Hajime Machida *

Jovanka Pantović [†]

Tokyo, Japan

Novi Sad, Serbia

Csaba Szabó[‡] Budapest, Hungary

Abstract

Clones of polynomials are considered over Galois field GF(k). In particular, the class of clones generated by 2-variable idempotent polynomials is the target of our study. Our results include that the clone generated by x^2y^{k-2} is the largest among all such clones and the clone generated by xy^{k-1} is the smallest among all such clones. Hence, observing the exponent of one variable, two is strong and one is weak.

Keywords: clone; monomial clone; lattice of clones ^{† ‡}

1 Preliminaries

Let k > 1 be fixed and $E_k = \{0, 1, \ldots, k-1\}$. Denote by $\mathcal{O}_k^{(n)}$ for $n \ge 1$ the set of *n*-variable functions defined over E_k , that is, the set of maps from E_k^n into E_k . Also, \mathcal{O}_k denotes the set of functions defined over E_k , i.e., $\mathcal{O}_k = \bigcup_{n=1}^{\infty} \mathcal{O}_k^{(n)}$. A special class of functions is the set \mathcal{J}_k of projections e_i^n for any n > 0 and $1 \le i \le n$, where e_i^n is the function in $\mathcal{O}_k^{(n)}$ which always takes the value of the *i*-th variable.

A clone over E_k is a subset C of \mathcal{O}_k which is closed under (functional) composition and includes \mathcal{J}_k . The set of clones over E_k forms a lattice with respect to inclusion and is denoted by \mathcal{L}_k . It is well-known that the lattice \mathcal{L}_k for k > 2 has the cardinality of the continuum and its structure is extremely complex.

For arbitrary field K and a positive integer n, an (*n*-variable) polynomial over K is a finite sum of terms, that is,

$$\sum_{0 \le i_1 \le e_1, \dots, 0 \le i_n \le e_n} a_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n}$$

for some $e_1, \ldots, e_n \in \mathbb{N}$ and $a_{i_1,\ldots,i_n} \in K$ for each *n*-tuple (i_1, \ldots, i_n) in the specified range. As a special case, an (*n*-variable) monomial over K is an *n*-variable polynomial consisting of one term, i.e.,

$$a x_1^{i_1} \cdots x_n^{i_n}$$

for some $a \in K$ and $i_1, \ldots, i_n \in \mathbb{N}$.

^{*}machida.zauber@gmail.com [†]pantovic@uns.ac.rs [‡] csaba@cs.elte.hu

For a prime power k, i.e., $k = p^e$ for a prime p and a positive integer e, let us introduce the structure of a finite field into E_k , that is, we treat E_k as the Galois field GF(k). It is well-known that any n-variable function $f(x_1, \ldots, x_n)$ defined over GF(k) is uniquely expressed as a polynomial over GF(k). The following is a basic property of a finite field.

Property 1: For every $x \in GF(k)$ it holds that $x^k = x$.

Hence, we have:

Property 2: An *n*-variable monomial *m* over GF(k), for n > 0, is expressed as $ax_1^{r_1} \cdots x_n^{r_n}$ for some $a \in GF(k)$ and integers r_1, \ldots, r_n with $0 < r_1, \ldots, r_n < k$.

For a subset S of \mathcal{O}_k , the clone generated by S is the smallest clone containing S and denoted by $\langle S \rangle$. When $S = \{f\}$, the clone $\langle S \rangle$ is denoted by $\langle f \rangle$. A monomial clone is defined as follows.

Definition 1.1 A clone C over E_k is a monomial clone if C is generated by some monomial m over E_k , i.e., $C = \langle m \rangle$.

The study of monomial clones is partly motivated by the following property. The proof is immediate as any polynomial which is not a monomial cannot be produced from monomials by means of composition.

Lemma 1.1 Let C be a monomial clone over E_k . If C is minimal in the set of monomial clones then C is a minimal clone (in \mathcal{L}_k).

In the rest of the paper we consider a limited class of monomials and monomial clones generated by them.

2 Idempotent Monomial Clones

An *n*-variable function f defined over E_k is said to be *idempotent* if f satisfies $f(a, \ldots, a) = a$ for all a in E_k . Let $m = x_1^{i_1} \cdots x_n^{i_n}$ be an *n*-variable monomial with coefficient 1 over GF(k). Evidently (by Property 1), m is *idempotent* if and only if $\sum_{j=1}^n i_j \equiv 1 \pmod{k-1}$. (We abuse the term idempotent for polynomials in an obvious way.)

Throughout the rest of the paper, we consider 2-variable idempotent monomials over E_k and monomial clones generated by them. Hereafter, by a monomial clone we shall mean a monomial clone generated by a 2-variable idempotent monomial. Let us denote by \mathcal{M}_k the set of such monomial clones over E_k .

