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Abstract

\mathrm{H}\mathrm{u}\mathrm{s} note is an expanded version of a talk given during the conference Singularity
theory ofdifferential maps and ifs applications at the RIMS, Kyoto (December 6‐9, 2016).

We first state the definition and some properties of the arc‐analytic equivalence which

is an equivalence relation with no continuous moduli on Nash(i.e. real analytic and semi‐

algebraic) function germs. It is a semiaigebraic version of the blow‐analytic equivalence
of T.‐C. Kuo.

Then, we present an invariant of the arc‐analytic equivalence which is constructed

following the motivic zeta function of Denef‐Loeser.

Finally, we explain how to derive from it some classification results for Brieskom poly‐
nomials and more generally for some weighted homogeneous polynomials.
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1 The \mathrm{a}\mathrm{r}\mathrm{c}\leftrightarrowanalytic equivalence
H. Whitney [25, Example 13.1] noticed that the cross‐ratio is a continuous modulus of the

family  f_{t}:(\mathbb{R}^{2},0)\rightarrow \mathrm{t}\mathbb{R},0), t\in \mathrm{t}0,1), defined by f_{t}(x,y)=xy(y-x)(y-tx) . Particularly, two

distinct function germs of this family are never C^{1}‐equivalent, i.e. if there exists a C^{1_{-}}

diffeomorphism  $\varphi$:(\mathbb{R}^{2},0)\rightarrow(\mathbb{R}^{2},0) such that  f_{t^{l}}=f_{t}\circ $\varphi$ then  t=t'.

T.‐C. Kuo [15] suggested the blow‐analytic equivalence as a candidate to obtain a clas‐

sification of real singularities without continuous moduli. He proved that this notion is an

equivalence relation on real analytic function germs and that it admits no continuous mod‐

uli for isolated singularities. Indeed, a family of real analytic function germs with isolated

singularities defines locally finitely many blow‐analytic equivalence classes.

Up to now, the known invariants of the blow‐analytic equivalence are the Fukui invari‐

ants [12] and the Koike‐Parusinski zeta functions [14]. In order to construct richer invari‐

ants, G. Fichou [8, 9] introduced a semialgebraic version of the blow‐analytic equivalence
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called the blow‐Nash equivalence. It is a relation on Nash \star function germs with no contin‐

uous moduli for isolated singularities. The notion of blow‐Nash equivalence evolved and
stabilized to the following: two Nash function germs  f,g:(\mathbb{R}^{d},0)\rightarrow(\mathbb{R},0) are blow‐Nash

equivalent if, after being composed with Nash modifications  $\dagger$
, they are Nash‐equivalent

via a Nash‐diffeomorphism which preserves the multiplicities of the Jacobian determinants

of the modifications. Initially it was expected, but not known yet, whether this relation is

an equivalence relation on Nash function germs.
The goal of this section is to introduce the arc‐analyt \mathrm{c} equivalence defined in [6]. It is

a characterization of the blow‐Nash equivalence in terms of arc‐analytic maps. It avoids

to involve Nash modifications and it is an equivalence relation. Moreover, A. Parusir ski
and L. Păunescu [21] recently proved it admits no continuous moduli, even for families of
non‐isolated singularities.

Definition 1.1 ([6, Definition 7.5]). Two Nash function germs f,g:(\mathbb{R}^{d},0)\rightarrow \mathrm{t}\mathbb{R},0 ) are arc‐

analytically equivalent if there exists a semialgebraic homeomorphism  $\varphi$:(\mathbb{R}^{d},0)\rightarrow(\mathbb{R}^{d},0)
such that

(i) g=f\mathrm{o} $\varphi$,
(ii)  $\varphi$ is arc‐analytic, i.e. for  $\gamma$:(\mathbb{R},0)\rightarrow(\mathbb{R}^{d},0\rangle real analytic, the composition  $\varphi$\circ $\gamma$ is also

real analytic,
(iii) There exists  c>0 such that |\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{d} $\varphi$|>c where \mathrm{d} $\varphi$ is defined  $\ddagger$.

Remark 1.2. By[4, Corollary3.6], for  $\varphi$ as in the previous definition, the converse  $\varphi$^{-1} is also

arc‐analytic and there exists \overline{c}>0 such that |\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{d}$\varphi$^{-1}|>\tilde{c} where \mathrm{d}$\varphi$^{-1} is defined. Particularly,
we get the following proposition.

