Generic な集合のチューリング次数について

放送大学教養学部 隈部正博 Masahiro Kumabe The Open University of Japan

1 はじめに

本論文における記号の用い方は標準的である。集合 A,B において、 $A \bigoplus B = \{2n \mid n \in A\} \bigcup \{2n+1 \mid n \in B\}$ とする。0,1 の有限列を string という。 ω 以外の小文字のギリシャ文字は string を表すのに使う。全ての string を帰納的(computable)に一列に並べこれを固定する。

String σ と ν において、 σ \geq ν は、 σ が ν の拡張(extension)になっていることを示し、このとき ν は σ の substring という。さらに σ と ν は両立する(comparable、compatible)とは、一方が他方を拡張しているときをいう。もし σ と ν が両立しないときは、 σ \mid ν で表す。集合 $A\subseteq \omega$ はその特性関数と同一視することにする。したがって σ \leq A は A の特性関数が string σ を拡張していることを示し、 σ は A の始切片という。 σ * ν は σ の後に ν をつなげた string を表す。自然数 0,1 は対応する長さ 1 の string 0,1 と同一視する。i=0,1 に対し [i]=1-i と定義する。 \emptyset は空列を表す。自然数 n に対し、 $i^{(n)}$ は長さ n の string σ で、各 m < n に おいて σ m = i となるものを表す。String σ の長さを $|\sigma|$ で表す。String σ と ν において、 σ \cap ν は、 σ の substring λ で、全ての m $< |\lambda|$ において σ m $= \nu$ m となり、さらに σ m $= \nu$ 0 となるか、2 つのうち少なくとも一つの値が定義されないときをいう。n $= \nu$ 1 となるとき、 σ 1 を、長さ n σ σ の substring を表す。全ての σ 1 を σ 2 を σ 3 を σ 4 を σ 5 を σ 4 を σ 5 を σ 6 を σ 6 を σ 7 を σ 8 を σ 8 を σ 9 を

2 Generic な集合

 \mathcal{L} を一階の自然数論の言語で、さらに(各自然数 n に対応する)定数記号 \tilde{n} , 集合を表す定数記号 X, そして要素を表す述語記号 \in を含むものとする. ψ を \mathcal{L} における文(sentence)とし、A を ω の部分集合とする. このとき、 $A \models \psi$ は、自然数論の標準モデルで、X を A で解釈することによって、 ψ が成り立つことと定義する. String σ に対して、" σ が ψ を強制する($\sigma \models \psi$ と書く)とは、文の長さによる帰納法により以下のように定義される.

If ψ が原始的な文(atomic sentennce)で X を含まないときは, $\sigma \mapsto \psi$ とは, ψ が自然数の標準モデルで成り立つときをいう.

If ψ が $\tilde{n} \in X$ の形のときは, $\sigma \vdash \psi$ とは, $\sigma(n) = 1$ となるときをいう.

If ψ が $\neg \phi$ のときは, $\sigma \models \psi$ とは, σ のどんな拡張 ν においても, $\nu \models \psi$ となるときをいう.

If ψ が $\phi_0 \lor \phi_1$ のかたちのときは, $\sigma \models \psi$ とは, $\sigma \models \phi_0$ か $\sigma \models \phi_1$ が成り立つときをいう.

If ψ が $\exists x \phi$ のときは, $\sigma \models \psi$ とは, ある n が存在して $\sigma \models \phi(n)$ となるときをいう.

そして $A|\vdash \psi$ とは, $\sigma < A$ が存在して $\sigma|\vdash \psi$ となるときと定義する. このとき次のように generic な集合を定義する.

定義 2.1 集合 A が generic とは、任意の $\mathcal L$ の文 ψ において、 $A \models \psi$ か $A \models \neg \psi$ のどちらかが成り立つときをいう.

Jockusch [11] は generic な集合の特徴づけを以下のように行った.

補題 2.1 Jockusch [11]. 集合 A において以下は同値である.

- i. Aはgeneric
- ii. どんな算術的な string の集合 S においても、ある $\sigma < A$ が存在して、 $\sigma \in S$ か、あるいは、どんな σ の 拡張も S の要素とならない
- iii. どんな comeager な算術的な $P(\omega)$ の部分集合 A においても, $A \in A$.

証明. $(ii) \Rightarrow (i) \Rightarrow (ii) \Rightarrow (ii)$ の順に証明する. $(ii) \Rightarrow (i)$. 言語 \mathcal{L} の文 ϕ において, $S = \{\sigma \mid \sigma \mid \vdash \phi\}$ とする. すると S は算術的. 従ってある $\sigma < A$ が存在して, $\sigma \in S$ か, あるいは, どんな σ の拡張も S の要素とならない. もし $\sigma \in S$ ならば $\sigma \mid \vdash \phi$. もし σ のどんな拡張も S の要素とならないならば, $\sigma \mid \vdash \neg \phi$.

次に (i) \Rightarrow (iii). 算術的な論理式 ϕ とそれによって定義される comeager な $A \subseteq P(\omega)$ が与えられたとする。 すべての generic な集合の集まりは $P(\omega)$ において comeager である。 2 つの comeager な $P(\omega)$ の部分集合の共通部分は再び comeager となるから,どんな σ もその拡張で generic な集合 $A \in A$ が存在する。このとき, $A \models \phi$ iff $A \models \phi$ が成り立つ。よって $\sigma \models \neg \phi$ となる σ は存在しない。したがって全ての generic な集合 A は ϕ を強制し,よって、再び $A \models \phi$ iff $A \models \phi$ iff A

次に (iii) ⇒ (ii) を証明する. S を算術的な string の集合とする. A を、次を満たすような A の集合とする: ある σ < A が存在して, σ ∈ S か、あるいは、どんな σ の拡張も S の要素とならない. すると A は算術的な $P(\omega)$ の部分集合で comeager となる. S に (iii) を適用することで、(ii) が成り立つ.

