /

[R,0)

By the motivic change of variables formula, we get
Zf(T) - 'L—ordg fs_ f n_—ordg(f og)-s—ord;Jacy
L(R4,0) L(M,E)

Since the previous diagram commutes, f oo = god and, by 1.1.(iii), ord; Jac, = ord; Jacs.
Then, again by the change of variables formula, we may conclude

Zi(T)= | —©rde(foo)-s-ord; Jacy =f

u_-ord,(goé)-s-ord,Jaca = f L-ordgg-s = Zg(T)
LM E) L(M,E)

L(R4,0)

Notice that, in [6] (and before in [14] and [8]), we avoid to introduce the motivic measure
(for which we would need to work with a completion of M) and the motivic integral. For
this purpose, the change of variable formula is hidden in a computation of Z¢(T) in terms
of o directly with the coefficients of Z¢(T') as a power series in T, in a way similar to Denef-
Loeser for their proof of the rationality of their motivic zeta functions. Then we compare
these rational formulae of Z#(T) and Z4(T) to conclude.

3 A convolution formula

Proposition 3.1. There exists a unique Ko(AS)-bilinear map » : Ko(ASg+)xKo(ASp+) — Ko(ASg*)
satisfying the following relation on symbols
[px : X = R*] * [px : X = R*]
=-[px +@y : X xY \(px +9y) 1(0) = R*] + [pry : (px +¢y) 1(0) x R* — R*]

1t is called the convolution product.

Remark 3.2. It induces a M 4s-bilinear map * : M x M — M. Itis associative, commutative
and it admits 1as unit.

Definition 3.3. The modified zeta function of a Nash function germ f : (R%,0) — (R,0) is
defined by _
1— Z?awe(T)

1-T
where Z?a“’e(T) is defined by applying a — @1 coefficientwise to Z¢(T).

Zp(T)=ZH(T)- +1

Remark 3.4 ([6, Corollary 6.14]). The modified zeta function and the zeta function encode

the same information since
1- L-lz;m"'e(T)

Ze(TY=Z(T)+ LT

1
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Theorem 3.5 (The convolution formula [6, Theorem 6.15]). For i =1,2, let f; : (R%,0) — (R,0)
be a Nash function germ and define f1 fz : (R xR%2,0) — (R,0) by f1@ f2(x1,%2) = f1(x1)+ fa(x2).
Then

Zf101,(T) = ~Zp (T ® Z1y(T)

where ® is defined by applying the convolution product * coefficientwise.

The idea of the proof is the following. Assume that we want to compute X,(f1 & f2),
i.e. we look for y1(¢) and yz2(¢) such that fi(y1()) + fe(ya(?)) = ct” +---, ¢ # 0. Assume that
f1ly1@) =c1t™ +--- and fa(y2(2)) = c2t™ +---. We encounter the following cases:

1. n1=ng=nand ¢1 +cg #0, in this case ¢ = ¢1 +cg.

2. ni=ng<nandci+cz=0.

3. n1=n<ng,in this case ¢ =cj.

4. ni>ng=n,in this case ¢ = ¢a.

The two first items are naturally handled by the definition of the convolution product. The
two last items are why we need to work with the modified zeta function). For technical
reasons, in the current proof, we need to work with a resolution of f; in order to do the
required computations.

4 Applications: some classification results

4.1 Arc-analytic classification of Brieskorn polynomials

Definition 4.1. A polynomial f € R[xy,...,x4] is said to be a Brieskorn polynomial if it is of
the following form

d
f)=) el e #0,k;i21
i=1
Since we are only interested in the arc-analytic classification of Brieskorn polynomials,
we first do the following simplifications.

Remark 4.2. Since we may reorder the variables without changing the arc-analytic type of
a polynomial, we will always assume that

k15k25--~5kd
In the same vein, we may assume that ¢; = +1.

Remark 4.3. We may first elude the non-singular case. Indeed, a Brieskorn polynomial
flx)= Z‘ii=1 sixf" isnon-singular if and only if there exists i = 1,...,d such that k; = 1. Without
loss of generality, we may assume in this case that k; = 1. Then, f is arc-analytically equiv-
alent to (x1,...,x4) — x1 by applying the Nash inverse mapping theorem to (xy,...,xq) —
(f(x),x2,...,x4). Notice that, in this case, Z¢(T)=0.

From now on, we assume that &; = 2.

The following theorem is a real analogue of a result of Yoshinaga—Suzuki [26] stating
that the topological type of a Brieskorn singularity determines its exponents.

Theorem 4.4 ([6, Corollary 8.4]). Assume that the Brieskorn polynomials
&k "
f&x)=Y &’ and  gx)=Y mix;
i=1 i=1

with
2<ki<...<kg and 2<shs...sl,
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are arc-analytically equivalent, then
Vi=1,...,d,k;=1;

Since the modified motivic zeta function is an invariant of the arc-analytic equivalence,
it is enough to show that we may recover the exponents of a Brieskorn polynomial f from
Z(T). This fact may be proved following the next plan divided in three steps.

