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Abstract

In this paper we consider some properties on derivations of lattices

and show that (i) for a derivation  d of a lattice L with the maximum

element 1, it is monotone if and only if d(x) \leq  d(1) for all x \in  L (ii) \mathrm{a}

monotone derivation d is characterized by d(x)=x\wedge d(1) and (iii) simple
characterization theorems of modular lattices and of distributive lattices

are given by derivations.

1 Introduction

A notion of derivations of algebras with two operations + and . has introduced

as an analogy of derivations of analysis and then some properties of derivations

are considered. For an algebra A = (A, +, \cdot) , a map f : A \rightarrow A is called a

derivation if it satisfies the conditions: For all x, y\in A,

f(x+y)=f(x)+f(y)
f(x\cdot y)=f(x)\cdot y+x\cdot f(y)

The notion of derivation is important in the theory of rings ([5]). After that,
it is applied to lattices ([4]), where operation + and are interpreted as lat‐

tice operations \vee and \wedge
, respectively. Following the naive interpretation, the

derivation  d of a lattice L may be defined by

(a) d(x\vee y)=d(x)\vee d(y)
(b) d(x\wedge y)=(d(x)\wedge y)\vee(x\wedge d(y)) .

As proved in [4, 6], the condition (a) says d to be monotone and then the

condition (b) is equivalent to the condition d(x\wedge y)=d(x)\wedge y . Hence, as proved
later, a monotone derivation f : L\rightarrow L is characterized by f(x\wedge y)=f(x)\wedge y
for all x, y \in  L . It follows from the result that a monotone derivation d has
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the form of d(x) = x\wedge d(1) if L has the maximum element 1 and thus every
monotone derivation is determined completely by the value d(1) .

In order to obtain more interesting properties of derivations of lattices, we

adopt another definition of derivations according to [1, 2, 3, 7] and prove some

fundamental properties of them, from which we get new results about derivations

of lattices and provide accurate statements described in [1, 2, 3, 6, 7]. Moreover,
we consider properties of generalized derivation ([1, 2

Concretely, we prove that

(i). For a derivation d of a lattice L with a maximum element 1, it

is monotone if and only if d(x)\leq d(1) \mathrm{f}\mathrm{o}\mathrm{i}. all x\in L.

(ii). A monotone derivation d is just the form of d(x)=x\wedge d(1) .

(iii). For any lattice L and a derivation d
,

the condition

d is monotone \Leftrightarrow d(d(x)\vee y)=d(x)\vee d(y) (\forall x, y\in L)

is equivalent to that L is a modular lattice.

(iv). For any lattice L and a derivation d , the condition

d is monotone \Leftrightarrow d(x\vee y)=d(x)\vee d(y) (\forall x, y\in L) ,

is equivalent to that L is a distributive lattice.

2 Derivations

According to [6, 7], we give a definition of derivation of a lattice. Let L =

(L, \vee, \wedge) be a lattice. A map d:L\rightarrow L is called a derivation of L if it satisfies

the condition

d(x\wedge y)=(d(x)\wedge y)\vee(x\wedge d(y)) (\forall x, y\in L)

Moreover, a derivation d is called monotone if

x\leq y\Rightarrow d(x)\leq d(y) (\forall x, y\in L) .

We note that the notion of monotone is called isotone in [1, 2, 3, 7])

Example 1. Let L be a lattice and a\in L . If we define a map d_{a} : L\rightarrow L

by d_{a}(x)=x\wedge a , then d_{a} is a monotone derivation. Indeed, for all x, y\in L , we

have d_{a}(x\wedge y)=(x\wedge y)\wedge a=((x\wedge a)\wedge y)\vee(x\wedge(y\wedge a))=(d_{a}(x)\wedge y)\vee(x\wedge d_{a}(y)) .

Example 2. ([3]) Let L = \{0, a, b, 1\}, (0 < a < b < c< 1) . We define

d:L\rightarrow L by

d(x)= \left\{\begin{array}{ll}
0 & (x=0)\\
a & (x=a, b)\\
c & (x=c, 1)
\end{array}\right.
It is clear that d : L\rightarrow L is the derivation of L.