集合 A において, A' (the completion of A) は, $\{e \mid \Phi_e(A)(e) \downarrow\}$ と定義される. この completion オペレー

タを繰り返し適用することで、 $A^{(0)}=A$ そして $A^{(n+1)}=(A^{(n)})'$ と定義する。この completion オペレータはチューリング次数に関し不変であるため、ジャンプオペレータが定義できる。従って、集合 A の次数を a としたとき、 $a^{(n)}$ は $A^{(n)}$ の次数を示す。特に空集合 \emptyset の次数 0 から始め、ジャンプオペレータを用い、次数の上昇列 $\{0^{(n)}\mid n\in w\}$ を生成することができる。ポストの定理は、B が Δ^A_{n+1} iff B が $A^{(n)}$ にチューリング還元可能である。算術的な次数とは、ある n が存在して $0^{(n)}$ より小さい次数となるものである。レベル ω において、 $\emptyset^{(\omega)}=\{\langle n,e\rangle\mid e\in\emptyset^{(n)}\}$ と定義し、この次数を $0^{(\omega)}$ とする。

次に ω 上の関数の集合 $S\subseteq\omega^\omega$ が与えられたとする。a は S の上界であるとは,S の要素の次数はすべて $\leq a$ のときとする。a は S の極小上界であるとは,上記に加え,< a なる次数は S の上界になりえないときとする。また a は S の一様上界であるとは,ある関数 f が存在し,その次数は $\leq a$ で,さらに, $S=\{f^{[i]}\mid i\in\omega\}$ となるときと定義する,ここで $f^{[i]}$ は $f^{[i]}(x)=f(\langle i,x\rangle)$ によって定義する。AR を算術的な関数の集合とする。

定義に立ち戻って構成すれば、 $0^{(\omega)}$ 以下の generic な次数が存在する。ここで算術的な次数の上界について考える。a は AR の一様上界であることと、全ての算術的な関数を dominate する関数 f でその次数が $\leq a$ なるものが存在すること、は同値である(Jockusch)。Kumabe [20] は、全ての算術的な関数を dominate する関数 f は、generic な集合を計算できることを示した。従って、a は AR の一様上界ならば、a は generic な次数をその下にもつ。

補題 2.2 i. $0^{(\omega)}$ 以下の generic な次数が存在する.

ii. Kumabe [20]. a は AR の一様上界ならば, a は generic な次数をその下にもつ.

一方、Kumabe [20] は増加関数の集合 $\{g_n\}_{n\in\omega}$ に対し、AR の極小上界 $a\leq deg((\oplus_n g_n)\oplus\emptyset^{(\omega)})$ で以下の性質を持つものが存在することを示した:(i) a は generic な次数をその下にもたない、また (ii) ある f が存在し、その次数は $\leq a$ でさらに、f は g_n のどの関数によっても dominate されない.

もしAについての算術的な性質で、Aの要素の有限個の変化で変わらないものを考えると、全ての generic な集合は、その性質を満たすか、あるいは全ての generic な集合は、その性質の否定を満たす。しかしAのもつ genericity 全てを仮定する必要はない。そこで制限された弱い genericity を考える。

定義 2.2 集合 A が n-generic とは, \mathcal{L} の全ての Σ_n^0 な文 ψ に対し, $A \models \psi$ あるいは $A \models \neg \psi$ が成り立つときをいう.

Jockusch [11] による n-genericity の特徴づけが次である.

補題 2.3 Jockusch [11]. 次は同値である.

- i. $A \not \supset n$ -generic.
- ii. どんな Σ_n^0 な string の集合 S に対しても、ある $\sigma < A$ が存在して、 $\sigma \in S$ かあるいは、どんな σ の拡張 も S の要素とならない.

証明. 最初に (ii) を仮定し (i) を示す. Σ_n^0 な文 ψ に対し, $S=\{\sigma\mid\sigma\mid\vdash\psi\}$ とする. すると S は Σ_n^0 な string の集合となる. 従ってある $\sigma< A$ が存在して, $\sigma\in S$ かあるいは, どんな σ の拡張も S の要素とならない. もし $\sigma\in S$ ならば $A\mid\vdash\psi$. もしどんな σ の拡張も S の要素とならないならば, $A\mid\vdash\neg\psi$.

次に (i) を仮定し (ii) を証明する. Σ_n^0 な string の集合 S に対し, ψ を, $\psi(X)$ iff $\exists \sigma(\sigma \in S \& \sigma < X)$ とな

るようなものとする. すると ψ は Σ^0_n . 従って $A \models \psi$ かあるいは $A \models \neg \psi$. そしてある $\sigma < A$ が存在し, $\sigma \models \psi$ かるいは $\sigma \models \neg \psi$. もし $\sigma \models \psi$ ならば $\sigma \in S$. もし $\sigma \models \neg \psi$ ならば, どんな σ の拡張も S の要素とならない.

 $n \geq 1$ とし、 GL_n を、次数 a で $a^{(n)} = (a \cup 0')^{(n-1)}$ となるものの集合とする。また GH_n を、次数 a で $a^{(n)} = (a \cup 0')^{(n)}$ となるものの集合とする。明らかに全ての n で、 $GL_n \subseteq GL_{n+1}$ 、 $GH_n \subseteq GH_{n+1}$ 、そして全ての i,j で $GL_i \cap GH_j = \emptyset$.相対化すると $n \geq 1$ において、 $GL_n(a)$ を、次数 $b \geq a$ で $b^{(n)} = (b \cup a')^{(n-1)}$ となるものの集合とする。また $GH_n(a)$ を、次数 $b \geq a$ で $b^{(n)} = (b \cup a')^{(n)}$ となるものの集合とする。Sacks [30] は全ての n において、 $GL_{n+1} - GL_n \neq \emptyset$ また $GH_{n+1} - GH_n \neq \emptyset$ を示した。

補題 2.4 i. $n \ge 1$ において, $0^{(n)}$ 以下で n-generic な次数が存在する.

ii. A が n-generic ならば, $A^{(n)} \equiv_T A \oplus \emptyset^{(n)}$, 従って A の次数は GL_n となる.

