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1. Introduction

This paper continues research presented earlier in which the study of symmetry was generalized
to arbitrary closure spaces. [1] The present paper is exploring one of the consequences of this

generalization. All possible closure spaces on a given set \mathrm{S} (i.e. all possible closure operators on this

common set S) can be associated with corresponding Moore families \ovalbox{\tt\small REJECT} of closed subsets. Then each

of these Moore families of closed subsets \mathscr{M} can be considered a closed subfamily of the power set ge

=2^{\mathrm{s}} of S. For arbitrary family ã of subsets of \mathrm{S} we can find the least Moore family, \ovalbox{\tt\small REJECT} of subsets

including this family (\mathscr{B}\subseteq a) . Equivalently, for every family \mathscr{R} of subsets of \mathrm{S} we can consider a

larger family \ovalbox{\tt\small REJECT} with all intersections of subsets belonging to the original family \mathscr{R} . Obviously this

will be a Moore family \ovalbox{\tt\small REJECT} considered before, i.e. the least Moore family including the original one.

We assume that the intersection of every empty family is entire power set of S.

Thus, the set of all closure spaces defined on \mathrm{S} , or all closure operators defined on \mathrm{S} defines one

specific closure operator f on the power set \wp . Now, in the earlier paper a theory of symmetries for

configurations of closed subsets of an arbitrary closure space is developed. In this paper we apply this

generalization of symmetry to the particular case of the closure space defined on the power set \wp of

the set \mathrm{S} by the closure operator which extends any family of subsets to the least Moore family, i.e.

our closure operator f on \wp . The closure space defined by this closure operator on the power set of \mathrm{S}

is called a meta‐closure space. �Ihe closed subsets of a meta‐closure space are directly and bijectively
corresponding to closure operators on S. The symmetry of configurations of closure operators (or
spaces) defined this way is called here �meta‐symmetry�.

2. From Erlangen Program to General Concept of Symmetry

Spectacular success of the concept of symmetry in mathematics, where it became understood as

invariance with respect to a class of transformations (in the consequence of the Erlangen Program of

Felix Klein published in 1872 [2]) and following this success rise to the fundamental role of

symmetry and symmetry breaking in physics and physical sciences generated interest in this concept

among representatives of other disciplines as far from physics as those in the humanities. The

immense popularity ofthe book �Symmetry� published by Hermann Weyl in 1952 greatly contributed

to this wide spread of interest. [3] Weyl demonstrated the universal character of symmetry as a tool

for the study of shuctures not only in mathematics and natural sciences, but also in art.

A half century earlier before symmeay and invariance with respect to transforrnations became the

focus of intellectual intercourse across the wide range of non‐scientific disciplines, structural

(synchromc) studies started to be considered as an alternative to those with historical (diachronic)
methodology. The opposition of synchronic and diachronic perspectives was introduced by Ferdinand

de Saussure in the context of linguistics (more specifically in his lectures 1907‐1911 posthumously
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published by his disciples in 1916 [4]). However the need for this distinction was recognized even

earlier in the works ofpsychologists.

Structuralism as a philosophical direction can be understood as the response to the calls for a

methodology for disciplines in which the use of measures and numbers dominating natural sciences

seemed impossible or ineffective. Explosion of enthusiastic interest in structuralism and in its tool of

symmetry studies initiated by the Erlangen Program did not last long outside of science. Only quite
recently structuralism and structural realism became the subject of revived interest.

My own diagnostic of the disappointment, of the lost popularity and of the decline of interest in

structuralism outside ofmathematics and physical sciences was that its methodology derived from the

Erlangen Program of Klein was heavily dependent on coordinatization, very natural in geometry and

physics, but of limited meaning outside these disciplines. [1] Transfornations of a geometric space

can be easily defined with the use of coordinates of points. Without coordinates the only alternative

was to consider fmite, discrete, or combinatorial cases in which all possible permutations are

considered. This is why structuralism in anthropology, [5] or in developmental psychology, [6]
engaged only extremely simple forms of symmetry described in terms of the Klein group.

This issue was convoluted with quite frequent misunderstanding of the core idea of symmetry in

Klein�s Erlangen Program. In some extent this confusion can be �blamed� on Klein, because his

original exposition excluded completely the case of topological groups of transformations relegated to

the reference to the works of Sophus Lee. Thus, even if the group of all rotations around a point is not

discrete, its topological properties were not investigated or even mentioned.