2.1 Monomials $x^{s}y^{t}$

As was stated above, we consider 2-variable monomials $x^s y^t$ for 0 < s, t < k with the additional condition s + t = k. (For convenience we use x and y, instead of x_1 and x_2 , for the variable symbols.) Clearly, s+t = k is an equivalent condition for $x^s y^t$ to be idempotent when the exponents s and t satisfy 0 < s, t < k.

Note: If m is a monomial which generates a non-unary minimal clone (in \mathcal{L}_k) then, clearly, (1) m must be a 2-variable monomial $x^s y^t$ and (2) the condition s+t=k must be satisfied,

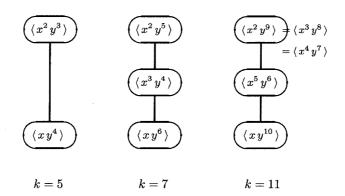


Figure 1: Monomial clones for k = 5, 7, 11

since $\langle x^s y^t \rangle$ does not contain any non-trivial unary functions.

The next lemma shows that the condition "s + t = k" on the exponents is *preserved* by composition. The proof is straightforward.

Lemma 2.1 For integers u, v satisfying 0 < u, v < k, if $x^u y^v$ is obtained from $x^s y^t$ (together with \mathcal{J}_k) by composition, i.e., $x^u y^v \in \langle x^s y^t \rangle$, then we have u + v = k.

Some easy consequences are presented.

Lemma 2.2 Let k be a prime power. For clones on GF(k) we have the following.

(1) $\langle x y^{k-1} \rangle \subseteq \langle x^2 y^{k-2} \rangle$ (2) $\langle x^4 y^{k-4} \rangle \subseteq \langle x^3 y^{k-3} \rangle$

Proof (i) From

$$(k-2)^2 = ((k-1)-1)^2 \equiv 1 \pmod{k-1}$$

it follows that $x^2(x^2y^{k-2})^{k-2} = x^{k-1}y.$

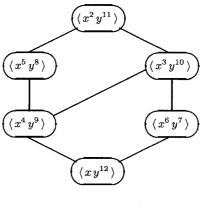
(ii) Similarly,

$$(k-3)^2 = ((k-1)-2)^2 \equiv 4 \pmod{k-1}$$

implies $x^3(x^3y^{k-3})^{k-3} = x^{k-4}y^4.$

3 Two is strong; One is weak

In Figures 1 and 2 the set \mathcal{M}_k of the monomial clones is shown for the cases k = 5, 7, 11 and 13. An observation we get from these diagrams is the following (where two and one refer the exponents of one variable): Two is strong and one is weak !



k = 13

Figure 2: Monomial clones for k = 13

3.1 Two is strong

Proposition 3.1 For any prime power k > 1 and any 0 < s < k, it holds that

$$\langle x^sy^{k-s}\rangle\ \subseteq\ \langle x^2y^{k-2}\rangle.$$

In other words, $\langle x^2 y^{k-2} \rangle$ is the largest clone in \mathcal{M}_k .

Proof We shall prove $x^s y^{k-s} \in \langle x^2 y^{k-2} \rangle$ for any 0 < s < k by induction on s. Basis: The monomial with s = 1, i.e., xy^{k-1} , is obtained from x^2y^{k-2} in the following way.

$$y^{2}(y^{2}x^{k-2})^{k-2} = x^{(k-2)^{2}}y^{2k-2} = xy^{k-1}$$

Thus we have $x^s y^{k-s} \in \langle x^2 y^{k-2} \rangle$ for s = 1, 2.

Inductive Step: For any $1 < t < \lfloor \frac{k}{2} \rfloor$, we obtain $x^{2t-1}y^{k-2s+1}$ and $x^{2t}y^{k-2s}$ from x^ty^{k-t} and x^2y^{k-2} as shown below.

$$\begin{cases} (x^{t}y^{k-t})^{2}x^{k-2} &= x^{2t+k-2}y^{2k-2t} &= x^{2t-1}y^{k-2t+1} \\ (x^{t}y^{k-t})^{2}y^{k-2} &= x^{2t}y^{3k-2t-2} &= x^{2t}y^{k-2t} \end{cases}$$

This completes the proof.

3.2 One is weak

Lemma 3.2 The clone $\langle xy^{k-1} \rangle$ is minimal in \mathcal{M}_k .

Proof For any monomial m in $\langle xy^{k-1} \rangle \setminus \mathcal{J}_k$, it is easy to verify that $xy^{k-1} \in \langle m \rangle$. This shows the minimality of $\langle xy^{k-1} \rangle$ in \mathcal{M}_k .

Now a question arises, which we shall call Question A.

Question A: Is the clone $\langle xy^{k-1} \rangle$ uniquely minimal in \mathcal{M}_k ? That is to say, is it true that $\langle xy^{k-1} \rangle \subseteq \langle x^s y^{k-s} \rangle$, i.e.,

 $xy^{k-1} \in \langle x^s y^{k-s} \rangle$

holds for any prime power k > 1 and any 0 < s < k?