証明. (i) string の増加列 σ_n を定義していく、最初に $\sigma_0=\emptyset$ とする。全ての Σ_n^0 文を帰納的に一列に並べ、 ψ_s を s 番目の Σ_n^0 文とする。与えられた σ_s において、もし $\sigma_s|\vdash \neg \psi_s$ ならば $\sigma_{s+1}=\sigma_s*0$ とせよ。そうでなければ σ_{s+1} を σ_s の拡張で $\sigma_{s+1}|\vdash \psi_s$ を満たすものとする。そして $A=\cup_s\sigma_s$ とする。もし ψ が Σ_s^0 文ならば、関係 $\sigma|\vdash \psi$ もまた Σ_n^0 となる。従って A は $\emptyset^{(n)}$ -帰納的となる。

(ii) 関係 $x \in A^{(n)}$ は A 上相対化して $\Sigma_n^0(A)$. 従って $\psi(x,A)$ を Σ_n^0 論理式で, $x \in A^{(n)}$ を定義するものとする. $A \models \psi$ iff $A \models \psi$ だから,

$$k \in A^{(n)}$$
 iff $\exists \sigma (\sigma < A \& \sigma | \vdash \psi(\tilde{k}, X)).$

よって $A^{(n)}$ が $A \oplus \emptyset^{(n)}$ -帰納的可算. 同様に、

$$k \notin A^{(n)}$$
 iff $\exists \sigma (\sigma < A \& \sigma | \vdash \neg \psi(\tilde{k}, X)).$

よって $A^{(n)}$ の補集合も $A\oplus\emptyset^{(n)}$ -帰納的可算. 従って $A^{(n)}$ は $A\oplus\emptyset^{(n)}$ -帰納的である. $A^{(n)}\ge_T A\oplus\emptyset^{(n)}$ はつねに成り立つから, $A^{(n)}\equiv_T A\oplus\emptyset^{(n)}$ となる.

次の定理は Friedberg の Completeness Criterion の一般化である.

- 定理 2.1 i. Friedberg [5] and Selman [32]. 各 n において, もし $a \ge 0^{(n)}$ ならば, ある n-generic な b が 存在して $b^{(n)} = b \cup 0^{(n)} = a$ となる.
 - ii. Macintyre [26]. もし $a \ge 0^{(\omega)}$ ならば、ある generic な b が存在して $b^{(\omega)} = b \cup 0^{(\omega)} = a$ となる.

証明. (i) A を $a \ge 0^{(n)}$ なる a の要素とする. S_k を k 番目の Σ_n^0 な string の集合とする. これから string の拡大列 σ_k を一様に A-帰納的に定義する. そして $B = \bigcup_k \sigma_k$ が求める b に属する集合であることを示す.

最初に $\sigma_0=\emptyset$ とする.与えられた σ_k において, σ'_{k+1} を σ_k の拡張で, σ'_{k+1} が S_{k+1} の要素かあるいは, σ'_{k+1} のどんな拡張も S_{k+1} の要素とならない,そういうものとする.そして $\sigma_{k+1}=\sigma'_{k+1}*A(k+1)$ で $B=\cup_k\sigma_k$ とする. B は n-generic で $A\geq_T\emptyset^{(n)}$ であるから, $B^{(n)}\leq_T B\oplus\emptyset^{(n)}\leq_T A$ となる. $B\oplus\emptyset^{(n)}\geq_T A$ については,A(k+1) を計算するには,まず帰納法の仮定で σ_n は $B\oplus\emptyset^{(n)}$ を使って計算できているとする. $\emptyset^{(n)}$ をオラクルに用い, $\sigma'_{k+1}\geq\sigma_k$ なるもので, σ'_{k+1} が S_{k+1} の要素となるか,あるいは σ'_{k+1} のどんな拡張も S_{k+1} の要素とならない,そのような σ'_{k+1} を探す.すると上記構成によって $A(k+1)=\sigma_{k+1}(|\sigma'_{k+1}|)$ となる.従って帰納法により $B\oplus\emptyset^{(n)}\geq_T A$ となる.

(ii) は (i) と同様である.

次の命題と定理は 1-generic な次数を計算できる(その下にもつ)次数に関するものである.

命題 2.1 0 でない帰納的可算な次数は、1-generic な次数を計算できる.

証明、R. Shore による証明を述べる。E を帰納的でない帰納的可算な集合とする。E の要素の帰納的な列挙 (recursive enumeration) を $E^s(s \in \omega)$ とする。f(s) の値を、 $E^t(s) = E(s)$ となる最小の t とする。このとき $f \equiv_T E$ となる。 Σ^0_1 な string の集合を帰納的に一列に並べる方法を固定し、 S_n を n 番目の Σ^0_1 な string の集合とする。そして S^t_n をステージ t までに S_n に並べられた要素の有限集合とする。

これより 1-generic な集合 A を string の増加列 $\{\sigma_s\}_{s\in\omega}$ の和として定義する。まず $\sigma_0=\emptyset$ とする。与えられた σ_s において, e_{s+1} を (もし存在すれば) 次を満たす最小の $n\leq s$ とする: σ_s は $S_n^{f(s+1)}$ のどの要素の拡張となっていない,さらに $S_n^{f(s+1)}$ は σ_s を拡張する string σ を要素にもつ。もし e_{s+1} が定義されないなら, $\sigma_{s+1}=\sigma_s*0$ とする。もし e_{s+1} が定義されれば, $\sigma_{s+1}=\sigma*0$ とする。そして $A=\bigcup_s\sigma_s$ とする.明らかに A は E-帰納的である.以降 A が 1-generic であることを証明する.

背理法により A は 1-generic でないと仮定しよう.そして k を次を満たす最小の数とする:全ての A の 切片は S_k の要素とならない,しかし全ての A の切片に対してその拡張で S_k の要素となるものが存在する. $k_0 \ge k$ を次を満たす最小の数とする:各 k' < k において, $\sigma_{k_0} \in S_{k'}$ かあるいは σ_{k_0} のどんな拡張も $S_{k'}$ の要素とならない.このとき全ての $s > k_0$ で, $e_s \not \le k$ である.これより帰納的に σ_s と f(s) を $s > k_0$ に関する帰納法で構成する.そうすれば f は帰納的となり矛盾を導く. $s > k_0$ に対し, σ_s と f(s) を計算したとする.この後,次を満たす t を探す: S_k^t の要素で σ_s を拡張するものが存在する. $e_{s+1} \not \le k$ なので,f(s+1) < t である.従って f(s+1) は次を満たす最小の t' < t として定義される: $E^{t'}$ の s+1 までの制限が E^t の s+1 までの制限に等しい.すると f(s+1) を使って, e_{s+1} と σ_{s+1} を上記のように計算できる.従って帰納法により $\{\sigma_s\}_s$ と f は帰納的である.これは矛盾となる.

