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Abstract

Clones of polynomials are considered over Galois field \mathrm{G}\mathrm{F}(k) . In particular, the

class of clones generated by 2‐variable idempotent polynomials is the target of our

study. Our results include that the clone generated by x^{2}y^{k-2} is the largest among all

such clones and the clone generated by xy^{k-1} is the smallest among all such clones.

Hence, observing the exponent of one variable, two is strong and one is weak.

Keywords: clone; monomial clone; lattice of clones  $\dagger$  $\ddagger$

1 Preliminaries

Let  k> 1 be fixed and E_{k}=\{0, 1, . . . , k-1\} . Denote by \mathcal{O}_{k}^{(n)} for n\geq 1 the set of n‐variable

functions defined over E_{k} , that is, the set of maps from E_{k}^{n} into E_{k} . Also, O_{k} denotes the

set of functions defined over E_{k} , i.e., \displaystyle \ovalbox{\tt\small REJECT} k=\bigcup_{n=1}^{\infty}\mathcal{O}_{k}^{(n)} . A special class of functions is the

set \mathcal{J}_{k} of projections e_{i}^{n} for any n>0 and 1\leq i\leq n , where e_{i}^{n} is the function in \mathcal{O}_{k}^{(n)} which

always takes the value of the i‐th variable.

A clone over E_{k} is a subset C of 0_{k} which is closed under (functional) composition and

includes \mathcal{J}_{k} . The set of clones over E_{k} forms a lattice with respect to inclusion and is

denoted by \mathcal{L}_{k} . It is well‐known that the lattice \mathcal{L}_{k} for k > 2 has the cardinality of the

continuum and its structure is extremely complex.
For arbitrary field K and a positive integer n , an (n‐variable) polynomial over K is a

finite sum of terms, that is,

\displaystyle \sum_{0\leq i_{1}\leq e_{1},\ldots,0\leq i_{n}\leq e_{n}}a_{i_{1},\ldots,i_{n}}x_{1}^{i_{1}}
. . . x_{n}^{i_{n}}

for some e_{1} , . . .

, e_{n}\in \mathrm{N} and a_{i_{1_{j}}\ldots,i_{n}} \in K for each n‐tuple (il, . . . , i_{n} ) in the \mathrm{s}\mathrm{p}\mathrm{e}(_{J}ified range.

As a special case, an (n‐variable) monomial over K is an n‐variable polynomial consisting
of one term, i.e.,

a x_{1}^{i_{1}}\cdots x_{n}^{i_{n}}
for some a\in K and i_{1} , . . . , i_{n}\in \mathrm{N}.
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For a prime power  k , i.e., k=p^{e} for a prime p and a positive integer e , let us introduce

the structure of a finite ỉield into E_{k} , that is, we treat E_{k} as the Galois field \mathrm{G}\mathrm{F}(k) . It is

well‐known that any n‐variable function f(x_{1}, \ldots ,  x_{n}\rangle defined over \mathrm{G}\mathrm{F}(k) is uniquely ex‐

pressed as a polynomial over \mathrm{G}\mathrm{F}(k) . The following is a basic property of a finite field.

Property 1: For every x\in \mathrm{G}\mathrm{F}(k) it holds that x^{k}=x.

Hence, we have:

Property 2: An n‐variable monomial m over \mathrm{G}\mathrm{F}(k) , for n>0 , is expressed as axí1 . . . x_{n}^{r_{n}}
for some a\in \mathrm{G} $\Gamma$(k) and integers r_{1} ,

. . . , r_{n} with 0<r_{1} ,
. . . , r_{n}<k.

For a subset S of \mathcal{O}_{k} , the clone generated by S is the smallest clone containing S and

denoted by (S}. When S = \{f\} , the clone \{S\} is denoted by \langle f\rangle . A monomial clone is

defined as follows.

Definition 1.1 A clone  C over E_{k} is a monomial clone if C is generated by some monomial

m over E_{k} , i. e., C=\langle m\rangle.

The study of monomial clones is partly motivated by the following property. The proof is

immediate as any polynomial which is not a monomial cannot be produced from monomials

by means of composition.

Lemma 1.1 Let C be a monomial clone over E_{k} . If C is minimal in the set of monomial

clones then C is a minimal clone (in \mathcal{L}_{k}).

In the rest of the paper we consider a limited class of monomials and monomial clones

generated by them.

2 Idempotent Monomial Clones

An n‐variable function f defined over E_{k} is said to be idempotent if f satisfies f(a\ldots., a)=a
for all a in E_{k} . Let m=x_{1}^{i_{1}}\cdots x_{n}^{i_{n}} be an n‐varíablc monomial with coefficient 1 ovcr \mathrm{G}\mathrm{F}(k) .

Evidently (by Property 1), m is idempotent if and only if \displaystyle \sum_{j=1}^{n} i_{j}\equiv 1 (\mathrm{m}\mathrm{o}\mathrm{d} k-1) . (We
abuse the term idempotent for polynomials in an obvious way.)