Of course ulaming Klein would Ue an anachronism, as general topology did not exist at that time

and Lee just referred to continuity for metric spaces. Exclusion of the continuity of groups such as

that of rotations from consideration in 1872 was not problematic. After all, Klein clearly required the

introductory step of the selection of the group of transformations which defines the general concept of

geometry (for Klein it was projective geometry). Subgroups of this group selected by appropriate
conditions defined particular forms of geometry, or what Weyl called symmetries of the space. [2]

Only after appropriate group of transformations chaxacterizin \mathrm{g} the choice of geometry was selected,

symmetries of particular configurations of geometric objects were studied in terms of subgroups of

transformations for which configurations were invariant. There was no reason to involve in this entire

�symmetric group�, i.e. group of all permutations. For instance, Euclidean geometry was

characterized by the subgroup of all Euclidean isometries (transformations that preserve Euclidean

distance of points). Only in the next step after establishing this symmetry of the space, specific
configurations ofpoints could be considered.

The omission of the fact that for the study of symmetry of given configuration not all

transformations for which this configuration is invariant are important and actually many such

transformations have to be excluded had grave consequences. Many recent books popularizing the

concept of symmetry promote nonsensical views such as symmetry of a configuration is any function

which makes this configuration invariant and all these functions form its �group of symmetries�. Of

course this kills the very idea of Klein�s Erlangen Program in which it is necessary to start from the

distinction of a specific group of transfotmations defining the context of study (for instance geometry,

topology, or whatever it is) and then to consider a Galois conmection between subgroups of this group

and configurations of points (or possibly other objects, such as lines) ordered by inclusion. The

distinction of the original group of transformations does not preclude the choice of the symmetric

36



group (group of all transformations), but this is only very special case rarely interesting outside of

combinatorics.

The problem studied in my earlier work was how to eliminate the need for coordinatization of the

set (in geometry entire plane or space) in order to defme transformations and to distinguish
appropriate groups and their subgroups. This goal was achieved Uy a fommulation of the theory of

symmetry in terms of an arbitrary closure space. To make this paper self‐contained a brief summary

of the earlier paper will be included.

3. Revisiting Concept of Symmetry in General Closure Spaces

The following notation and terminological conventions will be used throughout the text:

Greek letters such as  $\phi$,  $\varphi$, \mathrm{e}
, etc. indicate functions on the elements of a given set \mathrm{S} and with the

values belonging to a set T. Small Latin letters such as fg, h , etc. indicate functions defined on the

subsets of a given set and with the values which are subsets of this set. The double use of the symbol
$\varphi$^{-1}(\mathrm{A}) , as the set of values for the inverse function of  $\varphi$ , and as an inverse image of a set A with

respect to function  $\varphi$ which may not have inverse, should not cause problems. The composition of

functions is written as ajuxtaposition of their symbols, unless the fact of the use of a composition of

functions is contrasted with constructing function images. The symbol \cong indicates a bijective
correspondence or isomorphism. Throughout the paper, partially ordered sets are often called posets.

The purpose of these preliminaries is to specify terminological and notational conventions, not to

present the introduction to the subject which can be found elsewhere [7] These preliminaries are

followed by the brief presentation of main result of the earlier paper on symmetry in an arbitrary
closure space. [1]

Definition 3.1 Let  f be a function from the power set of a set S to itself which satisfies the

following two conditions:

(1)  $\nu$ A\subseteq S:A\subseteq f(A),

(2) VA,B\subseteq S:A\subseteq B\Rightarrow f(A)\subseteq f(B),

(3) VA\subseteq S.\cdot ff(A)=f(f(A))=f(A) .

Then f is called a closure operator (or transitive closure operator) on S. The set of all closure

operators on the set S is indicated by I(S). A set equipped with a closure operator will be called a

closure space <S,f>.

The third conditions can be replaced by a condition: which is easier to use in proofs, but which in

combination with other two gives exactly the same concept:

(3^{*}) VA,B\subseteq S:A\subseteq f(B)\Rightarrow f(A)\subseteq \mathrm{i}f(B) .

The stronger form of this condition VA,B\subseteq S:A\subseteq f(B) iff f(A)\subseteq f(B) can be used instead ofall

three conditions to define a transitive operator, but this fact does not have a significant practical
importance.

