BRI ST R S B
#2051 20174 70-79

Lattices of surjective weak weight preserving
homomorphisms of digraphs

HEETRRT - FRER i R1T
Yoshiyuki Kunimochi
Faculty of Comprehensive Informatics,
Shizuoka Institute of Science and Technology

abstract We introduced an extension of homomorphisms of general weighted di-
rected graphs and investigated the semigroups of surjective homomorphims -and synthe-
size graphs to obtain a generator of pricipal left (or right) ideal in the semigroup[11]. This
study is originally motivated by reducing the redundancy in concurrent systems, for ex-
ample, Petri nets. [10]. We have got the result that for a given graph our homomorphism
G has freeness determined by the connection and the cycles in G.

In a general weighted directed graphs (V;, E;, W;)(z = 1,2), a usual graph homo-
morphism ¢ : Vi — V; satisfies Wa(¢p(u), ¢(v)) = Wi(u,v) to preserve adjacency of
the graphs. Whereas we extend this definition slightly and our homomorphism is de-
fined by the pair (¢, p) based on the similarity of the edge connection. (¢, p) satisfies
Wa(d(w), d(v)) = p(u)p(v)Wi(u,v), where ¢ : Vi — Va,p: Vi — R, and R, is the
set of positive real numbers.

In this paper we investigate whether for a w-homomorphism (¢, p) from a given di-
graph G, p is uniquely determined or not. As a result, it is uniquely determined if
undirected graph G obtained from G has no even cycles and no isolated vertices. Ad-
ditionally we overview the lattice structure of graphs, which are ordered by surjective
w-homomorphisms.

1 Preliminaries

We introduced an extension of homomorphisms of general weighted directed graphs[11].
Here we overview the extension and give new examples of them with free parameters.

1.1 Graphs and Morphisms

In this section we summarize definitions of weighted digraphs, w-homomorphisms and
compositions. We denote the set of positive real numbers by R and the set of nonneg-
ative real numbers by R>o.

DEFINITION 1.1 A weighted directed graph (weighted digraph, for short) is a 3-tuple
(V, E, W) where

(1) V is afinite set of vertices,

(2) E(CV xV)isaset of edges,

(3) W :(V xV)— Ry is aweight function. O

According to custom, (u,v) € E <= W(u,v) #0.
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DEFINITION 1.2 Let G; = (V;, E;, W;) (i = 1,2) be the weighted digraphs. Then a
pair (¢, p) is called a (weak weight preserving) homomorphism (for short, w-homomorphism)
from G to Gy if the maps ¢ : Vi — Vo, p : Vi — Ry satisfy the condition that for any
u,v S Vl,

Wa(g(u), ¢(v)) = p(u)p(v)W1(u, v). (1D
Especially if p = 1y;, i.e., p(u) = 1 for any v € V}, then w-homomorphism is called a
strictly weight preserving homomorphism (s-homomorphism, for short). 0O

The w-homomorphism (@, p) is called injective (resp. surjective) if ¢ is injective (resp.
surjective). In particular, it is called a w-isomorphism from G to G5 if it is injective and
surjective. Then (5 is said to be w-isomorphic to G3 and we write G; ~,, G>. Moreover,
in case of G; = G2 = G, a w-isomorphism is called an w-automorphism of G. By
Aut, (G) we denote the set of all the w-automorphisms of G. Similarily s-isomorphism
~ s-automorphism and Aut,(G) are defined.

EXAMPLE 1.1 Let G; = (V;, E;, W;) (i = 1,2) be the weighted digraphs depicted in
Figure 1, W; : V; = R-¢ be the weight functions. That is,

‘/1 = {ul,U2,’U1,U2}, ‘/2 = {U37U4,’U3}.

Wl(U]_, 'Ul) = 1) Wl(U/l,'U2) = 27 Wl(UQ,’U}) = 37 Wl(UQ,’UQ) = 6.
Wa(us,v3) = 3, Wa(ug,v3) =9.  Any other edges are of weight 0.

U Us U Uy
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(a) Weighted digraph G; (b) Weighted digraph G,
Figure 1. Weighted Digraph (G; and G».
Let ¢ be the following function from V; to V5.
d)"‘ Uy U V1 Vo
C\uz ug vz v3z)
Then the following equations hold.