1. First, by the convolution formula, we may deduce the modified zeta function Z#(T) of
f from the one Z, .+ of a pure monomial ex*. An easy computation gives

Z a(T)=-T—-.—T*1
- (s- [exk ‘R* — [R*”[L'IT’“ Y Lo S Ry L
- (11- ex R* — R*]) L27% 272kl -2psk-l

Particularly, by the convolution formula, if » is not a multiple of an exponent &;, the
~ _vd n
coefficient @, of T" in Z¢(T') is —L Z"=1[7=?J,

2. Next, we deduce from this an upper bound of k4. Indeed, if p is a prime number big
enough, p is not a multiple of an exponent k;, then

): d
o Lodegb@) l.J 41
p prime p " pprime Sk

Since there are only finitely many (%},...,k},) such that ¥¢ | kl,- =x4 , %, we may de-
duce from Z(T) an upper bound K of {&1,...,kq}.

3. We conclude by constructing from the coefficients of Z¢(T) a linear system in the un-
knowns M, =#{i, k; =k}, for k = 1,...,K, and we solve it.

Since we are working with real numbers, it is natural to wonder what is the impact of the
signs of the coefficients of f on its arc-analytic type. Some preliminary results we present
below allow us to state the following conjecture telling that the motivic zeta function is
a complete invariant of the arc-analytic type of a Brieskorn polynomial. They also give
conditions on the exponents and coefficients of a Brieskorn polynomial to characterize its
arc-analytic type.

Conjecture 4.5 ([3, Conjecture 1.10.1]). Let
d d .
fx)=Y e and gx)=) mix;
i=1 i=1

be two Brieskorn polynomials with &;,1; € {+1). We assume that 2<ky;<---skgand2<ly<.--<
lq, and, moreover, that if ki =kijy1 = =Riom then e; = --- = €14y (resp. ifl;=lis1 =" =liym
then N2 ﬂi+m).
Then the following are equivalent:

(1) f and g are arc-analytically equivalent.

(2) Zi(T)y=Z (T)

(3) () Vi, k;i=1;

(ii) For j such that kj is even and not multiple of an odd exponent k,, we have €; =1;.
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First, notice that this conjecture is compatible with the classifications of Koike-Parusiriski
in the two variable case and of G. Fichou in the three variable case.

We have already shown that 4.5.(1)=4.5.(2) and that 4.5.(2)=4.5.(3).(i). It is already
known [3, Lemme 1.10.2] that 4.5.(3)=>4.5.(1). The idea to prove this last step is to adapt
an argument of Koike-Parusinski [14, p2095] which consists in embedding f and g in a
same family of Nash function germs with isolated singularities and to use the absence of
continuous moduli to conclude.

We end this section by giving, which we believe to be, a promising way to prove the
previous conjecture. Our goal is to prove 4.5.(2)=4.5.(3).(ii). Again, let f be a Brieskorn
polynomial and define a, by Z(T) = ¥,51a,T". Assume that n = 1 is a multiple of an
even exponent of f but is not a multiple of an odd exponent. Then, by a closer look at the
convolution formula, we get that

ﬁ(tﬁ)u):?:‘ 2] - ,6( y eixf" # 0) —(u- l)ﬁ( Y e,-xf" = 0) =y Hkilnt _ uﬂ( 3 e,-xf" = )

ikiln ikiln i,kiln

B(Feam)u=nlE] - ﬁ( Y eiaki= 51) - p( Y eixhi= o)

i,kiln i,kiln

So that, for & = +,—, we may recover (}:i, ki|,,eixf" = el] from Z¢(T):

;3( > eixf" = el) =(B(F(an)) - B@n)u?) uEie 2] + g HEskilnl—1
i,kiln

Hence, if we were able to find the number of positive (or negative) coefficients of a
Brieskorn polynomial with even exponents from the virtual Poincaré polynomials of its
preimages over 1 and -1, we could conclude by induction. We believe that it is possible
so that the conjecture is reduced to the computation of some virtual Poincaré polynomi-
als. Notice it already holds for a homogeneous Brieskorn polynomial of even degree by [10,
Corollary 2.5 & Corollary 2.6].

4.2 Arc-analytic classification of some weighted homogeneous polyno-
mials

In the complex case, it is known that the local analytic type of a singular weighted homoge-
neous polynomial with isolated singularity at the origin determines its weights [24]. It also
holds by considering merely the topological type in two [27] and three [23] variables.

T. Fukui [12, Conjecture 9.2] conjectures the real counterpart for weighted homogeneous
real polynomials with isolated singularity in the blow-analytic context. This conjecture has
been proven by O. M. Abderrahmane [1] in two variables and by G. Fichou and T. Fukui [11]
in three variables in the blow-Nash context for convenient weighted homogeneous polyno-
mials which are non-degenerate with respect to their Newton polyhedra.

Since Brieskorn polynomials are convenient weighted homogeneous polynomials which
are non-degenerate with respect to their Newton polyhedra, it is natural to ask whether the
material presented in the previous section would allow one to generalize the result of G.
Fichou and T. Fukui with no condition on the number of variables.

A first obstacle is that we can’t use the convolution formula anymore since we can’t as-
sume that such a polynomial is a sum of pure monomials. However, it is still possible to
adapt the strategy used to prove that the arc-analytic type of a Brieskorn polynomial de-
termines its exponents. It relies on a formula to compute the modified zeta function of a
polynomial non-degenerate with respect to its Newton polyhedron.
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Theorem 4.6 ([5]). Let f,g € Rlxy,...,x4] be two arc-analytically equivalent weighted homogeneous
polynomials which are non-degenerate with respect to their Newton polyhedra. Then
1. Either they are both non-singular, and in this case they are both arc-analytically equivalent to
(x1,...,%q) — x1,
2. Or they share the same weights (up to permutation and positive common multiplicative factor).
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