Remark: It may happen that $\langle x^s y^{k-s} \rangle = \langle xy^{k-1} \rangle$ for some s > 1, in which case $\langle x^s y^{k-s} \rangle$ may also be said to be minimal in \mathcal{M}_k . What we want to know is whether $\langle x^s y^{k-s} \rangle$ for $2 \leq s < k$ is not minimal in \mathcal{M}_k if $\langle x^s y^{k-s} \rangle$ is distinct from $\langle xy^{k-1} \rangle$.

3.3 Partial results Concerning Question A

Lemma 3.3 Let k = 2h + 1. Then $xy^{k-1} \in \langle x^h y^{k-h} \rangle$.

Proof We get

$$(x^h y^{h+1})^h (y^h x^{h+1})^{h+1} = x^{h^2 + (h+1)^2} y^{2h(h+1)} = x y^{2h} = x y^{k-1}$$

since 2h = k - 1.

Lemma 3.4 For k > 2 and 1 < a < k, if there exists e > 1 satisfying

(i)
$$a^e \equiv 1 \pmod{k-1}$$
 or (ii) $a^e \equiv a \pmod{k-1}$

then

$$xy^{k-1}\in \langle x^ay^{k-a}\rangle$$

Proof Since (ii) follows from (i), it suffices to show the result under the condition (ii). However, in order to enjoy a kind of symmetry in the proof we present the proof separately.

(i) By repeating substitution of $x^a y^{k-a}$ into $x \ e$ times, we obtain:

$$((\cdots ((x^a y^{k-a})^a y^{k-a})^a \cdots)^a y^{k-a})^a y^{k-a} = x^{a^e} y^* = x y^{k-1}$$

(ii) Similarly, we have:

$$((\cdots ((x^{a}y^{k-a})^{a}y^{k-a})^{a}\cdots)^{a}y^{k-a})^{a}x^{k-a} = x^{a^{e}+(k-a)}y^{*} = x^{a+(k-a)}y^{*}$$
$$= x^{k}y^{k-1} = xy^{k-1}$$

Here the symbol * put on y designates a suitable exponent.

Note that the condition (i) in Lemma 3.4 is equivalent to saying that a and k-1 are coprime, i.e., GCD(a, k-1) = 1.

3.4 One is Provably Weak

We answer Question A affirmatively. The next lemma plays a key rôle in the proof.

Lemma 3.5 For any k > 0 and $s \in E_k$ there exists n > 0 satisfying

$$s^n \equiv (s^n)^2 \pmod{k-1}$$
.

Proof Since k is finite, there exist i > 0 and p > 0 such that $s^i \equiv s^{i+p} \pmod{k-1}$. This obviously implies $s^i \equiv s^{i+rp} \pmod{k-1}$ for any r > 0. Take an integer c > 0 which satisfies $cp \ge i$ (e.g., $c = \lfloor i/p \rfloor$) and let a = cp - i. Then, we have:

$$s^{i+a} \equiv s^{i+cp+a} \pmod{k-1}$$
$$\equiv s^{2i+2a} \pmod{k-1}$$
$$\equiv (s^{i+a})^2 \pmod{k-1}$$

Let n = i + a. Then n has the required property.

Proposition 3.6 For any prime power k > 1 and all 0 < s < k, it holds that

$$\langle xy^{k-1}
angle \subseteq \langle x^s y^{k-s}
angle$$

that is, $\langle xy^{k-1} \rangle$ is uniquely minimal in \mathcal{M}_k .

Proof We show $xy^{k-1} \in \langle x^s y^{k-s} \rangle$ for any 0 < s < k. According to Lemma 3.5 there exists n > 0 such that $s^n \equiv (s^n)^2 \pmod{k-1}$. Denote s^n by t.

Thus, t satisfies $t^2 \equiv t \pmod{k-1}$ and $x^t y^{k-t} \in \langle x^s y^{k-s} \rangle$. Now, from $x^t y^{k-t}$ construct a monomial

$$(x^{t}y^{k-t})^{t}x^{k-t} = x^{t^{2}-t+1}y^{t(k-t)}.$$

Since $t^2 - t \equiv 0 \pmod{k-1}$, we have

$$x^{t^2 - t + 1} y^{t(k-t)} = x y^{k-1},$$

from which it follows that $xy^{k-1} \in \langle x^ty^{k-t} \rangle$. Together with $x^ty^{k-t} \in \langle x^sy^{k-s} \rangle$, we conclude that $xy^{k-1} \in \langle x^sy^{k-s} \rangle$.

Note: Some of the contents presented in this article appeared in [MP17].

References

[MP17] Machida, H. and Pantović, J., Three Classes of Closed Sets of Monomials, Proceedings 47th International Symposium on Multiple-Valued Logic, IEEE, 2017, 100-105.