3= p(u1)p(v1) x 1
3= p(u1)p(ve) x 2
9 = p(uz)p(v1) x 3
9 = p(uz)p(vz) x 6

Solving the these equations, we have the solution (¢, p), a w-homomorphism from G,
to GG, with one parameter r € R-.

p=<§}(2r) §;(2r) or :2>



EXAMPLE 1.2 Let G; = (V;, E;, W;) (i = 2, 3) be the weighted digraphs depicted in
Figure 2, W; : V; — R the weight functions.That is,

‘/2 = {’LL3,’LL4,’L-'3}, ‘/3 = {’LL, U}‘

W2(u37 ’U3) - 31 WQ(U4,'U3) = 9
Ws(u,v) =5.  Any other edges are of weight 0.

U Uy u
(25™ v
(b) Weighted Digraph G5 (c) Weighted Digraph G3

Figure 2. Weighted digraphs G- and G3.

Let 1) be the following function from V; to V.
_[us us v3
¥= <u u v )’
Then the following equations hold.

5=0(uz)o(v3) x 3
5= o(uq)o(vs) X9

Solving the these equations, we have the solution (i, o), a w-homomorphism from G5
to GG3, with one parameter s € R.q.

w=(:j"’ . 53)- ":<1§3(3s) 5/(95) Z3>'

1.2 Composition of the w-homomorphisms

We define the composition of the w-homomorphisms. In this manuscript, we denote
the composition ¢ o ¢ of maps by ¢i).

DEFINITION 1.3 Let G; = (V;, E;,W;) (i = 1,2,3) be weighted digraphs, (¢, p) :
G1 — Gy and (¢,0) : G2 — G3 be w-homomorphisms. Then the composition of these
w-homomorphisms are defined by the semidirect product

(6, 0) (W, 0) & (¢, ) % (,0) = (¢85, p ® (¢7)),

where p ® (o) : V — Q(R),u — p(u)o(d(u)). The set Q(R)V of maps from V to
Q(R) forms abelian group under the operation ®: (f ® g)(v) = f(v)g(v). o



Indeed, checking the validity of the definition.

Wi (9h(p(u)), (8(v)))

= o (¢(w))o(d(v)) Wa((u), $(v))

= a(¢(w))o(¢(v))p(w)p(v) W1 (u, v)

= o(¢(w))p(w)a(¢(v))p(v) W1 (u, v)

= ((¢0) ® p)(w)((¢0) ® p)(v)W1(u, )

hold.
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EXAMPLE 1.3 Let G; = (Vi, B, W;) (i = 1,2,3) be weighted digraphs depicted in
Figures 1.1 and 1.2. The following (¢, p) is the w-homomorphism from G; to G, in

Example 1.1. (3, o) is a w-homomorphism from G5 to G3 in Example 1.2.

_ w1 uz2 U1 U2 2! Ua v U2
o= (ug ug Vs 1?3) P (3/(27") 3/(2r) 2r r ) ’

_[Uus Ug U3 [ us Uy U3
Y=l w v ) 7 5/(3s) 5/(9s) s

R A

u u v v

Then if (£, 7) is a w-homomorphism from G to G3, the following equations must hold.

5=7(u)r(v1) x 1
5 =7(up)7(v2) X 2
5=17(ug)7(v1) X 3
5= 7(u2)7(vy) X 6

Therefore 7 is represented as below with one positive real parameter ¢

_[w U2 U1 V2
T=\5/(2t) 5/(6t) 2t t )
While calculating (¢, (¢o) & p)

(¢o) @ p= <U1 v o o )® (g}(%) g;(%) ;):‘ :")2)

o(ug) o(us) o(vs) o(vs)

_{uw Ug U1 V2 (131 Uo (]
~\5/(3s) 5/(9s) s s 3/(2r) 3/(2r) 2r
(51 Uy m (%)

5/(2rs) 5/(6rs) 2rs rs

(%)
r

Thus we can check that the direct solution (£, 7) and the composition (¢v, (¢o) ® p)

are identical.

a

For weighted digraphs G and G5, we write G; J G, if there exists a surjective w-
homomorphism from G; to G. Since in Definition 1.3, ¢ and %) are sujective, ¢ is also.
Therefore G; J G2 3 Gj3 holds. The relation - forms a pre-order (a relation satisfying
the reflexive law and the transitive law) as shown below. Of course, the pre-order J is

regarded as an order up to w-isomorphism.