Proposition 1.3 ([6, Proposition 7.7]). The arc‐analytic equivalence is an equivalence relation on

Nashfunction germs (\mathbb{R}^{d},0)\rightarrow \mathrm{t}\mathbb{R},0 ).

The following proposition states that the arc‐analytic equivalence is a characterization
of the blow‐Nash equivalence. Particularly, the blow‐Nash equivalence is an equivalence
relation as expected.

Proposition 1.4 ([6, Proposition 7.9]). Two Nashfunction germs are arc‐analytically equivalent
ifand only if they are blow‐Nash equivalent.

The following result ensures that the arc‐analytic equivalence has no continuous mod‐

uli, even for families of non‐isolated singularities. It is a consequence of [21, Theorem 8.5]
together with the proof of [21, Theorem 3.3] and formula [21, (3.9)].

Theorem 1.5 (Parusi�ski‐Păunescu). Let F:(\mathbb{R}^{d}\mathrm{x}I,\{0\}\times I)\rightarrow(\mathbb{R},0) be a Nash germ. Then the

germs [t(X)=F(t,x):\mathrm{t}\mathbb{R}^{d},0) \rightarrow(\mathbb{R},0), t\in I, define locallyfinitely many arc‐analytic classes.

2 A motivic invariant of the arc‐analytic equivalence
This section is devoted to the invariant of the arc‐analytic equivalence introduced in [6]. This
invariant is constructed following the motivic zeta function of Denef‐Loeser [7] but with co‐

efficients in a real analogue of the Grothendieck ring introduced by Guibert‐Loeser‐Merle

[13]. It generalizes the motivic zeta functions of Koike‐Parusiriski [14] and of G. Fichou

[8, 9].
\star A Nash function is a real analytic function with semialgebraic graph

 $\dagger$ A Nash modification is a proper surjective Nash map whose complexification is proper and bimeromorphic.
 $\ddagger$ K. Kurdyka [16, Théorème 5.2] proved that a semialgebraic arc‐analytic map is real analytic outside a set of

codimension 2.
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Definition 2.1 ([20, §4.2]). An \mathcal{A}S‐set is a semialgebraic subset A\subset \mathbb{P}_{\mathrm{N}}^{n} such that given a real

analytic arc  $\gamma$:(-1,1)\rightarrow \mathbb{P}_{\mathrm{N}}^{n} satisfying  $\gamma$(-1,0)\subset A there exists  $\epsilon$>0 such that  $\gamma$(0, $\epsilon$)\subset A.

Remark 2.2 ([20, §4.2]). The \mathcal{A}S‐subsets of \mathbb{P}_{\mathrm{R}}^{n} form the boolean algebra spanned by semi‐

algebraic arc‐symmetric (in the sense of K. Kurdyka [16]) subsets of \mathbb{P}_{\mathrm{R}}^{n} . Particularly, \mathcal{A}S is

stable by \mathrm{u},\mathrm{n},\backslash .

Definition 2.3. We denote by K_{0}(\mathcal{A}S) the free abelian group spanned by symbols [A],  A\in

\mathcal{A}S modulo:

(i) If there is a bijection A\rightarrow B with AS‐graph then [A]=[B].

(ii) If B is a closed AS‐subset of A then [A]=[A\backslash B]+[B].
Moreover, K_{0}(AS) has a ring structure induced by the cartesian product:
(iii) [A\times B]=[A][B].

We denote by 0=[\emptyset] the class of the empty set which is the unit of the addition, by 1=[\{*\}]
the class of the point which is the unit of the product and by \mathrm{L}_{AS}=[\mathbb{R}] the class of the affine

line.

Notation 2.4. We denote by \mathcal{M}_{AS}=K_{0}\mathrm{t}AS) [\mathrm{L}_{A\mathcal{S}}^{-1}] the localization of K_{0}(AS) with resped

to \{\mathrm{L}_{A\mathcal{S}}^{i}, i\in \mathrm{N}\}.
The interest of working with AS‐sets here is the existence of the virtual Poincaré poly‐

nomial.

Theorem 2.5 ([17][8][18]). There exists a unique ring morphism  $\beta$:K_{0}(AS\rangle\rightarrow \mathrm{Z}[u], called the
virtual Poincaré polynomial, such that, if A\in AS is compact and non‐singular then  $\beta$([A])=
$\Sigma$_{i}\dim H_{i}(A,\mathrm{Z}_{2})u^{ $\iota$}.