Jockusch [10] は次のことを示した: GH_1 に属する全ての次数は、その下に 1-generic な次数を持ち、また極小次数も持つ。この前半の結果はさらに、Jockusch and Posner [12] によって次のように改良されている; GL_2 に含まれない全ての次数は、その下に 1-generic な次数を持つ。これを示すためには、次の補題が必要となる。

補題 2.5 Martin [26]. $a \le b$ とする。このとき次が成り立つ: $b' \ge a^{(2)}$ iff ある関数が存在し、その次数は $\le b$ でさらに a に含まれる全ての関数を dominate する.

 $a \in GL_2$ iff $(a \cup 0')' = a^{(2)}$ であるから、次の系が成り立つ.

系 2.1 $a \not\in GL_2$ iff $a \cup 0' \ge$ なる次数に含まれる関数で、次数 $\le a$ の全ての関数を dominate する、そのようなものは存在しない.

定理 2.2 Jockusch and Posner [12]. GL_2 に含まれない任意の次数は, その下に 1-generic な次数を持つ.

証明. a を GL_2 に含まれない次数とする. 最初に, $f_0(\sigma,e)$ を, もしあれば, 次を満たす最小の数 k, とする:ある $\nu \geq \sigma$ でその長さが $\leq k$ 存在して, $\nu \in S_e^k$ となる. このとき f_0 は部分帰納的関数となる. f を次で定義する:

 $f(n) = \max(\{0\} \bigcup \{f_0(\sigma, e) \mid e \le n \& |\sigma| \le n \& f_0(\sigma, e) \downarrow \}).$

このとき f の次数は $\leq 0'$ となる. $a \notin GL_2$ であるから、系 2.1 により、次数 $\leq a$ のある関数 g で、f によって dominate されない、そのようなものが存在する。 これより 1-generic な集合 B を g-帰納的に、長さ n の staring の増大列 β_n の和として構成する。最初に $\beta_0=\emptyset$ とする。帰納法によりステージ n において β_n を定義したとする。ステージ n+1 では、 e_{n+1} を、次を満たす (もしあれば) 最小の e とする:

- 1. e は, ステージ n の終わりまでには, 満足されていない,
- 2. 長さ $\leq g(n+1)$ のある $\nu_{n+1} > \beta_n$ が存在して, $\nu_{n+1} \in S_e^{g(n+1)}$ となる.

もし e_{n+1} が定義されれば, β_{n+1} を長さ n+1 となる ν_{n+1} の部分 string とする. もし $\beta_{n+1}=\nu_{n+1}$ ならば, e_{n+1} はステージ n+1 で満足されたという. もし e_{n+1} が定義されないときは, $\beta_{n+1}=\beta_n*0$ とする. 最後に $B=\bigcup_n\beta_n$. とし, 構成が終わる.

3 Generic な次数の構造

以下 generic な次数の構造について考える. 次の命題は, $D(\le a)$ の理論は generic な a の選び方に依存しないことを示している.

命題 3.1 $a \, \mathsf{b} \, \mathsf{b} \, \mathsf{m} \, \mathsf{generic} \, \mathsf{cos} \, \mathsf{i} \, \mathsf{i} \, \mathsf{j} \,$

証明. ψ を半順序の言語における文とする. このとき $\mathcal L$ の文 ϕ が存在して、 ψ が $D(\le a)$ において真である iff $A \models \phi$, が成り立つ. Generic な次数 a が与えられたとし、A を次数 a の generic な集合とする. このとき ある string σ が存在して、 $\sigma \models \phi$ が $\sigma \models \neg \phi$ が成り立つ. もし $\sigma \models \phi$ が成り立つならば、 A^* を次のように定義 する: σ は A^* の始切片で、全ての $n \ge |\sigma|$ において、 $A^*(n) = A(n)$. すると A^* は generic で、A と同じ次数 となる. もし $\sigma \models \phi$ ならば $A^* \models \phi$. はって $A^* \models \phi$. よって ψ は $D(\le a)$ において真となる. もし $\sigma \models \neg \phi$ ならば、 $A^* \models \neg \phi$ となる. よって $\neg \psi$ が $D(\le a)$ において真となる。 a は任意の generic な次数であったから、任意の generic な a において、 ψ が $D(\le a)$ において真となるか、あるいは任意の generic な a において、 ψ は $D(\le a)$ において偽となる.

a と b が generic なとき, $D(\leq a)$ と $D(\leq b)$ が同型になるかどうかは知られていない.

定義 3.1 集合の集まり $\{A_i\}_{i\in I}$ が独立であるとは、任意の有限部分集合 $F\subseteq I$ と任意の $i\in I-F$ において、 $A_i\not\leq_T\oplus\{A_i\mid j\in F\}$ となるときをいう。

与えられた A において, $A_i = \{k \mid \langle i,k \rangle \in A\}$ とする. もし A が 1-generic ならば, $\{A_i\}_{i \in \omega}$ は独立となる.

定理 3.1 Jockusch [11]. 1-generic な次数 a において, $D(\leq a)$ は束ではない.

証明. A を次数 a の 1-generic な集合とする.

$$F_i(A) = \{j \mid \langle 3i+1, j \rangle \in A \& (\forall k \le j) [\langle 3i+2, k \rangle \in A] \}.$$

とすると, A は 1-generic なので, A は無限の帰納的可算な部分集合をもたない. 従って各 i において, F_i は有限である. $B=\Gamma(A),\ C=\Theta(A)$ を

$$(\Gamma(A))_i = (A)_{3i},$$

$$(\Theta(A))_i = (A)_{3i} \triangle F_i(A),$$

で定義する、ここで $X \triangle Y$ は $X \ge Y$ の対称差を表す。string σ において、 $\Gamma(\sigma)$ 、また $\Theta(\sigma)$ を上記同様の形で 定義する。我々は以下のことを証明する:もし $\Phi_b(B)$ と $\Phi_c(C)$ が全関数で等しいならば、それは $(A)_{3i}$ という形の有限個の和をオラクルに使うことで、計算できる。まず各 i において、 $(A)_{3i}$ は B-帰納的であり、また C-帰納的でもあることに注意する。各 $\{(A)_{3i}\}_{i\in\omega}$ は独立であるから、 $B \ge C$ の次数は下限をもたない。