Throughout the rest of the paper, we consider 2‐variable idempotent monomials over E_{k}

and monomial clones generated by them. Hereafter, by a monomial clone we shall mean a

monomial clone generated by a 2‐variable idempotent monomial. Let us denote by \mathcal{M}_{k} the

set of such monomial clones over E_{k}.

2.1 Monomials x^{s}y^{t}

As was stated above, we consider 2‐variable monomials x^{S}y^{t} for 0 < s, t < k with the

additional condition s+t=k . (For convenience we use x and y , instead of x_{1} and x_{2} , for

the variable symbols.) Clearly, s+t=k is an equivalent condition for x^{8}y^{t} to be idempotent
when the exponents s and t satisfy 0<s, t<k.

Note: If m is a monomial which generates a non‐unary minimal clone (in \mathcal{L}_{k} ) then, clearly,

(1) m must be a 2‐variable monomial x^{s}y^{t} and (2) the condition s+t=k must be satisfied,
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k=5 k=7 k=11

Figure 1: Monomial clones for k=5 , 7, 11

since \langle x^{s}y^{t}\rangle does not contain any non‐trivial unary functions.

The next lemma shows that the condition  s+t=k'
)

on the exponents is preserved by

composition. The proof is straightforward.

Lemma 2.1 For integers u, v satisfying 0 < u, v < k , if x^{u}y^{v} is obtained from x^{s}y^{t}
(together with J_{k}) by composition, i. e.,  x^{u}y^{v}\in\{x^{S}y^{t}\rangle , then we have  u+v=k.

Some easy consequences are presented.

Lemma 2.2 Let k be a prime power. For clones on GF(k) we have the following.

(1) \{xy^{k-1}\}\underline{\subseteq} \{x^{2}y^{k-2}\} (2) \{x^{4}y^{k-4}\rangle\subseteq\langle x^{3}y^{k-3})

Proof (i) From

(k-2)^{2} = ((k-1)-1)^{2} \equiv 1 (\mathrm{m}\mathrm{o}\mathrm{d} k-1)

it follows that x^{2}(x^{2}y^{k-2})^{k-2}=x^{k-1}y.
(ii) Similarly,

(k-3)^{2} = ((k-1)-2)^{2} \equiv 4 (\mathrm{m}\mathrm{o}\mathrm{d} k-1)

implies x^{3}(x^{3}y^{k-3})^{k-3}=x^{k-4}y^{4}. \square 

3 Two is strong; One is weak

In Figures 1 and 2 the set \mathcal{M}_{k} of the monomial clones is shown for the cases k=5 , 7, 11

and 13. An observation we get from these diagrams is the following (where two and one

refer the exponents of one variable): Two is strong and one is weak!
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Figure 2: Monomial clones for k=13

3.1 Two is strong

Proposition 3.1 For any prime power k>1 and any 0<s<k , it holds that

\langle x^{S}y^{k-s}\rangle \underline{\subseteq} \{x^{2}y^{k-2}\rangle.

In other words, \{x^{2}y^{k-2}\} is the largest clone in \mathcal{M}_{k}.

Proof We shall prove  x^{S}y^{k-\mathrm{s}}\in\{x^{2}y^{k-2}\rangle for any  0<s<k by induction on s.

Basis: The monomial with s=1 , i.e., xy^{k-1} , is obtained from x^{2}y^{k-2} in the following way.

y^{2}(y^{2}x^{k-2})^{k-2} = x^{(k-2)^{2}}y^{2k-2} = xy^{k-1}

Thus we have x^{S}y^{k-s}\in\langle x^{2}y^{k-2} ) for s=1 , 2.

Inductive Step:  $\Gamma$ \mathrm{o}\mathrm{r} any 1 < t < \displaystyle \mathrm{L}\frac{k}{2}\rfloor , we obtain  x^{2t-1}y^{k-2\mathrm{s}+1} and x^{2t}y^{k-2s} from x^{t}y^{k-t}
and x^{2}y^{k-2} as shown below.

\left\{\begin{array}{ll}
(x^{t}y^{k-t})^{2}x^{k-2} = x^{2t+k-2}y^{2k-2t} & = x^{2t-1}y^{k-2t+1}\\
(x^{t}y^{k-t})^{2}y^{k-2} = x^{2t}y^{3k-2t-2} & = x^{2t}y^{k-2t}
\end{array}\right.
This completes the proof. \square 

3.2 One is weak

Lemma 3.2 The clone \{xy^{k-1}\rangle is minimal in \mathrm{M}_{k}.

Proof For any monomial m in { xy^{k-1}\rangle\backslash J_{k} , it is easy to verify that xy^{k-1} \in \langle m }. This

shows the minimality of \langle xy^{k-1}\rangle in \mathrm{M}_{k}. \square 

Now a question arises, which we shall call Question A.
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Question \mathrm{A} : Is the clone \langle xy^{k-1}\rangle uniquely minimal in \mathcal{M}_{k} ? That is to say, is it true

that \{xy^{k-1}\rangle \subseteq \langle x^{S}y^{k-s}\rangle , i.e.,

 xy^{k-1}\in\langle x^{s}y^{k-s}\rangle

holds for any prime power  k>1 and any 0<s<k ?