Definition 3.2 Letfbe a closure operator on a set S. The subsets A ofS satisfying the condition

f(A)=A, called f‐closed sets form a Moore family f‐Cl, i.e. it is closed with respect to arbitrary
intersections and includes the set S (which can be considered the intersection of the empty subfamily
of subsets). Every Moore family ne defines a transitive operator f(A) =\cap[M\in\ovalbox{\tt\small REJECT}:A\subseteq Mj . Set

theoretical inclusion defimes a partial order on f‐Cl with respect to which it is a complete lattice. To

this structure we will refer as the complete lattice L_{f} off‐closed (orjust closed) subsets.
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Letfand g be operators on a set S. The relation defmed byf\leq^{r}g if VA\subseteq S:f(A)\subseteq g(A)is a partial
order on I(S), with respect to which it is a complete lattice. This partial order corresponds to the

inverse of the inclusion ofthe Moorefamilies ofclosed subsets

Definition 3.3 Letfbe a closure operator on a set S, g a closure operator on set T, and  $\varphi$ be a

function from  S to T The function  $\varphi$ is (fg)‐continuous iỷ VA\underline{c}S:  $\varphi$ f(A)\underline{\subseteq}g $\varphi$(A) . We will write

continuous, ifno confusion is likely.

Proposition 3.1 Continuity ofthefunction  $\varphi$ as defined above is equivalent to:

\triangleright B ag‐Cl. $\varphi$^{J}(B)-\in f-C.
Definition 3.4 Letfbe a closure operator on a set S, g a closure operator on set T, and  $\varphi$ be a

function from  S to T. The function  $\varphi$ is (fg)‐isomorphism if it is bijective and VA\subseteq S:  $\varphi \gamma$(A)=g $\varphi$(A) .

We will wnte isomorphism, ifno confusion is likely. IfS=T, we will call  $\varphi$ an [fg)‐automorphism, or

smply automorphism.

Proposition 3.2 The conditions for a function  $\varphi$ to be an isomorphism, as defined above, are

equivalent to either one below:

(1)  $\varphi$ has an inverse  $\varphi$^{J}- , and both are continuous,

(2) There exists a function  $\psi$ from  T to S such that  $\varphi \psi$=id_{T} and  $\psi \varphi$=id_{S} and both  $\varphi$ and  $\psi$ are

continuous.

Proposition 3.3 Letfbe a closure operator on a set  S, g a closure operator on set T_{s} and  $\varphi$ be a

function from  S to T Then, every (fg)‐isomorphism  $\varphi$ generates a lattice  isomorphism$\varphi$^{*} between the

complete lattices ofciosed subsets L_{f} and L_{g} defined by VA\in L_{f}. $\varphi$^{*}(A) = $\varphi$(A)\in L_{g}. Also, ifafunction
 $\varphi$.\cdot S\rightarrow T is bijective and is generating a lattice isomorphism $\varphi$^{*} between lattices L_{f} and L_{g}. , then  $\varphi$ is

an Ư,g)‐isomorphism.

Proposition 3.4 Everyfauthomorphism  $\varphi$ of<SJ> generates a unique lattice automorphism ofL_{P}
However, more than one f‐authomorphism  $\varphi$  of<Sf> can correspond to the same lattice

automorphism ofL_{f}

Proposition 3.5 The set of all fautomorphisms of<S,f> forms a group Aut<Sf> under the

function composition. This group is isomorphic to Aut(L) oflattice automorphisms ofL_{f^{\mathrm{i}}}
We will refer to the concept of an (antisotone) Galois connection between two posets.

Definition 3.5 Let<P,-<>and <Qg>be posets and  $\varphi$ and  $\psi$ be anti‐isotone (order inverting)
fitnctions  $\varphi$:P\rightarrow Q and  $\psi$ Q\rightarrow P. Then the functions defme a Galois connection between the posets
if: Vx\in P:x\underline{<} $\psi \varphi$(x) and Vy\in Q:y $\Xi \varphi$ Wy).

Galois connection can be defined in an equivalent way as a pair offinctions $\varphi$.\cdot P\rightarrow Q and  $\psi$ Q\rightarrow
 P such that Vx\in P\emptyset/\in Q:y\underline{<} $\varphi$(x) iff x\underline{<} $\psi$(y) .