Moreover, the virtual Poincaré polynomial encodes the dimension since, ifA\in AS is nonempty,
\deg $\beta$([A])= djmA (and the leading coefficient is positive).
Remark 2.6 ([22]). Notice that if we omit the arc‐symmetric condition to work with all semi‐

algebraic sets then we may deduce from the cell decomposition that every additive invariant

of the semialgebraic sets up to semialgebraic homeomorphism factorises through the Euler

characteristic with compact support. In this situation, it is impossible to recover the dimen‐

sion, since, for example, $\chi$_{\mathrm{c}}(S^{1})=0 (whereas S^{1} is nonempty). Notice also that for an \mathcal{A}S‐set

A,  $\beta$([A])(u=-1\rangle=$\chi$_{c}(A\rangle.

Definition 2.7. We denote by K_{0}(A\mathcal{S}_{\mathrm{R}}*) the free abelian group spanned by symbols [$\varphi$_{X} :

X\rightarrow \mathbb{R}^{*}], where X and the graph $\Gamma$_{ $\varphi$ x} are in \mathcal{A}S, modulo the relations:

(i) If there is a bijection h:X\rightarrow \mathrm{Y} with AS‐graph such that $\varphi$_{X}=$\varphi$_{\mathrm{Y}}\circ h then

[$\varphi$_{X}:X\rightarrow \mathbb{R}^{*}]=[$\varphi$_{\mathrm{Y}}:\mathrm{Y}\rightarrow \mathbb{N}^{*}]

(ii) If \mathrm{Y}\subset X is a closed A\mathcal{S}‐subset then

[$\varphi$_{X}:X\rightarrow \mathbb{R}^{*}]=[$\varphi$_{X|X\backslash \mathrm{Y}}:X\backslash \mathrm{Y}\rightarrow \mathbb{R}^{*}]+[$\varphi$_{X|Y}:\mathrm{Y}\rightarrow \mathbb{R}^{*}]

The fiber product induces a ring structure by adding the relation:

(iii) [X \mathrm{x}_{\mathbb{R}}\cdot Y\rightarrow \mathbb{R}^{*}]=[$\varphi$_{X}:X\rightarrow \mathbb{R}^{*}][ $\varphi$ \mathrm{y}:\mathrm{Y}\rightarrow \mathbb{R}^{*}]
The cartesian product induces a K_{0}(AS)‐algebra structure by adding the relation:

(iv) [A][$\varphi$_{X}:X\rightarrow \mathbb{R}^{*}]=[$\varphi$_{X}\circ \mathrm{p}\mathrm{r}_{2}:A\times X\rightarrow \mathbb{R}^{*}]
We denote by 0=[\emptyset] the class of the empty set which is the unit of the addition, by

\mathrm{T}=[\mathrm{i}\mathrm{d}:\mathbb{R}^{*}\rightarrow \mathbb{R}^{*}]

the class of the identity which is the unit of the product and by

\mathrm{L}=\mathrm{L}_{\mathcal{A}S}1=[\mathrm{p}\mathrm{r}_{2}:\mathbb{R}\mathrm{x}\mathbb{R}^{*}\rightarrow \mathbb{N}^{*}]

the class of the affine line.
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Remark 2.8. The group considered in [6] is equivariant since it is assumed thatX is equipped
with an action of \mathbb{R}^{*} compatible with $\varphi$_{X} in some sense. We also work with equivariant iso‐

morphism classes and thus it is necessary to add technical relations in order to identify
some classes.

This equivariant aspect is omitted in this note to simplify the presentation. However it is

necessary to prove that the convolution formula of[6] is compatible with the one of[14]. We

also believe that it is needed for a better comprehension of the so‐called real motivic Milnor

fiber.

Notation 2.9. We set  $\Lambda$ 4=K_{0}\mathrm{t}AS_{\mathbb{R}}\cdot ) [\mathrm{L}^{-1}] . Notice that \mathcal{M} has a natural structure of  $\lambda$ 4_{AS^{-}}
algebra.

Proposition 2.10 ([6, §3 There exists a unique morphism : \mathcal{M}\rightarrow \mathcal{M}_{\mathcal{A}S} of \mathcal{M}_{AS}‐modules

induced on symbols by

[$\varphi$_{X}:X\rightarrow \mathbb{R}^{*}]\mapsto[X]

It is called theforgetful morphism.