Remark: It may happen that \langle x^{s}y^{k-\mathrm{s}}\rangle =\langle xy^{k-1}\rangle for some  s>1 , in which case \{x^{s-}y^{k\mathrm{s}}\}
may also be said to be minimal in \mathcal{M}_{k} . What we want to know is whether \{x^{s}y^{k-s}\rangle for

 2\leq s<k is not minimal in \mathcal{M}_{k} if \{x^{S}y^{k-s}\rangle is distinct from \langle xy^{k-1}\rangle.

3.3 Partial results Concerning Question \mathrm{A}

Lemma 3.3 Let k=2h+1 . Then xy^{k-1} \in \{x^{h}y^{k-h}\rangle.

Proof We get

(x^{h}y^{h+1})^{h}(y^{h}x^{h+1})^{h+1} = x^{h^{2}+(h+1)^{2}}y^{2h(h+1)} = xy^{2h} = xy^{k-1}

since 2h = k-1. \square 

Lemma 3.4 For k>2 and 1<a<k , if there exists e>1 satisfying

(i)  a^{e}\equiv  1 (\mathrm{m}\mathrm{o}\mathrm{d} k-1) or (ii)  a^{e}\equiv  a (\mathrm{m}\mathrm{o}\mathrm{d} k-1)

then

 xy^{k-1}\in\langle x^{a}y^{k-a}\rangle

Proof Since (ii) follows from (i), it suffices to show the result under the condition (ii).
However, in order to enjoy a kind of symmetry in the proof we present the proof separately.

(i) By repeating substitution of  x^{a}y^{k-a} into xe times, we obtain:

. . ((x^{a}y^{k-a})^{a}y^{k-a})^{a} . . )^{a}y^{k-a})^{a}y^{k-a} = x^{a^{e}}y^{*} = xy^{k-1}

(ii) Similarly, we have:

. . ((x^{a}y^{k-a})^{a}y^{k-a})^{a} . . )^{a}y^{k-a})^{a}x^{k-a} = x^{a^{e}+(k-a)}y^{*} = x^{a+(k-a)}y^{*}
= x^{k}y^{k-1} = xy^{k-1}

Here the symbol
*

put on y designates a suitable exponent. \square 

Note that the condition (i) in Lemma 3.4 is equivalent to saying that a and k- 1 are

coprime, i.e., \mathrm{G}\mathrm{C}\mathrm{D}(a, k-1)=1.
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3.4 One is Provably Weak

We answer Question A affirmatively. The next lemma plays a key rôle in the proof.

Lemma 3.5 For any k>0 and s\in E_{k} there exists n>0 satisfying

s^{n} \equiv (s^{n})^{2} (\mathrm{m}\mathrm{o}\mathrm{d} k-1) .

Proof Since k is finite, there exist i > 0 and p > 0 such that s^{\acute{l}} \equiv  s^{i+p} (\mathrm{m}\mathrm{o}\mathrm{d} k- 1) .

This obviously implies s^{i} \equiv  s^{i+rp} (\mathrm{m}\mathrm{o}\mathrm{d} k-1) for any r>0 . Take an integer c>0 which

satisfies cp\geq i (e.g., c= \lceil i/p\rceil ) and let  a=cp-i . Then, we have:

s^{i+a} \equiv s^{i+cp+a} (\mathrm{m}\mathrm{o}\mathrm{d} k-1)
\equiv s^{2i+2a} (\mathrm{m}\mathrm{o}\mathrm{d} k-1)

\equiv (s^{i+a})^{2} (\mathrm{m}\mathrm{o}\mathrm{d} k-1)

Let n=i+a . Then n has the required property. \square 

Proposition 3.6 For any prime power k>1 and all 0<s<k , it holds that

\langle xy^{k-1}\rangle\subseteq\{x^{s}y^{k-s}\},

that \dot{u}, \{xy^{k-1}\} is uniquely minimal in \mathcal{M}_{k}.

Proof We show xy^{k-1} \in\langle x^{8}y^{k-s}\rangle for any  0<s<k . According to Lemma 3.5 there exists

n>0 such that s^{n} \equiv (s^{n})^{2} (\mathrm{m}\mathrm{o}\mathrm{d} k-1) . Denote s^{n} by t.

Thus, t satisfies t^{2} \equiv  t (\mathrm{m}\mathrm{o}\mathrm{d} k-1) and  x^{t}y^{k-t}\in \{x^{s}y^{k-s}\} . Now, from x^{t}y^{k-t} construct

a monomial

(x^{t}y^{k-t})^{t}x^{k-t}=x^{t^{2}-t+1}y^{t(k-t)}.
Since t^{2}-t \equiv  0 (\mathrm{m}\mathrm{o}\mathrm{d} k-1) , we have

x^{t^{2}-t+1}y^{t(k-t)}=xy^{k-1},

from which it follows that xy^{k-1} \in\{x^{t}y^{k-t}\rangle . Together with  x^{t}y^{k-t}\in\langle x^{s}y^{k-s}\rangle , we conclude

that  xy^{k-1}\in\langle x^{s}y^{k-s} }. \square 

Note: Some of the contents presented in this article appeared in [MP17].
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