PROPOSITION 1.1 [11] Let Gy, G2, G3 be weighted digraphs. Then,

1 G, 3G
(2) Gl | GQ and Gz 3 Gl N d G1 ~w G2.
(3) Gl 2 G2 and Gz ; G3 lmply Gl Q G3. O

2 Freeness of w-homomorphism

Suppose that there exists two w-homomorphisms (¢;, p1) and (g2, p2) from G to Go
for given two digraphs G; and G2. As we have seen in the examples in the previous
section, even though ¢; = ¢, holds, p; = p» is not necessarily true. Here we investigate
whether for a given w-homomorphisms (¢, p), p is uniquely determined or not.

DEFINITION 2.1 Let G = (V, E, W) be a weighted digraph. We call G = (V, E) a
unweighted undirected graph obtained from G, if

VU5 € FE < W('Ui,’l)j) > 0 or W(’Uj,’l}i) > 0,
where v;v; is an undirected edge, i.e. we identify v;v; with v;v;. O

Let (¢, p) be a w-homomorphism from G; to G,. To determine p, we must solve the
equation of the form.

Wa(d(vi), ¢(v5)) = p(vi) p(vs) Wi (i, v;), (i < 7)

Put z; = log p(v;), z; = log p(v;), wy; = log(Wa(é(vi), #(v;))) — log(Wi(vi,v;)). The
equation above is written in the form: '

Note that when both W (v;,v;) > 0 and Wi (vj, v;) > 0 imply w;; = wj;, two equations
Zi + z; = wi; and z; + z; = wy; are identical. _

So let n and m be the numbers of vertices and edges in the undirected graph G, =
(V, E). Then these equations can be represented as Max = w, where M is m x n matrix
whose elements are O or 1, the row vector & consists of n variables, the row vector w
consists of m real numbers. It is easily seen that p is uniquely determined if the rank
r = rank(M) of M is equal to n. Otherwise, p is not uniquely determined, and has n — r
free parameters. So (¢, p) or p is said to be of freeness n — rank(M).

DEFINITION 2.2 Let G = (V, E, W) be a weighted digraph with V' = {vy,vs,...,v,}
of ordered vertices and G = (V, E) be a undirected graph obtained from G. The m x n
matrix Mg(G) is called the edge matrix of G, if its (k,) and (k, j)-components are 1
when v;v; (i < j) is the k-th smallest edge in E, otherwise 0. O

EXAMPLE 2.1 Consider w-automorphisms of digraphs depicted in Figure 3.
(1) Let(¢, p) be the automorphism of the loop L depicted in Figure 3(a). 2 = p(v)p(v) x
2, z = log p(v). Therefore p(v) = 1.

[1][z]=[lg1]=[0]
(2) (¢, p) is the automorphism of the digraph C, depicted in Figure 3 (b).
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- m v _ V1 U2
¢_(U2 vl)’ p—(t l/t)'
11 z1 | |log(2/2) 1 [0
1 1|z | |log(2/2)| |0
(3) (¢, p) is the automorphism of the digraph C3 depicted in Figure 3 (c).

¢_ v V2 U3 _ U1 V2 U3
“Nwous v )0 PT 233 172 )

110 1 log2
101 z2 | = | log(1/3)
011 z3 log(3/2)
v "M
2 (41 .———2————>. (%)) 3 1
2
V3 2 (%)
(a) Loop L (b) Digraph C;

(c) Digraph Cs

Figure 3. Loop L.

|

FACT 1 If a undirected graph G is connected and has n vertices and m edges, then
n<<m+ L

FACT 2 If G is a tree with n vertices and m edges, thenn = m + 1.

FACT 3 If a undirected graph G with n vertices and m edges is connected and n = m+1,
then G is a tree.

THEOREM 2.1 Let G = (V, E, W) be a digraph and the undirected graph (V, E) be
a tree with n vertices. Then the edge matrix Mg(G) is an (n — 1) X n matrix. and any
w-homomorphism from G is of freeness 1.