さて $\Phi_b(B)$ と $\Phi_c(C)$ は全関数で等しいとしよう. S を次を満たす string σ の集合とする: $\Phi_b(\Gamma(\sigma))$ と $\Phi_c(\Theta(\sigma))$ は両立しない. すると S は帰納的である. $\Phi_b(\Gamma(A))$ と $\Phi_c(\Theta(A))$ は全関数で等しいので、A が 1-generic であることから、ある $\sigma < A$ が存在して、 σ のどんな拡張も S の要素とならない. ここで $\Phi_b(\Gamma(A))$ は $\{(A)_{3i}\}_{i\leq |\sigma|}$ -帰納的となることを示す. k が与えられたとき、 $\Phi_b(\Gamma(A))$ を計算するためには、まず次を満た す $\nu \geq \sigma$ を探す:

- 1. $\Phi_b(\Gamma(\nu))(k)$ は定義され、そして
- 2. ν は, A の特性関数の $\{\langle 3i, j \rangle \mid i \leq |\sigma| \& j \in \omega\}$ への制限と両立する.

すると $\Phi_b(\Gamma(\nu))(k) = \Phi_b(\Gamma(A))(k)$ となる. (もしそうでなければ, A の始切片 $\mu \geq \sigma$ で, $\Phi_c(\Theta(\mu))(k) \neq \Phi_b(\Gamma(\nu))(k)$ となるものが存在する. $\Gamma(A)$ と $\Theta(A)$ の定義そして, 上記 (2) より, 明らかに, ある $\delta \geq \sigma$ が存在して, $\Gamma(\delta) = \Gamma(\nu)$ また $\Theta(\delta) = \Theta(\mu)$ となる. よって $\Phi_b(\Gamma(\delta))$ と $\Phi_c(\Theta(\delta))$ は両立せず, 従って矛盾となる.)

極小次数の構成において、与えられた σ において、 σ を ν に拡張し、しかも ν が与えられた木の(splitting かあるいは nonsplitting となるような)部分木上にあるようにする。しかし generic な集合の構成では、与えられた σ において、 σ を ν に拡張し、与えられた帰納的可算な稠密(dense)な string の集合の要素となるようにする。これらの構成は異なる方向性を持っている。そこで我々は、与えられた generic (あるいは n-generic) な 次数 a において、a はその下に極小次数をもつか、このことを知りたい。次の Jockusch [11] の結果は、Martin の結果に基づくもので、generic な次数の分布に関するある種の等質性を表している。

定理 3.2 Jockusch [11]. 各 n > 2, 各 n-generic な次数 a, そして任意の b < a において, n-generic な次数

 $c \leq b$ が存在する.

 $D(\le a)$ の鎖とは、 $\le a$ なる次数の集合 C で、どんな 2 つの C のどんな 2 つの要素も比較可能であるものをいう。 $D(\le a)$ の極大鎖 C とは、C を含む $D(\le a)$ の鎖が存在しないときをいう。上記定理より、 $D(\le a)$ の全ての極大鎖は無限である。 どんな 1-generic な次数も極小とはならないので、どんな 2-generic な次数も、その下に極小次数をもたない。 0' より下の 1-generic な次数に関しては、Chong and Jockusch [2] は定理 3.2 と同じ結果を示した。しかし Chong and Downey [1] と Kumabe [16] は独立に異なる方法で、ある 1-generic な次数で、その下に極小次数をもつものが存在することを示した。

- 定理 3.3 i. Chong and Jockusch [2]. 各 1-generic な次数 a < 0', 各 0 でない b < a において、ある 1-generic な次数 $c \le b$ が存在する.
 - ii. Chong and Downey [1] and Kumabe [16]. ある 1-generic な次数 <0'' が存在し、その下に極小次数をもつ。 (Chong and Downey [1] では次のことが示されている:ある 1-generic 次数 a<0'' と極小次数 m<0' で m<a となるものが存在する。)

従って 1-generic な次数 a において, $D(\le a)$ は同型ではない. Haught [7] は定理 3.3-(i) を次のように強めた結果を得ている.

定理 3.4 Haught [7]. もし0 < a < b < 0 でb が 1-generic ならば, a もまた 1-generic となる.

次に示すように、1-generic な次数は帰納的可算ではないだけでなく、その下にも帰納的可算な次数をもたない.

命題 3.2 どんな 1-generic な次数も, その下に 0 でない帰納的可算な次数をもつことはない.

証明. A を 1-generic な集合とする. 仮に、ある帰納的可算な E において、 $E \leq_T A$ となったとする. 還元 オペレータ Φ を $\Phi(A) = E$ となるものとする. E は帰納的可算であるから、次を仮定できる:各 σ と k において、もし $\Phi(\sigma)(k) = 1$ ならば k は E のなかに、ステージ $|\sigma|$ 以内に並べられる. S を、ある k が存在して、 $\Phi(\sigma)(k) = 0$ だが E(k) = 1 となる、そのような string σ の集合とする. すると S は Σ^0_1 となる. $\Phi(A) = E$ であるから、ある $\sigma < A$ が存在して、 σ のどんな拡張も S の要素とはならない.ここで E 帰納的となること を証明する. E を計算するには、与えられた K において、string $V \geq \sigma$ で $\Phi(V)(k)$ が定義されるようなものを探す.すると $\Phi(V)(k) = 1$ iff E(k) = 1 が成り立つ.すると E は帰納的となる.

n-generic な次数は帰納的可算とはならないので、n-generic な次数の相対的な帰納的可算性について調べる.

定義 3.2 集合 A が immune とは, A が無限でさらに, 帰納的な無限集合を部分集合としてもらないことをいう.

もし A が 1-generic ならば A とその補集合はともに immune となる.

定理 3.5 Jockusch [11]. もしaが 1-generic ならば, あるc < aで, aはc-帰納的可算となるものが存在する.

証明. A を 1-generic な集合とする. まず $p(i,j)=2^i3^j$ と定義する. どんな σ についても, $\Phi(\sigma)$ を, σ と同じ長さの string ν で,

$$\nu^{-1}(1) = \{ p(i,j) \mid \sigma(i) = 1 \& \sigma(p(i,j)) = 0 \}.$$

となるものとする. $\Phi(A)$ も同様に定義する. A は immune であるから, 各 i に対し, ある j が存在して, $p(i,j) \not\in A$ となる. よって A は $\Phi(A)$ -帰納的可算となる. ここで A は $\Phi(A)$ -帰納的とはならないことを示す.