We have fundamental results about derivations of lattices.
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Proposition 1. Let L be a lattice and d be a derivation of L. For all x, y\in L,
(1) d(x)\leq x
(2) d(d(x))=d(x)
(3) If 1\in L ,

then d(x)=d(x)\vee(x\wedge d(1))
(4) If 1\in L , then d(1)=1\Leftrightarrow d=id_{L}
(5) d(x)\wedge d(y)\leq d(x\wedge y)\leq d(x)\vee d(y)
(6) d(d(x)\wedge d(y))=d(x)\wedge d(y)
(7) If d is monotone, then d(d(x)\vee d(y))=d(x)\vee d(y)
(8) If d(d(x)\vee y)=d(x)\vee d(y) , then d is monotone.

We note that the derivation d_{a}(x)=x\wedge a in Example 1 is monotone. More‐

over, any monotone derivation d has just the form of d(x) = x\wedge a for some

a\in L . In order to prove this fact, we deeply think about properties of mono‐

tone derivations.

Theorem 1. For any derivation d , the following conditions are equivalent to

each other.

(1) d is monotone ;

(2) d(x\wedge y)=d(x)\wedge d(y) (\forall x, y\in L) ;

(3) d(x)\vee d(y\rangle\leq d(x\vee y) (\forall x, y\in L) .

Proof. We only show the cases (1) \Rightarrow(2) . The other cases can be proved easily.
Since x\wedge y\leq x, y , we have d(x\wedge y) \leq d(x) , d(y) . On the other hand, since

d(x\wedge y)\leq d(x)\wedge d(y)\leq x\wedge y , we get  d(x\wedge y)=d(d(x\wedge y))\leq d(d(x)\wedge d(y))\leq
 d(x\wedge y) . Thus d(x\wedge y)=d(d(x)\wedge d(y)) . It follows that

d(x\wedge y)=d(d(x)\wedge d(y))
=\{d(d(x))\wedge d(y)\}\vee\{d(x)\wedge d(d(y))\}
=(d(x)\wedge d(y))\vee(d(x)\wedge d(y))

=d(x)\wedge d(y) .

\square 

From the result above, a monotone derivation can be characterized as follows.

Theorem 2. Let L be a lattice and f : L\rightarrow L be a map. Then

(1) f(x\wedge y)=f(x)\wedge y (\forall x, y\in L) \Rightarrow  f is a monotone derivation.

(2) f is a monotone den
\cdot

vatíon \Rightarrow  f(x\wedge y)=f(x)\wedge y (\forall x, y\in L)
(3) f(x\wedge y)=f(x)\wedge y (\forall x, y\in L)\Leftrightarrow  f(x)=x\wedge f(1) (\forall x\in L)

Proof. We only show the cases (1) and (2).
(1) Since f(x\wedge y)=f(y\wedge x)=f(y)\wedge x , we get f(x\wedge y)=f(x)\wedge y=x\wedge f(y)

and f(x\wedge y) = (f(x)\wedge y)\vee(x\wedge f(y)) ,
that is, f is a derivation. Moreover, if

x\leq y then f(x)=f(y\wedge x)=f(y)\wedge x\leq f(y) and f is monotone.

(2) Let f be a monotone derivation. Since x\wedge y\leq x, y , we get f(x\wedge y) \leq

 f(x) , f(y) and f(x\wedge y)\leq f(x)\wedge y, x\wedge f(y) by f(x\wedge y)\leq x\wedge y\leq x, y . On the

other hand, since f is the derivation, we have f (x Ay) =(f(x)\wedge y)\vee(x\wedge f(y))\geq
 f(x)\wedge y, x\wedge f(y) . This means that f(x\wedge y)=f(x)\wedge y=x\wedge f(y) . \square 
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Corollary 1. If L has a maximum element 1 then the following conditions are

equivalent.
(1) d is a monotone derivation.

(2) d(x)=x\wedge d(1) for all x\in L.

(3) d(x)\leq d(1) for all x\in L.

Corollary 2. If d is a monotone derivation of L
, then  d(d(x)\vee d(y))=d(x)\vee

 d(y) for all x, y\in L.

Unfortunately, the converse of the result above does not hold, namely, d

may not be monotone even if d(d(x)\vee d(y)) = d(x)\vee d(y) holds. We have a

counterexample. Let L=\{0, a, b, 1\} with 0<a<b<1 . If we define d:L\rightarrow L

by d(0)=d(1)=0, d(a)=d(b)=b , then it is easy to show that d is a derivation

and d(d(x)\vee d(y))=d(x)\vee d(y) ,
but d is not monotone.