Proof) We prove that the row vectors of M = Mg(G) by induction on the number
m = n— 1 of edges. If m = 1, then M has the only one nonzero row. Assume m > 1 and
the claim is true for a tree with m — 1 edges. Let v,, be a terminal vertex in G and G’ be
the subgraph containing all element of V' — {v,}. M’ = Mg(G’) has m — 1 independent
rOws.

M has the last row which cannot be represented as a linear combination of other rows.
Therefore the rank of M is m.

M=

<
-



THEOREM 2.2 Let G = (V, E, W) be a digraph and the undirected graph G = (V, E)
be an n-cycle. The edge matrix M = Mg(G) is an n x n matrix. If n is odd, then M is
of rank n. If n is even, then M is of rank n — 1.

So a w-homomorphism from G is of freeness 0 if n is odd, of freeness 1 if n is even.

THEOREM 2.3 Let G = (V, E, W) be a digraph and the undirected graph G = (V, E)
be a connected graph with n vertices. Let G be a connected digraph with n vertices The
rank of the edge matrix Mg(G) is n—1 or nn. So a w-homomorphism from G is of freeness
Oorl.

COROLLARY 2.1 Let G = (V, E, W) be a digraph and the undirected graph G =
(V, E) be a connected graph with n vertices. If G has an odd (resp. even) cycle, then
the rank of the edge matrix Mg(G) is n (resp.n — 1) and w-homomorphism from G is of
freeness O (resp.1).

THEOREM 2.4 Let G = (V, E, W) be a digraph, G = (V, E) be the undirected graph
and Vi, Va, ..., Vi be distinct connecting components with V = V; + V2 + -- - 4+ Vy and
K be the number of isolated vertices. Let (; be the subgraph of G containing all elements
of V; and M; = Mg(G;). Then, the rank of W = Mg(G) is the sum of rank(M;).

M, ... 0

3 Ideals in the semigroup S

In this section we define the set S of all surjective w-homomorphisms between two
weighted digraphs and a (extra) zero element 0. Introducing the multiplication by the
composition, S forms a semigroup.

For a surjective w-homomorphim z : G; — G, (G is called the domain of z, denoted
by Dom(z), and G is called the image(or range) of z, denoted by Im(z). Especially
Dom(0) = Im(0) = 0. The multiplication of z = (¢, p) and y = (1, o) is defined by

def { (¢, (¢p) ® ) if Im(z) = Dom(y).
Y= 0 otherwise.

3.1 Green’s equivalences on the semigroup S

Regarding to a general semigroup S without an identity, for convenience of notation,
S' = SU{1} is the monoid obtained from a semigroup S by adjoining an (extra) identity
l,thatis,1-s=s-1=sforalls€ Sand1-1=1.

In general, Green’s equivalences £, R, 7,H,D on a semigroup S, which are well-
known and important equivalence relations in the development of semigroup theory, are
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defined as follows:
2Ly <= Slz =Sy,
TRy <= 28! =ySt,
rJy < S'zS8' = SySst,
H=LNR,
D= (LUR),
where (£ U R)* means the reflexive and transitive closure of £ U R. Sz (resp. zS%)

is called the principal left (resp. right ) ideal generated by x and S'zS* the principal
(two-sided) ideal generated by x. Then, the following facts are generally true[7, 2].

FACT 4 The following relations are true.

HD=LR=RL
2)HcC L (resp.R)y cDC T

FACT 5 An H-class is a group if and only if it contains an idempotent e, that is €? = e.

Now we consider the case of S = & in the rest of the maniscript. The following lemma
is obviously true.

LEMMA 3.1 [11]Letz: Gy = Ga, y: G3 = G4 € S. Then,

(D) 2SSt C ySl = G, =Gsand G, C Gy.

2) SIIC81y=>G3 C Giand Gy = Gy.

3) 28! = ySl = (G, = Gz and Gy ~, G4.

“4) Sl = Sly = G ~y Gz and Gy = Gy. O

Remark that any reverse implications above are not necessarily true.