補題 3.1 σ と τ を τ \leq σ で、さらに p の値域に含まれないようなある $n \geq |\tau|$ に対し、 $\sigma(n) = 0$ となる、そのようなものとする. このときある string $\nu \geq \tau$ が存在して、 $\nu(n) = 1$ と $\Phi(\nu) \geq \Phi(\sigma)$ が成り立つ.

証明. T を包含関係に関して最小の集合で次を満たすものとする: $n\in T$ さらに、もし $i\in T$, $\sigma(i)=0$ さらに $p(i,j)<|\sigma|$ ならば、 $p(i,j)\in T$ となる. ν を σ と同じ長さの string で、 $\nu^{-1}(1)=\sigma^{-1}(1)\bigcup T$ となるものとする。すると T の各要素は $|\tau|$ 以上であるから、 $\nu\geq \tau$. $n\in T$ であるから、 $\nu(n)=1$. 最後に $\Phi(\nu)\geq \Phi(\sigma)$ を示す。 $k<|\Phi(\sigma)|=|\sigma|$ が与えられたとする。もし k が p(i,j) の形でなければ、 $\Phi(\nu)(k)=\Phi(\sigma)(k)=0$ となる。次にある i,j に対して k=p(i,j) となると仮定する。

もし $\Phi(\sigma)(k)=0$ ならば、 $\sigma(i)=0$ かあるいは $\sigma(p(i,j))=1$ が成り立つ.最初に $\sigma(i)=0$ を仮定する.もし $i\in T$ ならば、T の定義により、 $p(i,j)\in T$ となる.よって $\nu(p(i,j))=1$.従って $\Phi(\nu)(p(i,j))=0$.もし $i\notin T$ ならば $\nu(i)=0$ となる.よって $\Phi(\nu)(p(i,j))=0$.次に $\sigma(p(i,j))=1$ を仮定する.このとき明らかに $\nu(p(i,j))=1$.よって $\Phi(\nu)(p(i,j))=0$.従ってもし $\Phi(\sigma)(k)=0$ ならば $\Phi(\nu)(p(i,j))=0$ となる.

もし $\Phi(\sigma)(k)=1$ ならば, $\sigma(i)=1$ また $\sigma(p(i,j))=0$ が成り立つ. $\sigma(i)=1$ であるから, $\nu(i)=1$ である から、 $\nu(i)=1$ である から、 $\nu(i)=1$ である から、 $\nu(i)=1$ また $\nu(p(i,j))=0$ であるから、 $\Phi(\nu)(k)=1$ が成り立つ. 従ってもし $\Phi(\sigma)(k)=1$ ならば $\Phi(\nu)(p(i,j))=1$ となる. これで補題の証明が終わる.

次に定理の証明を終える.背理法により,ある Ψ に対し, $\Psi(\Phi(A))=A$ となったとする.S を string μ の 集合で, μ と $\Psi(\Phi(\mu))$ は両立不可能となるものとする.明らかに S は帰納的である.A は 1-generic であるから,ある A の始切片 α が存在して, α のどんな拡張も S の要素とならない. $n \geq |\alpha|$ を $n \not\in A$ でまた n は(どんな i,j に対しても) p(i,j) の形とはならないものとする. $\Psi(\Phi(A))=A$ であるから, β を $\Psi(\Phi(\beta))(n)=0$ となるものとする.上の補題により,ある $\gamma \geq \alpha$ が存在して, $\gamma(n)=1$ また $\Phi(\gamma) \geq \Phi(\beta)$ となる.すると $\Psi(\Phi(\gamma))(n)=0$ また $\gamma(n)=1$ となる.これは矛盾である.

 \Re 3.1 a が 1-generic ならば, $D(\leq a)$ は稠密ではない. 実際 $D(\leq a)$ において, どの始切片も稠密でない.

証明. a を 1-generic とする. b < a を, a が b 帰納的可算となるようにとる. Yates [40] による定理, 任意の 0 でない帰納的可算な次数はその下に極小次数を持つ, の証明を b に相対化することにより, ある次数 c が存在して, c は > b における極小次数(minimal cover)となる. 従って $D(\leq a)$ は稠密ではない. 2番目の主張は定理 3.2 より得られる.

A が B-n-generic とは, B 上に相対化した任意の Σ^0_n な string の集合に対し、ある string $\sigma < A$ が存在して、 $\sigma \in S$ かあるは、どんな σ の拡張も S の要素とはならないときをいう. Post の階層定理により、A が n+1-generic iff A が 1- \emptyset (n)-generic. もし A が n-generic σ B が A-n-generic ならば $A \oplus B$ が n-generic となる.

系 3.2 a が 2-generic ならば、ある b < a が存在して $b \in GL_2 - GL_1$ となる.

証明. もしa が 2-generic ならば, a は \emptyset -1-generic である. 定理 3.5 を相対化することで, あるb < a が存在して, a はb-帰納的可算で $a \not \le b \cup 0'$ また $a \le b'$ となる. a は 2-generic だから, 補題 2.4 により $a'' = a \cup 0''$.

よって $b'' \le a'' = a \cup 0'' \le b' \cup 0'' \le (b \cup 0')'$. 従って $b'' \le (b \cup 0')'$ となり $b \in GL_2$. $a \not\le b \cup 0'$ また $a \le b'$ だから, $b' \not\le b \cup 0'$ となる. よって $b \in GL_2 - GL_1$ となる.

どんな 1-generic な次数も GL_1 であるから, 次の系が得られる.

系 3.3 もし a が 2-generic ならば、ある 0 でない b < a で 1-generic でないものが存在する.

命題 3.1 により、もし a と b が generic ならば、構造 $D(\le a)$ と $D(\le b)$ は初等同値. 従って上記系より次の疑問が生ずる:

問題 (Jokusch): もし a が generic ならば、任意の 0 でない $b \le a$ に対し、 $D(\le a)$ と $D(\le b)$ は初等同値になるか?

Martin は次のことを証明した:もし A が meager な次数の集合 (0 を含まない) とし、また $A \cup \{0\}$ が始切片 (initial segment) ならば、A の upward closure は再び meager となる. 次の系はこれと対照的である.