Proposition 2.11 ([6, Proposition 4.16]). For  $\epsilon$\in\{+,-\}, there exists a unique morphism  F^{ $\epsilon$}:\mathcal{M}\rightarrow

\mathcal{M}_{AS} of \mathcal{M}_{AS} ‐algebras induced on symbols by

[$\varphi$_{X}:X\rightarrow \mathbb{R}^{*}]\mapsto[$\varphi$_{X}^{-1}( $\epsilon$ 1)]

Remark 2.12. The forgetful morphism is not compatible with the ring structures since the

one on \mathcal{M} is induced by the fiber product whereas the one on \mathcal{M}_{AS} is induced by cartesian

product. This is highlighted by computing  $\beta$\cap \mathrm{t}=u+1\neq 1= $\beta$(1) .
However, the morphisms F^{ $\epsilon$} are compatible with the ring structures since the fiber prod‐

uct over one point coincides with the cartesian product.

Definition 2.13. Let f:1\mathbb{R}^{d},0) \rightarrow(\mathbb{R},0) be a Nash function germ. We define the local motivic

zeta function of f by

Z_{f}(T)=\displaystyle \sum_{n\geq 1}[\mathrm{a}\mathrm{c}_{ $\gamma$}^{n}:X_{n}(f)\rightarrow \mathbb{R}^{*}]\mathrm{L}^{-nd}T^{n}\in \mathcal{M}[T1
where X_{n}(f)=\{ $\gamma$=a_{1}t+\ldots+a_{n}t^{n}, ai\in \mathbb{R}^{d}, f( $\gamma$(t))=ct^{n}+ , c\neq 0\} and \mathrm{a}\mathrm{c}_{f}^{n} : X_{n}(f)\rightarrow \mathbb{R}^{*} is the

angular component map defined by \mathrm{a}\mathrm{c}_{ $\gamma$}^{n}( $\gamma$)=\mathrm{a}\mathrm{c}1f\circ $\gamma$) :=c.

Theorem 2.14 ([6, Theorem 7.11]). If f,g:\mathrm{t}\mathbb{R}^{d},0 ) \rightarrow(\mathbb{R},0) are two arc‐analytically equivalent
Nashfunction germs then Z_{f}(T)=Z_{g}(T) .

The heuristic idea of the proof is the following. First, let s be a formal variable and

set T=\mathrm{L}^{-s} . Then, after some small changes, Z $\gamma$ \mathrm{t}T) may be seen as a motivic integral with

parameter s , whatever it means:

z_{f^{(T)=\int_{L(\mathrm{R}^{d},0)}\mathrm{L}^{-\mathrm{o}\mathrm{r}\mathrm{d}_{t}f\cdot s}}}
Now assume that f and g are arc‐analytically equivalent, then there exists  $\varphi$ as in Def‐

imition 1.1. By a result of Bierstone‐Milman [2] and A. Parusmski [19], there exists  $\sigma$ :

(M,E)\rightarrow(\mathbb{R}^{d},0) a finite sequence of algebraic blowings‐up with non‐singular centers such
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that \overline{ $\sigma$}= $\varphi$\circ $\sigma$ is Nash. Therefore we have the following commutative diagram

By the motivic change of variables formula, we get

 Z_{f}(T)=\displaystyle \int_{\mathcal{L}(\mathrm{R}}Ỉo )^{\mathrm{L}^{-\mathrm{o}\mathrm{r}\mathrm{d}_{t}r\cdot s}=\int_{\mathcal{L}(M,E)}\mathrm{L}^{-\mathrm{o}\mathrm{r}\mathrm{d}_{t}(f\circ $\sigma$)\cdot s-\mathrm{o}\mathrm{r}\mathrm{d}_{t}\mathrm{J}\mathrm{a}\mathrm{c}_{ $\sigma$}}}
Since the previous diagram commutes,  f\circ $\sigma$=g\circ ỡ and, by l.l.(iii), \mathrm{o}\mathrm{r}\mathrm{d}_{t}\mathrm{J}\mathrm{a}\mathrm{c}_{ $\sigma$}=\mathrm{o}\mathrm{r}\mathrm{d}_{t}\mathrm{J}\mathrm{a}\mathrm{c}_{\overline{ $\sigma$}}.