Proposition 3.ó Ifa pair offunctions $\varphi$.\cdot P\rightarrow Q and  $\psi$\cdot Q\rightarrow P defines a Galois connection, then the

functions  $\psi \varphi$.\cdot P\rightarrow P and  $\varphi \psi$ Q\rightarrow  Q are closure operators, i.e. they satisfy the conditions 1) -3) of
Definition 3.1 generalizedfrom the inclusion \subseteq to the partial order‐〈.Moreover, the functions  $\varphi$.\cdot P\rightarrow
 Q and  $\psi$ Q\rightarrow P defme order anti‐isomorphism (order reversing functions preserving all infima and

suprema) between the complete lattices ofclosed elements in the posets P and Q.

Proposition 3.7 Given an anti‐isotonefunction  $\varphi$.\cdot P\rightarrow Q. If the function  $\varphi$.\cdot P\rightarrow Q defimes together
with  $\psi$ Q\rightarrow P a Galois connection, then the function  $\psi$ is unique. However, there are anti‐isotone

functions which do notform a Galois connection with any function.

38



Proposition 3.8 Ifposets <P, \underline{<}>and <Qg>are complete lattices, then for every anti‐isotone

function  $\varphi$.\cdot P\rightarrow Q, there exists (by Prop. 3.6 unique) function  $\psi$ Q\rightarrow P, such that they form a Galois

connection. The function  $\psi$ Q\rightarrow P is defined by: Vy\in Q:  $\psi$(y)=\displaystyle \vee\oint x\in P:y\leq $\varphi$(x)J , where is the lowest

upper bound ofthe set, which m\mathrm{t}4St exist in a complete lattice.

Remark 3.9 We were using only thefact that the poset <P,\underline{<}>is a complete lattice.

In the abstract fornulation of geometry on the plane in the terms of closure spaces the only closed

subsets are entire plane, empty subset, points and straight lines. Geometric configurations are

collections of points or lines. However, the concepts of closure spaces do not give us any tools for

analysis of such configurations beyond the intersections of lines producing points and pairs of points
defining lines. Our goal is to provide the tools for the analysis of such configurations not only for

abstract geometries, but for arbitrary closure spaces. The approach presented below was informed by
the analogy with geometric symmetries in the choice of group theory as a foundation.

Thus, it is a study of symmetry of configurations of closed subsets in a selected, but arbitrary
closure space <S, f> with the group \mathrm{G}=\mathrm{A}\mathrm{u}\mathrm{t}<S, f> of its \mathrm{f}‐automorphisms. A configuration in this

space will be an arbitrary, but not empty set  s\leftarrow of \mathrm{f}‐closed subsets of S. It is a natural question how the

complete lattice of subgroups of the group \mathrm{G} is related to symmetries of configurations, i.e. to

symmetries of subsets of the complete lattice \mathrm{L}_{\mathrm{f}} of closed subsets in <S, f> . The main result of the

earlier research presented below was that for aỉuitraĩy closure space there is a Galois connection

between the lattice of subgroups of the group of all its automorphisms and the partially ordered set of

its configurations of closed subsets.

To avoid confusion it is important to notice that we are not interested in stabilizers of sets of

elements of the closure space <S, f> , Uut of the families of closed subsets. The asterisk in the

formulation of the following lemma refers to the lattice isomorphism $\varphi$^{*} between the complete lattices

of closed subsets \mathrm{L}_{\mathrm{f}} and \mathrm{L}_{\mathrm{g}} generated by (f,g)‐isomorphism  $\varphi$ between closure spaces <Sf> and

<T,g> , which always exists by Proposition 3.3.

Lemma 3.10 Let H be a subgroup of the group G=Aut(L) . Define the family d_{H} ofsubsets ofL_{f}
by W\subseteq L_{f}\cdot K\in d_{H} iff VA\in K V $\varphi$\in H: $\varphi$^{*}(A)\in K. Then d_{H} is a complete lattice with respect to the

order of inclusion ofsets.

Lemma 3.11 Function  $\Phi$:H\rightarrow d_{H} defimed in Lemm 3.10 is anti‐isotonefunction between two

posets, one ofthem (the lattice ofsubgroups ofa group G) is a complete lattice.