系 3.4 (Martin) 0 を含まない次数の meager な集合 A で, A の upward closure は meager とはならないものが存在する.

証明. A を GL_1 には含まれない次数の集合とする. A は 1-generic な次数の集合とは共通部分をもたないから, A は meager である. しかし系 3.2 により A の upward closure は, comeager な集合である, 2-generic な次数の集合を含むので, A の upward closure は meager ではない.

隈部は Theorem 3.5 を次のように発展させた.

定理 3.6 Kumabe[17]. 各 $n \ge 1$ そして各 n-generic な a に対し, ある n-generic な c < a で, a が c-帰納的 可算となるものが存在する.

a は g の strong minimal cover とは, a>g で, 任意の次数 < a は g 以下となるときをいう. 隈部 [21] は次のことを証明した.

定理 3.7 Kumabe [21]. ある a < 0' と 1-generic な次数 g < a で, a が g の strong minimal cover となるものが存在する. 従って g は cupping property をもたない.

次数 a に対し, $D(\leq a)$ が相補的(complemented)とは,任意の b < a に対しある c で, $b \cap c = 0$ and $b \cup c = a$ となるものが存在するときをいう.Posner [28] は, $D(\leq 0')$ が相補的であることを,一様でない方法で示した.すなわち与えられた a < 0' に対し, $a \cup b = 0'$ また $a \cap b = 0$ となる b < 0' を,a が a'' = 0'' を満たすかどうかによって,異なる方法を用いて証明した.Slaman and Steel [35] は一様な方法で,与えられたa < 0' に対し,ある 1-generic な b < 0' で, $a \cup b = 0'$ また $a \cap b = 0$ となるものが存在することを示した.さらに Seetapun と Slaman [31] は,任意の a < 0' に対し,極小次数 b < 0' で $a \cup b = 0'$ となるものを示した.2-generic な次数 a については,隈部 [19] は, $D(\leq a)$ は相補的であることを示した.

定理 3.8 隈部 [19]. 各 $n \ge 2$ また各 n-generic な a, そして 0 でない各 b < a に対し, ある n-generic な c と n-generic な d < b が存在して、任意の 0 でない $e \le c$ と $d \le f < a$ なる f に対し、 $e \cup f = a$ and $e \cap f = 0$ となる.

系 3.5 2-generic a に対し, $D(\leq a)$ は相補的である.

上記定理が 1-generic な次数についてもいえるかどうかは知られていない. Haught [7] の結果からみると, 1-generic な a,b<0' に対し、2 つの構造 $D(\leq a)$ と $D(\leq b)$ は同じ構造にみえる. ある 1-generic な a,b<0' で、 $D(\leq a)$ と $D(\leq b)$ は同型でないものが存在するかどうかは知られていない.

次数 a が minimal cover とは、ある b < a が存在して、a が b の minimal cover であるときをいう. 隈部 [18] はどんな 2-generic な次数も minimal cover であることを証明した.

定理 3.9 限部 [18]. 各 $n \ge 2$ において、 任意の n-generic (generic) な次数 は、ある n-generic (generic) な次数の minimal cover である.

上記定理が 1-generic な次数についてもいえるかどうかは知られていない。この結果は他の結果と比べ対照的である。一つは定理 [29] である:任意の帰納的可算な a < b に対し,ある帰納的可算な c で a < c < b となるものが存在する。この結果を用い Jockusch と Soare [15] は,各 $n \ge 1$ において, $0^{(n)}$ は minimal cover でないことを示した.次数の集合 A が cone とは,ある b が存在して $A = \{a \mid a \ge b\}$ となるときをいうことにする. Harrington と Kechris [6] は Σ^0_1 なゲームで,これより minimal cover からなる cone の存在が導ける,そのようなものを示し,その con の頂点が Kleen の O, Π^1_1 完全集合,となることを示した. Jockusch と Shore [14] はその後,次数 $\ge 0^{(\omega)}$ の集合は minimal cover からなる cone であることを示した.

 $A \in a$ が 1-generic とする. $\{A_i\}_{i \in \omega}$ は(チューリング還元性に関し)独立であるから,有限の東は $D(\leq a)$ に埋め込める.従って $D(\leq a)$ の Σ_1^0 理論は決定可能である.Spector [39] による極小次数の構成法は,様々な形の埋め込み定理へと応用された.例えば,Lerman [22] は,どんな有限東も D に始切片(initial segment)として埋め込めることを証明した.これを用い,Lerman と Shore [34] は独立に D の Σ_2 理論は決定可能であることを示した.上記 minimal cover に関する定理を考えると,a が 2-generic の場合には,任意の有限束はフルターとして $D(\leq a)$ に埋めこめるのではないかと予想する.これにより a が 2-generic の場合には, $D(\leq a)$ の Σ_2 理論は決定可能ではないかと予想する.またこの Σ_2 理論は 2-generic な a の取り方に依存しないと思われる.

Lerman [23] は次のことを証明した:任意の帰納的可算な a>0 に対し、任意の有限分配束は $D(\leq a)$ に始切片として埋め込める.これを用い彼は $D(\leq a)$ の理論は決定不能であることを証明した.定理 2.1 により、任意の 1-generic a に対し、ある b<a で、a は b-帰納的可算となるものが存在する.相対化することで、任意の 1-geneic a に対し、 $D(\leq a)$ の理論は決定不能であることがわかる.Slaman と Woodin [37] の方法を用いると、自然数の標準モデルを $D(\leq a)$ 内にコード化することが可能である.従って、算術的な 1-generic a において、 $D(\leq a)$ の一階理論 $Th(D(\leq a))$ は $\emptyset^{(\omega)}$ と同じ次数を持つことがわかる.

次の系により、もしa が1-generic ならば、与えられたb < a に対し、以下が成り立つ $c \ge b$ が存在するとは限らない:a はc の minimal cover となる.

系 3.6 Jockusch [11] もし a が 1-generic ならば、ある b < a で、任意の $b \le c < a$ となる c に対し、ある d で c < d < a となるものが存在する.

証明. a を 1-generic とする. b < a を, a が b 帰納的可算となるものとする. すると b ≤ c < a なる任意の c において, a は c 帰納的可算となる. 0 でない帰納的可算な次数は極小となりない, という事実を相対化することで, 系がいえる.