Then, again by the change of variables formula, we may conclude

z_{t^{(T)=\int_{L(M,E)}\mathrm{L}^{-\mathrm{o}\mathrm{r}\mathrm{d}_{t}(f\circ $\sigma$)\cdot s-\mathrm{o}\mathrm{r}\mathrm{d}_{t}\mathrm{J}\mathrm{a}\mathrm{c}_{ $\sigma$}}=\int_{L(M,E)}\mathrm{L}^{-\mathrm{o}\mathrm{r}\mathrm{d}_{t}(g\circ\overline{ $\sigma$})\cdot s-\mathrm{o}\mathrm{r}\mathrm{d}_{t}\mathrm{J}\mathrm{a}\mathrm{c}_{\overline{ $\sigma$}}}=\int_{\mathcal{L}(\mathrm{R}^{d},0)}\mathrm{L}^{-\mathrm{o}\mathrm{r}\mathrm{d}_{t}g\cdot s}=Z_{g}(T)}}
Notice that, in [6] (and before in [14] and [8]), we avoid to introduce the motivic measure

(for which we would need to work with a completion of \mathcal{M} ) and the motivic integral. For

this purpose, the change of variable formula is hidden in a computation of Z_{f}(T) in terms

of  $\sigma$ directly with the coefficients of  Z_{f}(T) as a power series in T, in a way similar to Denef‐

Loeser for their proof of the rationality of their motivic zeta functions. Then we compare
these rational formulae of Z_{f}(T) and Z_{g}(T) to conclude.

3 A convolution formula

Proposition 3.1. There exists a unique K_{0}(AS)‐bilinear map*:K_{0}(\mathcal{A}S_{\mathrm{R}^{n}})\mathrm{x}K_{0}\mathrm{t}\mathcal{A}S_{\mathbb{R}}* ) \rightarrow K_{0}(\mathcal{A}S_{\mathbb{R}}*)
satisfying the following relation on symbols

[$\varphi$_{X}:X\rightarrow \mathbb{R}^{*}]*[$\varphi$_{X}:X\rightarrow \mathbb{R}^{*}]

=-[$\varphi$_{X}+$\varphi$_{\mathrm{Y}}:X\mathrm{x}\mathrm{Y}\backslash ($\varphi$_{X}+ $\varphi$ \mathrm{y})^{-1}(0)\rightarrow \mathbb{R}^{*}]+[\mathrm{p}\mathrm{r}_{2}:\mathrm{t}$\varphi$_{X}+$\varphi$_{\mathrm{Y}})^{-1}(0)\times \mathbb{R}^{*}\rightarrow \mathbb{R}^{*}]

It is called the convolution product.

Remark 3.2. It induces a \mathcal{M}_{AS}‐bilinear \mathrm{m}\mathrm{a}\mathrm{p}*: \mathcal{M}\times \mathcal{M}\rightarrow 4 . It is associative, commutative

and it admits 1 as unit.

Definition 3.3. lhe modified zeta function of a Nash function germ f : (\mathbb{R}^{d},0)\rightarrow(\mathbb{R},0) is

defined by

\tilde{z}_{f^{(T)}}=z_{r^{(T)-\frac{1-Z_{f}^{\mathrm{n}\mathrm{a}\mathrm{i}\mathrm{v}\mathrm{e}}(T)}{\mathrm{T}-T}}}+\mathrm{T}
where Z_{f}^{\mathrm{n}\mathrm{a}\mathrm{i}\mathrm{v}\mathrm{e}}(T) is defined by applying  $\alpha$\mapsto\overline{a}1 coefficientwise to z_{r}(T) .

Remark 3.4 ([6, Corollary 6.14]). The modified zeta function and the zeta function encode

the same information since

z_{f^{(T)}}=\tilde{z}_{r^{(T\rangle+\frac{\mathrm{T}-\mathrm{L}^{-1}\tilde{Z}_{ $\gamma$}^{\mathrm{n}\mathrm{a}\mathrm{i}\mathrm{v}\mathrm{e}}(T)}{1-\mathrm{L}^{-1}T}- $\eta$}}
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Theorem 3.5 (The convolution formula [6, Theorem 6.15]). For i=1,2, let f_{i}:(\mathbb{R}^{d_{i}},0)\rightarrow \mathrm{t}\mathbb{R},0)
he a Nashfunction germ and define f_{1}\oplus h:(\mathbb{R}^{d_{1}}\mathrm{x}\mathbb{R}^{d_{2}},0)\rightarrow(\mathbb{R},0) by f_{1}\oplus f_{2}(x_{1},x2)=f_{1}(x_{1})+f_{2}\mathrm{t}x2 ).
Then

\overline{z}_{f_{1}\oplus h^{(T)=-\overline{Z}_{f_{1}}\mathrm{t}T\rangle \mathrm{O}\tilde{Z}$\gamma$_{2}\mathrm{t}T)}}
where \mathrm{O} is defined by applying the convolution product * coefficientwise.