Now we can define a Galois connection. Uy Proposition 3.8 and Remark 3.9 we know that there
exists a Galois connection between the poset of complete lattices ớH and the complete lattice of

subgroups of \mathrm{G}=\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{L}_{\mathrm{f}})\cong Aut <S,\triangleright.

Theorem 3.12 Thefollowing twofunctionsform a Galois connection:

 $\Phi$:H\rightarrow \mathrm{c}\neq_{H} defined by VK\subseteq L_{f}K\in d_{H} iff VA\in J\{ V $\varphi$\in H:$\varphi$^{*}(A)\in K and

 $\Psi$:ớ \rightarrow H defined by \vee fK subgroup of G: ớ \subseteq\'{o}_{K}\`{i} = í  $\varphi$\inG:  $\varphi$(ớ) \subseteq ớJ.The last equality is a

consequence ofthefact that \ovalbox{\tt\small REJECT} $\varphi$\in G:  $\varphi$(ớ)\subseteq ờJ is a subgroup of  G.

Remark3,13 Summary of the Concept of Symmetry in Closure Spaces:

G=Aut(L_{j}j is the group ofautomorphisms of the logic L_{f} ofa closure space <S,f>
H is a subgroup of the group G=Aut(L)
K\subseteq L_{f} is a configuration of closed subsets (e.g. in the geometry on a plane ofpoints or lines)
We get a mutual correspondence between subgroups \mathrm{H} oftransformations of <Sf> and invariant

families of configurations K defined by the Galois connection between the lattice of subsets of G=

Aut(L_{f}) and the lattice offamilies of closed subsets ofthe closure space <Sf> defined by two

mappings  $\Phi$:H\rightarrow\'{o}_{H} &  $\Psi$.ớ\rightarrow H.
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This Galois connection defines anti‐isomorphism of the lattice of subgroups of \mathrm{G} and the lattice of

invariant families of closed subsets of <Sf>
The existence of this Galois connection and its definition give us tools to analyze symmetry of

configurations of closed subsets in an arbitrary closure space. The selection of transformations for the

symmetry subgroups is determined by the condition of continuity with respect to the closure operator.
Of course, in the case of a closure space describing Euclidean geometry, the continuity of

transformations means isometry, i.e. preservation of Euclidean distance. But there is nothing in this

formalism which requires any particular form of coordinatization. All we need is the restriction to

transformations for which action of closure operator is invariant.

Now, we can observe that the restriction of the symmetric group of all permutations to the

specific subgroup corresponding to symmetries of some type (in the case of Euclidean geometry, the

restriction to the group of isometries) can be determined by the complete lattice of \mathrm{L}_{\mathrm{f}} closed subsets.

Since we are concerned here only with the restriction of the group of transformations to the group of

\mathrm{f}‐authomorphisms, we can think in purely lattice theoretic terms. We can call this lattice a �logic for

symmetry�. Thus, establishing of the Galois conmection requires the choice of the logic for symmetry.
After Galois connection is established, we can proceed to the study of symmetries of particular
configurations.

4. Meta‐Closure Space, its Logic &Meta‐Symmetry

The most striking feature of the theory of closure spaces is that it is �autological�. The

description of all possible closure operators on a given set \mathrm{S} can be achieved by one specific closure

operator on the power set of S. This closure operator extends any family ffl of subsets of \mathrm{S} to the least

Moore family \mathscr{M} including \mathscr{R}, but of course many different families can be extended to the same

\mathrm{f}u\mathrm{n}\mathrm{i}\mathrm{l}\mathrm{y}_{ $\epsilon$ \mathrm{f}}\mathrm{a}.
Definition 4.1 We can define this closure operatorfon f=\wp(S) by:

V\ovalbox{\tt\small REJECT}\subseteq F:f(\ovalbox{\tt\small REJECT})= íB \subseteqS: \Re\subseteq ae:B=\cap \mathfrak{C}J. The power set equipped with this closure

operator can be called a meta‐closure space.

The fact that one closure operator on the power set 2^{\mathrm{s}} of \mathrm{S} describes all closure operators on \mathrm{S}

was known from the beginning of the studies of closure spaces, but the properties of this operator
started to be explored in more systematic way relatively recently and mainly in the context of

combinatorics (finite closure spaces) which in this case significantly limits the generality of results.