参考文献

- Chong, C. T., and Downey, R. G. On degrees bounding minimal degrees Annals of Pure and Applied Logic 48, 1990, pp 215-225.
- [2] Chong, C. T., and Jockusch, C. G. Minimal degrees and 1-generic degrees below 0', Computation and Proof Theory, Lecture Notes in Mathematics 1104, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983, pp 63-77.
- [3] Cooper, S. B. The strong anticupping property for recursively enumerable degrees, Journal of Symbolic Logic 54, 1989, pp 527-539.
- [4] Feferman, S. Some application of the notion of forcing and generic sets, Fundamenta Mathematicae 55, 1965, pp 325-345.
- [5] Friedberg, R. M. A criterion for completeness of degrees of unsolvability, Journal of Symbolic Logic 22, 1957, pp 159-160.
- [6] Harrington, L., and Kechris, A. A basis result for Σ_3^0 sets of reals with an application to minimal covers, Proc. Amer. Math. Soc. 53, 1975, pp 445-448.
- [7] Haught, C. The degrees below 1-generic degrees < 0', Journal of Symbolic Logic 51, 1986, pp 770-777.
- [8] Hinman, P. G. Some applications of forcing to hierarchy problems in arithmetic, Z. Math. Logik Grundlagen Math 15, 1969, pp 341-352.
- [9] Hinman, P. G. Recursion-Theoretic Hierarchies, Springer-Verlag, Berlin, Heiderberg, New York, 1977.
- [10] Jockusch, C. G. Simple proofs of some theorems on high degrees of unsolvability, Canadian Journal of Math. 29, 1977, pp 1072-1080.
- [11] Jockusch, C. G. Degrees of generic sets, Recursion Theory-Its Generalizations and Applications-, London Mathematical Society Lecture Notes, Cambridge University Press, Cambridge, 1980, pp 110-139.
- [12] Jockusch, C. G. and Posner, D. Double jumps of minimal degrees, Journal of Symbolic Logic 43, 1978, pp 715-724.
- [13] Jockusch, C. G. and Posner, D. Automorphism bases for degrees of unsolvability, Journal of Symbolic Logic 40, 1981, pp 150-164.
- [14] Jockusch, C. G., and Shore, R. A. REA operators, R. E. degrees and minimal covers, Proceeding of Symposia in Pure Mathematics 42, American Mathematical Society Providence, Rhode Island, 1985, pp 3-11.
- [15] Jockusch, C. G. and Soare, R. I. Minimal covers and arithmetical sets, Proceedings of the American Mathematical Society 25, 1970, pp 856-859.
- [16] Kumabe, M. A 1-generic degree which bounds a minimal degree, Journal of Symbolic Logic 55, 1990, pp 733-743.
- [17] Kumabe, M. Relative recursive enumerability of generic degrees, Journal of Symbolic Logic 56, 1991, pp 1075-1084.

- [18] Kumabe, M. Every n-generic degree is a minimal cover of an n-generic degree, Journal of Symbolic Logic 58, 1993, pp 219-231.
- [19] Kumabe, M. Generic degrees are complemented, Annals of Pure and Applied Logic 59, 1993, pp 257-272.
- [20] Kumabe, M. Minimal upper bounds for the arithmetical degrees, Journal of Symbolic Logic 59, 1994, pp 516-528.
- [21] Kumabe, M. A 1-generic degree with a strong minimal cover, Journal of Symbolic Logic 65, 2000, pp 1395-1442.
- [22] Lerman, M. Initial segments of degrees of unsolvability, Annals of Mathematics 93, 1971, pp 365-389.
- [23] Lerman, M. Degrees of Unsolvability, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983.
- [24] Lerman, M. Degrees which do not bound minimal degrees, Annals of Pure and Applied Logic 30, 1986, pp 249-276.
- [25] Macintyre, J. M. Transfinite extensions of Friedberg's completeness criterion, Journal of Symbolic Logic 42, 1977, pp 1-10.
- [26] Martin D. A. Classes of recursively enumerable sets and degrees of unsolvability, Z. Math. Logik Grundlagen Math. 12, 1966, pp 295-310.
- [27] Odifreddi, P. Forcing and reducibilities. I. Forcing in Arithmetic, Journal of Symbolic Logic 48, 1983, pp 288-310.
- [28] Posner, D. The upper semilattice of degrees ≤ 0' is complemented, Journal of Symbolic Logic 46, 1981, pp 705-713.
- [29] Sacks, G. E. The recursively enumerable degrees are dense, Annals of Mathematics 80, 1964, pp 300-312.
- [30] Sacks, G. E. Recursive enumerability and the jump operator, Trans. Amer. Math. Soc. 108, 1963, pp 223-239.
- [31] Seetapun, D. and Slaman, T. Minimal complements, to appear.
- [32] Selman, A. L. Applications of forcing to the degree-theory of the arithmetical hierarchy, Proc. London Math. Soc. 25, 1972, pp 586-602.
- [33] Shoenfield, J. R. A theorem on minimal degrees, Journal of Symbolic Logic 31, 1966, pp 539-544.
- [34] Shore, R. On the $\forall \exists$ -sentences of α -recursion theory, Generalized recursion theory II, Studies in Logic and the foundation of mathematics 94, North-Holland, Amsterdam, 1978, pp 331-354.
- [35] Slaman, T. A. and Steel, J. R. Complementation in the Turing degrees, Journal of Symbolic Logic 54, 1989, pp 160-176.
- [36] Slaman, T. A. and Woodin, H. Definability in the Turing degrees, Illinois Journal of Mathematics 30, 1986, pp 320-334.
- [37] Slaman, T. A. and Woodin, H. Definability in degrees structures, to appear.
- [38] Soare, R. I. Recursively Enumerable Sets and Degrees, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1987.
- [39] Spector, C. On degrees of recursive unsolvability, Annals of Mathematics 64, 1956, pp 581-592.
- [40] Yates, C. E. Initial segments of degrees of unsolvability, Part II, Minimal Degrees, Journal of Symbolic Logic 35, 1970, pp 243-266.

[41] Yates, C. E. Banach-Mazur games, comeager sets, and degrees of unsolvability, Mathematical Proceeding of the Cambridge Philosophical Society 79, 1976, pp 195-220.