Remark 1. A map f : L\rightarrow L for a lattice L is called an interior operator if

(iol) x\leq y\Rightarrow f(x)\leq f(y)
(i02) f(x)\leq x
(i03) f(f(x))=f(x)

It follows from our result above that a monotone derivation is an interior oper‐

ator.

Remark 2. A similar results to our theorem 1 are already proved in [7] as The‐

orem 3.19 and Theorem 3.21.

Theorem 3.19. Let L be a modular lattice and d be a derivation of

L . Then the following conditions are equivalent:

(1) d is a monotone;

(2) d(x\wedge y)=d(x)\wedge d(y) ;

(3) If d(x)=x , then d(x\vee y)=d(x)\vee d(y) ,

where a lattice L is called modular if

x\leq z\Rightarrow x\vee(y\wedge z)=(x\vee y)\wedge z (for all x, y, z\in L).

Theorem 3.21. Let L be a distributive lattice and d be a derivation

of it. Then the following conditions are equivalent:

(1) d is a monotone;

(2) d(x\wedge y)=d(x)\wedge d(y) ;

(3) d(x\vee y)=d(x)\vee d(y) .

Our results are stronger than those of above, because our results say that

monotone is equivalent to the condition (2) d(x\wedge y)=d(x)\wedge d(y) for all lattice

L
, namely, we do not assume modularity nor distributivity to get such results.

Moreover, we obtain a following identity condition instead of (3) If d(x)=x,
then d(x\vee y)=d(x)\vee d(y) in Theorem 3.19 in [7].
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Theorem 3. Let L be a modular lattice and d be a derivation. Then we have

d is a monotone \Leftrightarrow d(d(x)\vee y)=d(x)\vee d(y) (\forall x, y\in L)

Moreover we prove the converse.

Theorem 4. For any lattice L and derivation d of it, if the condition holds

d is monotone \Leftrightarrow d(d(x)\vee y)=d(x)\vee d(y) (\forall x, y\in L) ,

then L is a modular lattice.

Proof. For every z\in L ,
if we consider a map d_{z}(x)=x\wedge z then it is a monotone

derivation. By assumption, the map d_{z} satisfies

d_{z}(d_{z}(x)\vee y)=d_{z}(x)\vee d_{z}(y) (\forall x, y\in L)

and hence ((x\wedge z)\vee y)\wedge z=(x\wedge z)\vee(y\wedge z) . This implies that if x\leq z then

(x\vee y)\wedge z=x\vee(y\wedge z) . Therefore L is the modular lattice. \square 

We also have a similar result about distributive lattices.

Theorem 5. Let L be a dtstributive lattice and d be a derivation. Then we

have

d is monotone \Leftrightarrow d(x\vee y)=d(x)\vee d(y) (\forall x, y\in L)

Conversely,

Theorem 6. For any lattice L and derivation d of it, if the condition holds

d is monotone \Leftrightarrow d(x\vee y)=d(x)\vee d(y) (\forall x, y\in L) ,

then L is a distributive lattice.

The above results provide characterization theorems of modular lattices and

of distributive lattices in terms of derivations.

Remark 3. If d is a monotone derivation then a subset

\mathrm{F}\mathrm{i}\mathrm{x}_{d}(L)=\{x\in L|d(x)=x\}

of L is an ideal of L
,
that is, \mathrm{F}\mathrm{i}\mathrm{x}_{d}(L) satisfies the conditions

(I1) 0\in \mathrm{F}\mathrm{i}\mathrm{x}_{d}(L)
(I2) x\in $\Gamma$\dot{\mathrm{r}}\mathrm{x}_{d}(L) , y\leq x \Rightarrow  y\in $\Gamma$ \mathrm{i}\mathrm{x}_{d}(L)
(I3) x, y\in \mathrm{F}\mathrm{i}\mathrm{x}d(L) \Rightarrow  x\vee y\in \mathrm{F}\mathrm{i}\mathrm{x}d(L) .
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3 Generalized derivations

Some types of derivations, such as generalized derivation, generalized (f, g)-
derivation and f ‐derivation, are defined and properties of them are considered

iri [1, 2, 3]. We only treat gfeneralized derivations according to [1]. A map

D : L\rightarrow L is called a generalized derivation if it satisfies the condition: For a

derivation d,
D(x\wedge y)=(D(x)\wedge y)\vee(x\wedge d(y))

We get basic results about a generalized derivation D without difficulty.