The idea of the proof is the following. Assume that we want to compute X_{n}(f_{1}\oplus f_{2}),
i.e. we look for $\gamma$_{1}(t) and $\gamma$_{2} (  t\rangle such that  f_{1}($\gamma$_{1}\mathrm{t}t)) +f_{2}($\gamma$_{2}(t))=ct^{n}+ c\neq 0 . Assume that

f_{1}\mathrm{t}$\gamma$_{1}(t))=c_{1}t^{n}1+ and f_{2}\mathrm{t}$\gamma$_{2}(t\rangle)=c_{2}t^{n}2+ We encounter the following cases:

1. n1=n2=n and c_{1}+c_{2}\neq 0, in this case c=c_{1}+c2.
2. n_{1}=n2<n and c_{1}+c_{2}=0.
3. n_{1}=n<n2 , in this case c=c_{1}.

4. n_{1}>n_{2}=n, in this case c=c_{2}.

The two first items are naturally handled by the definition of the convolution product. The

two last items are why we need to work with the modified zeta function). For technical

reasons, in the current proof, we need to work with a resolution of f_{i} in order to do the

required computations.

4 Applications: some classification results

4.1 Arc‐analytic classification of Brieskorn polynomials
Definition 4.1. A polynomial f\in \mathbb{R}[x_{1},\ldots,xd] is said to be a Brieskorn polynomial if it is of

the following form

f(x)=\displaystyle \sum_{i=1}^{cl}$\epsilon$_{i}x_{i}^{h_{i}}, $\epsilon$_{i}\neq 0, h_{i}\geq 1
Since we are only interested in the arc‐analytic classification of Brieskorn polynomials,

we first do the following simplifications.

Remark 4.2. Since we may reorder the variables without changing the arc‐analytic type of
a polynomial, we will always assume that

h_{1}\leq k_{2}\leq \leq k_{d}

In the same vein,.we may assume that  $\epsilon$ i=\pm 1.

Remark 4.3. We may first elude the non‐singular case. Indeed, a Brieskorn polynomial
f(x)=$\Sigma$_{i=1}^{d}$\epsilon$_{i}x_{i}^{h_{i}} is non‐singular if and only if there exists i=1 , d such that h_{i}=1 . Without

loss of generality, we may assume in this case that h_{1}=1 . Then, f is arc‐analytically equiv‐
alent to (xl, \cdots ,  xd ) \mapsto X1 by applying the Nash inverse mapping theorem to (xl, \cdots ,  xd ) \mapsto

(f(x),x_{2} ,xd) . Notice that, in this case, \overline{Z}_{f}(T)=0.
From now on, we assume that k_{i}\geq 2.

The following theorem is a real analogue of a result of Yoshinaga‐Suzuki [26] stating
that the topological type of a Brieskorn singularity determines its exponents.

Theorem 4.4 ([6, Corollary 8.41). Assume that the Brieskorn polynomials

f(x)=\displaystyle \sum_{i=1}^{d}$\epsilon$_{i}x_{i}^{h_{i}} and g(x)=\displaystyle \sum_{i=1}^{d}$\eta$_{i}x_{i}^{l_{i}}
with

 2\leq k_{1}\leq \leq k_{d} and  2\leq t_{1}\leq \leq t_{d}
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are arc‐analytically equivalent, then

\forall i=1,\ldots,d, k_{i}=l_{i}

Since the modified motivic zeta function is an invariant of the arc‐analytic equivalence,
it is enough to show that we may recover the exponents of a Brieskorn polynomial f from

\overline{Z}_{f}\mathrm{t}T) . This fact may be proved following the next plan divided in three steps.