This has to be carefully considered as there are some results in literature presented without explicit
assumption of the finitness of the sets are false in the infinite case. [8]

One ofthe results of Caspard & Monjardet [9,10] which actually can easily be extended to infinite

case is that the lattice of closed subsets L_{f} is atomistic (i.e. every non‐zero element \mathrm{o}\mathrm{f}L_{f} is ajoin of

the atoms below it). Atoms (i.e. minimal non‐zero elements of the lattice) in L_{f} are defined by very

simple Moore families \{\mathrm{A}, \mathrm{S}\} for each of proper subsets A of \mathrm{S} (if \mathrm{A}=\mathrm{S} , then the Moore family
defines the least element of L_{f} or f(\emptyset)). It is surprising that the following property of the closure

operatorfwith the well‐known important consequences for the lattice L_{f} of closed subsets offwas

apparently never recognized.

Theorem 4.1 Let<2^{s},f>is definedfor an arbitrary set S by:

\nabla \mathscr{R}\subseteq 2^{s}:f(\mathscr{R})= ỉB \subseteq S.  $\Xi$ \mathfrak{C}\underline{c=}\mathscr{X}:B=\cap \mathfrak{C}J . Thenfsatisfies the anti‐exchange property:

(awE) V\mathscr{B}\subseteq 2^{s}: VA,B\subseteq S:A\neq B &A \#(\mathscr{R}) &A \inf(\mathscr{R}\cupíBJ) \Rightarrow B \not\in(\displaystyle \mathscr{R}\cup\ointAJ).
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Proof: Let ..ttbe any Moore family on \mathrm{S} and \mathrm{A}, \mathrm{B}\subseteq \mathrm{S}, \mathrm{A}\neq \mathrm{B}, \mathrm{A}, \mathrm{B}\not\in \mathscr{M} and

\exists ã \subseteq \ovalbox{\tt\small REJECT}: \mathrm{A}=\cap \mathscr{X}\cap \mathrm{B} and \exists \mathfrak{C}\subseteq\ovalbox{\tt\small REJECT}:\mathrm{B}=\cap \mathfrak{C}\cap \mathrm{A} . Then A \subseteq B&B \subseteq A, i.e. \mathrm{A}=\mathrm{B} , contradiction.

Corollary 4.2. Meta‐closure closure space <2^{s}, f>is a convex geometry, i.e. the lattice ofclosed

subsets is meet‐distributive.

Definition 4.2 Let<S,f>be a closure space. Subsets A ofS satisfying the condition:

Vx\in A : x \not\in f(A \backslash íxJ) are calledf‐independent. Thefamily ofall independent subsets is represented by
the symbolf‐Ind.
Subsets A ofS satisfying the condition: f(A)=S are calledfgenerating S. Thefamily ofall
fgenerating subsets is represented byf Gen.

A subsetA ofS is called anf‐base (orjust base) if f\in f‐Ind \mathrm{A}f‐Gen. Obviously everyf‐base is the

same as minimal generating subset.

Not all closure spaces have bases!

Remark 4.3 In the fmite case (i.e. for a finite set S), convex geometry <2^{\mathrm{s}}p always has a basis

and moreover this basis is unique. This makes the study of the group of authomorphisms of <2^{\mathrm{s}},f>
relatively simple, as it can be carried out in terms of the group of pernutations of its unique base.

However this is not true when \mathrm{S} is infinite.

Theorem 4.4 lf<Sf>is a convex geometry and the set S is infinite, then for every infinite and co‐

fmite subset BofS there exists anf‐closedfamily ofsubsets \mathscr{B}_{B}ofS, such that there is no minimal

subfamily31 ofãB satisjỳingf(\mathscr{B})=f(\mathscr{R}_{B}) .

Proof: Consider \mathscr{B}_{\mathrm{B}} the principal filter of B. It can be shown that it does not have a minimal

generating subset.

Corollary 4.5 IfS is infinite, then<2^{s},\ovalbox{\tt\small REJECT}>does not have a base.

This Corollary is consistent with the fact that for the infinite set \mathrm{S}<2^{\mathrm{s}}p is �essentially� infinite.

Definition 4.3 We call a closure space <S,f> offinite character if
[fC) VA\subseteq S VX  $\epsilon$ S.\cdot x\in f(A)\supset $\Xi$ B\in Fin(A):x\in f(B) .