Proposition 2 (cf. Proposition 3.4, 3.9 [1]). Let d be a derivation and D be a

generalized derivation. Then we have

(1) d(x)\leq D(x)\leq x
(2) D(D(x))=D(x)
(3) D(x)\wedge D(y)\leq D(x\wedge y)
(4) D(x)\wedge D(y)=D(D(x)\wedge D(y))
(5) D(x)=d(x)\vee(x\wedge D(1))

We also have a new result about a generalized derivation D.

Proposition 3. Let d be a derivation and D be a generalized derivation. Then

we have Dod=d\leq d\mathrm{o}D

It follows from our result that a characterization theorem about monotone

generalized derivations can be proved similarly.

Proposition 4. (Proposition 3.12 l11) For a generalized derivation D , the fol‐
lowing conditions are equivalent to each other:

(1) D is monotone;

(2) D(x\wedge y)=D(x)\wedge D(y) ;

(3) D(x)\vee D(y)\leq D(x\vee y) ;

(4) D(x)=x\wedge D(1) if L has a maximum element 1.

Proposition 5. If L has a maximum element 1, then any generalized derivation

D has a following form

D(x)=(D(1)\wedge x)\vee d(x)

Corollary 3. D(1)=1 \Leftrightarrow  D=id_{L}

Lemma 1. If L has a maximum element 1 and d(x) \leq D(1) for all x\in L , then

D(x)=x\wedge D(1)

In this case, the generalized derivation D is monotone. Conversely, if D

is monotone then d(x) \leq  D(1) for all x \in  L . Therefore, we have another

characterization of monotone generalized derivations.

Theorem 7. For any generalized derivation D_{7}
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D is monotone \Leftrightarrow d(x)\leq D(1) (\forall x\in L)

Corollary 4. If d is monotone, then so D is.

We may ask whether the converse holds, that is, if a generalized derivation

D is monotone then so d is?

Unfortunately, this does not hold Uy the following example.

Example 3 Let L=\{0, a, b, 1\}, (0<a<b<1) and d, D:L\rightarrow L be maps
defined by

d(x) = \{
0 (x=0,1)

D(x) = \{
x (x=0, a, b)

a (x=a, b)

b (x=1)

It is easy to show that d is a derivation and D is a generalized derivation.

Moreover D is monotone. However, it is obvious that d is not monotone.

In the previous section, we provide characterization theorems of modular

lattices and of distributive lattices in terms of derivations. We also have similar

results about generalized derivations.

Theorem 8. For any lattice L and generalized derivation D of it, if the condi‐

tion holds

D is monotone \Leftrightarrow D(D(x)\vee y)=D(x)\vee D(y) (\forall x, y\in L) ,

then L is a modular lattice.

Proof. For every z\in L , if we define maps d_{z} and D_{z} by d_{z}(x)=x\wedge z=D_{z}(x)
for all x \in  L . It is clear that d_{z} is a derivation and D_{z} is also a generalized
derivation. Since D_{z} is monotone, it follows from assumption that  D_{z}(D_{z}(x)\vee
 y)=D_{z}(x)\vee D_{z}(y) and thus ((x\wedge z)\vee y)\wedge z=(x\wedge z)\vee(y\wedge z) . This implies that

if x\leq z then (x\vee y)\wedge z=x\vee(y\wedge z) . Therefore L is the modular lattice. \square 

Theorem 9. (Theorem 3.14 [1l) Let L be a distributive lattice and D be a

generalized derivation. Then we have

D is monotone \Leftrightarrow D(x\vee y)=D(x)\vee D(y) (\forall x, y\in L)

Conversely,

Theorem 10. For any lattice L and generalized derivation D of it, if the con‐

dition holds

D is monotone \Leftrightarrow D(x\vee y)=D(x)\vee D(y) (\forall x, y\in L) ,

then L is a distributive lattice.

The above results provide characterization theorems of modular lattices and

of distributive lattices in terms of generalized derivations.
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