1. First, by the convolution formula, we may deduce the modified zeta function \tilde{Z}_{f}(T) of

f from the one \tilde{Z}_{ $\epsilon$ x^{h}} of a pure monomial  $\epsilon$ x^{k} . An easy computation gives

\tilde{Z}_{ $\epsilon$ x^{k}}(T)=-T-\cdots-T^{h-1}

-(1-[ $\epsilon$ x^{k}:\mathbb{R}^{*}\rightarrow \mathbb{R}^{*}])\mathrm{L}^{-1}T^{h}-\mathrm{L}^{-1}T^{k+1} -\mathrm{L}^{-1}T^{2h-1}
-(\mathrm{t}-[ $\epsilon$ x^{k}:\mathbb{R}^{*}\rightarrow \mathbb{R}^{*}])\mathrm{L}^{-2}T^{2h}-\mathrm{L}^{-2}T^{2h+1}-\ldots-\mathrm{L}^{-2}T^{3h-1}

Particularly, by the convolution formula, if n is not a multiple of an exponent h_{i} , the

coefficient a_{n} of T^{n} in \overline{Z}_{f}(T\rangle is -\mathrm{L}^{-$\Sigma$_{i=1}^{d}\lfloor_{$\Gamma$_{i}}^{n}\rfloor}.
2. Next, we deduce from this an upper bound of k_{d} . Indeed, if p is a prime number big

enough, p is not a multiple of an exponent k_{i} , then

\displaystyle \lim_{p\mathrm{p}\dot{\mathrm{n}}\mathrm{m}\mathrm{e}}\frac{1-\deg $\beta$(\overline{a_{p}})}{p}=\lim_{p\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{m}\mathrm{e}}\frac{$\Sigma$_{i=1}^{d}\lfloor\not\in_{i}\rfloor}{p}=\sum_{i=1}^{d}\frac{1}{h_{i}}
Since there are only finitely many (hí, \cdots ,  k_{d}' ) such that $\Sigma$_{i=1}^{d}\displaystyle \frac{1}{k_{i}}=$\Sigma$_{i=1h_{i}}^{d1}\neg , we may de‐
duce from \overline{Z}_{f}\mathrm{t}T) an upper bound K of \{h_{1},\ldots,k_{d}\}.

3. We conclude by constructing from the coefficients of \tilde{Z}_{f}(T) a linear system in the un‐

knowns M_{k}=\#\{i, k_{i}=h\}, for h=1 ,K, and we solve it.

Since we are working with real numbers, it is natural to wonder what is the impact of the

signs of the coefficients oÍ f on its arc‐analytic type. Some preliminary results we present
below allow us to state the following conjecture telling that the motivic zeta function is

a complete invariant of the arc‐analytic type of a Brieskorn polynomial. They also give
conditions on the exponents and coefficients of a Brieskorn polynomial to characterize its

arc‐analytic type.

Conjecture 4.5 ([3, Conjecture 1.10.1]). Let

f\displaystyle \mathrm{t}x)=\sum_{i=1}^{d}$\epsilon$_{i}x_{i}^{k_{i}} and g(x)=\displaystyle \sum_{i=1}^{d}$\eta$_{i}x_{i}^{t_{i}}
be two Brieskorn polynomials with $\epsilon$_{i},$\eta$_{i}\in\{\pm 1\} . We assume that  2\leq h_{1}\leq \leq k_{d} and  2\leq l_{1}\leq \leq

 l_{d} , and, moreover, that if k_{i}=h_{i+1}= =k_{i+m} then $\epsilon$_{i}\geq \geq$\epsilon$_{i+m} (resp. if l_{i}=l_{i+1}= =l_{i+m}
then $\eta$_{i}\geq \geq$\eta$_{i+m}).
Then thefollowing are equivalent:

(I) f and g are arc‐analytically equivalent.
(2) z_{f^{(T)=Z_{g}(T)}}
(3) (i) \forall i,k_{i}=t_{i}

(ii) For j such that k_{j} is even and not multiple ofan odd exponent k_{m} , we have $\epsilon$_{j}=$\eta$_{j}.
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First, notice that this conjecture is compatible with the classifications ofKoike‐Parusmski

in the two variable case and of G. Fichou in the three variable case.

We have already shown that 4.5.(1)\Rightarrow 4.5.(2) and that 4.5.(2)\Rightarrow 4.5.(3).(\mathrm{i}) . It is already
known [3, Lemme 1.10.2] that 4.5.(3)\Rightarrow 4.5.(1) . The idea to prove this last step is to adapt
an argument of Koike‐Parusiński [14, p2095] which consists in embedding [ and g in \mathrm{a}

same family of Nash function germs with isolated singularities and to use the absence of

continuous moduli to conclude.