Of course all closure spaces with finite \mathrm{S} are of finite character. Infinite closure spaces of finite

character retain many characteristics of finite closure spaces. In absence of finite character, typically
most of the results for finite closure spaces cannot be recovered. This is unfortunately the case of

meta‐closure space.

Proposition 4.ó IfS is infinite, then<2^{s},f>is not offinite character ƯC).

Now we can see that while for meta‐closure spaces on finite sets there are many results waiting in

the literature of finite convex geometries, little is known about more general cases.

Finally, we can observe that there is another example of a closure space on the power set of \mathrm{S} of

special interest.

Definition 4.4 A binary relation T on a set S is a weak tolerance if it is symmetric and satisf $\iota$ es

the condition: \mathrm{h}\in S.\cdot[xr_{X}\Rightarrow \emptyset\prime\in S.\cdot x $\Gamma$ y] . Every weak tolerance which is reflexive (Vx\in S:xTx) is

called a tolerance relation. Equivalence relations are transitive tolerance relations.
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Proposition 4.7 There is a bijective correspondence between weak tolerance relations on set S

which generalize equivalence relations extending them to a general concept ofsimilarity and closed

subsets ofthe closure operator on the power set ofS_{2} i.e. closure space <2^{s},f> defined by:
vã \subseteqP:  f(\ovalbox{\tt\small REJECT})=jB\underline{\mathrm{c}}S: \mathrm{h}y $\epsilon$ B $\Xi$ 4  $\epsilon$ã: íxyJ \subseteqAÌ.

Open Problem: This article is concluded with the open problem. We could see that two particular
closure spaces on the power set of \mathrm{S} define and characterize in one case all closure spaces on \mathrm{S} in the

other case all binary relations generalizing equivalence. What are the other structures on the set \mathrm{S} that

are determined and characterized Uy closure operators defined on the power set of \mathrm{S} ?

References

[1] Schroeder, M. J. Concept of Symmetry in Closure Spaces as a Tool for Naturalization ofInformation, In

Horiuchi, K. (Ed.) Algebraic System, Logic, Language and Computer Science. RIMS Kokyuroku, Kyoto:
Research InstinuteforMathematical Sciences, Kyoto University, 2016, No. 2008, pp. 29‐36. Available at

http: //\mathrm{w}\mathrm{w}\mathrm{w} .kurims.kyoto‐u.ac.jp/\sim \mathrm{k}\mathrm{y}\mathrm{o}\mathrm{d}\mathrm{o}/\mathrm{k}\mathrm{o}\mathrm{k}\mathrm{y}\mathrm{u}\mathrm{r}\mathrm{o}\mathrm{k}\mathrm{u}/\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}/2008 .html

[2] Klein,  $\Gamma$ . C. A Comparative Review ofRecent Researches in Geometry (Vergleichende Betrachtungen über
neuere geometrische Forschungen, l872). Haskell, M. W. (Transl.), 2008. arXiv:0807.3161vl

[3] Weyl, H. Symmetry. Princeton: Princeton Univ. Press., 1952.

[4] de Saussure,  $\Gamma$ . Course in General Linguistics. Transl. Wade Baskin. New York: Columbia Univ. Press.,
2011.

[5] Lévi‐Strauss, C. StructuralAnthropology. Transl. Claire Jacobson and Brooke Grundfest Schoepf New

York: Doubleday Anchor Books, 1967.

[6] Piaget, J. Le structuralism. Paris: Presses Universitaires de France, 1968; Engl tr. Structuralism. New York:
Basic Books, Harper& Row, 1970.

[7] Birkhoff, G. Lattice Theory,  3^{rd}. ed. American Mathematical Society Colloquium Publications, Vol XXV,
Providence, R. I.: American Mathematical Society, 1967.

[8] Pfaltz, J.L. Closure Lattices. Discrete Math., 154 (1996), 217‐236.

[9] Caspard, N. & Monjardet, B. The lattices of closure systems, closure operators, and implicational systems on

a finite set: a survey. Discrete Applied Mathematics, 127 (2003), 241‐269.

[10] Caspard, N. & Monjardet, B. Some lattices of closure systems, on a finite set. Discrete Mathematics and

Theoretical Computer Science, 6 (2004), 163‐190.

[11] Schroeder, M.J& Wright, M.H. Tolerance and weak tolerance relations, J. Combin. Math. and Combin.

Comput., 11 (1992), 123‐160

42