We end this section by giving, which we believe to be, a promising way to prove the

previous conjecture. Our goal is to prove 4.5.(2)\Rightarrow 4.5.(3).(\mathrm{i}\mathrm{i}) . Again, let f be a Urieskorn

polynomial and define a_{n} by \tilde{Z}_{f}1T) =$\Sigma$_{n\geq 1}a_{n}T^{n} . Assume that n\geq 1 is a multiple of an

even exponent of f but is not a multiple of an odd exponent. Then, by a closer look at the

convolution \mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}_{J} we get that

 $\beta$(\displaystyle \overline{a_{n}})u^{$\Sigma$_{i=1}^{d}\lfloor\frac{n}{k_{i}}\rfloor}= $\beta$(\sum_{i,k_{i}|n}$\epsilon$_{i}x_{i}^{k_{i}}\neq 0)-(u-1) $\beta$(\sum_{i,h_{i}|n}$\epsilon$_{i}x_{i}^{h_{i}}=0)=u^{t/\mathrm{t}i,h_{i}|n\}}-u $\beta$(\sum_{i,k_{i}|n}$\epsilon$_{i}x_{i}^{h_{i}}=0)
 $\beta$(F^{ $\epsilon$}\displaystyle \mathrm{t}a_{n}))u^{$\Sigma$_{i=1}^{d}\lfloor\frac{n}{h_{i}}\rfloor}= $\beta$(\sum_{i,k_{i}|n}$\epsilon$_{i}x_{i}^{h_{i}}= $\epsilon$ 1)- $\beta$(\sum_{i,h_{i}|n}$\epsilon$_{i}x_{i}^{h_{i}}=0)

So that, for  $\epsilon$=+ we may recover  $\beta$($\Sigma$_{i,k_{i}|n^{\mathcal{E}}i}x_{i}^{k_{i}}= $\epsilon$ 1) from \tilde{Z}_{f}(T) :

 $\beta$(i
Hence, if we were able to find the number of positive (or negative) coefficients of a

Brieskorn polynomial with even exponents from the virtual Poincare polynomials of its

preimages over 1 and -1, we could conclude by induction. We believe that it is possible
so that the conjecture is reduced to the computation of some virtual Poincaré polynomi‐
als. Notice it already holds for a homogeneous Brieskorn polynomial of even degree by [10,
Corollary 2.5 & Corollary 2.6].

4.2 Arc‐analytic classification of some weighted homogeneous polyno‐
mials

In the complex case, it is known that the local analytic type of a singular weighted homoge
neous polynomial with isolated singularity at the origin determines its weights [24]. It also

holds by considering merely the topological type in two [27] and three [23] variables.
T. Fukui [12, Conjecture 9.2] conjectures the real counterpart for weighted homogeneous

real polynomials with isolated singularity in the blow‐analytic context. This conjecture has

been proven by O. M. Abderrahmane [1] in two variables and by G. Fichou and T. Fukui [11]
in three variables in the blow‐Nash context for convenient weighted homogeneous polyno‐
mials which are non‐degenerate with respect to their Newton polyhedra.

Since Brieskorn polynomials are convenient weighted homogeneous polynomials which

are non‐degenerate with respect to their Newton polyhedra, it is natural to ask whether the

material presented in the previous section would allow one to generalize the result of G.

Fichou and T. Fukui with no condition on the number of variables.
A first obstacle is that we can�t use the convolution formula anymore since we can�t as‐

sume that such a polynomial is a sum of pure monomials. However, it is still possible to

adapt the strategy used to prove that the arc‐analytic type of a Brieskorn polynomial de‐
termines its exponents. It relies on a formula to compute the modified zeta function of a

polynomial non‐degenerate with respect to its Newton polyhedron.
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Theorem 4.6([5]). Let f,g\in \mathbb{R}[x_{1},\ldots,xd] be two arc‐analytically equivalent weighted homogeneous
polynomials which are non‐degenerate with respect to their Newton polyhedra. Then

1. Either they are both non‐singular, and in this case they are both arc‐analytically equivalent to

(xl, \cdots  x )
2. Or they share the same weights(up to permutation and positive common multiplicativefactor).
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