PROPOSITION 3.1 [11] The following conditions are equivalent.
(1) H is an H-class and a group.
(2) H = Aut,(G) for some weighted digraph G. (]

PROPOSITION 3.2 [11] On the semigroup S, J =D. Od

3.2 Intersection of principal ideals

The aim here is that for given z,y € S we find a elements z such that S'zNS'y = Sz
(resp. z8' NyS' = 28Y). 28 NyS' = {0} (resp. S'z N S'y = {0}) is a trivial
case(z = 0). We should only consider the non-trivial case.

PROPOSITION 3.3 (Intersection of Principal Left Ideals) [11]LetG; = (V;, E;, W;)(i =
1,2, 3) be weighted digraphs, z = (41, p1) : G1 — G3,y = (¢a, p2) : G2 — G5 be ele-
ments of S. Then there exists z € S such that S’z N Sty = S'z. O

COROLLARY 3.1 (Diamond Property I) [11] Let G1,G>, G3 be weighted digraphs
with G; J G5 (i = 1,2). Then there exists a unique least weighted digraph G up to
w-isomorphism such that G J G; (i = 1, 2). O
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PROPOSITION 3.4 (Intersection of Principal Right Ideals) [11]LetG; = (V;, E;. W;)(i =
0,1,2) be weighted digraphs, z = (¢1,p1) : Go = G1, y = (¢2, p2) : Go — Go be ele-
ments of S. Then there exists z € & such that zS' N yS! = 28, O

COROLLARY 3.2 (Diamond Property II) [11] Let G; (: = 0,1,2) be weighted di-
graphs with Gy 3 G; (¢ = 1, 2). Then, there exists a unique maximum weighted digraph
G up to isomorphism such that G; J G (i = 1,2). O

‘We define the notion of irreducible forms of a weighted digraph with respect to .

DEFINITION 3.1 (Irreducible) A weighted digraph G is called a J-irreducible if G 3
G’ implies G ~,, G’ for any weighted digraph G’. Then G is called an J-irreducible
form. O

COROLLARY 3.3 [11] Let G, G’ and G” be weighted digraphs with G 3 G’ and G 1
G”. Then one has: If G’ and G are J-irreducible, then G’ ~,, G”. O

3.3 Lattice structures of ~,,-classes of weighted digraphs

As an application of the theory of principal ideals developed in the previous section,
we deal with lattice structures of equivalence classes (~,,-classes) of digraphs divided by
the w-isomorphism relation ~,,. By [G] we denote the ~,,-class of a graph G. The set of
all ~,,-class is an ordered set because 1 is well-defined and Lemma 1.1 holds.

Let G;r be an J-irreducible form and L([Girr])) = {[G] | G 3 G} through this
section. By Corollary 3.3, the class [Gy,] is the least element of L([G;,.]) because any
other ~,,-class in L([G},|) cannot contain an J-irreducible form.

PROPOSITION 3.5 (conditional LUB and GLB) The following claims hold.
(1) Let [G1], [G2], [Gs] be ~,~classes with [G;] O [G3) (i = 1,2). There exists the
minimum [G] such that [G] 3 [G;] 3 [G3] (¢ = 1, 2), denoted by lub([G1], [G2]; [G3))-

(2) Let [Gol, [G1], [G2] be ~,,-classes with [Go] 3 [G;] (i = 1,2). There exists the
maximum [G] such that [Go] 3 [G;] 3 [G] (¢ = 1, 2), denoted by glb([Go]; [G1], [G2])-

Proof) Immediate from Corollary 3.1 and Corollary 3.2. O

PROPOSITION 3.6 The following claims hold.
(1) Let [G1], [G2), [G3], [G'3] be ~,,-classes with [G;] O [G3] and [G;] T [G'5](i =
1,2). I [G3] 3 [G"3], then lub([G1], [G2]; [Gs]) 3 lub([G4, [Ge]; [G3]).

(2) Let [Go], [Gl()], [Gl], [GQ] be ~,,-classes with [Go] | [Gz] and [Glo] | [G:L](’l =
1,2). If [Go] 2 [G"o], then glb([Go); [G1], [G]) 3 glb([GYl; [G1], [Ga)).

Proof) (1) Put [G] = lub([G4], [G2); [Gs]), G’ = lub([G1], [Ga]; [G%]). By Proposition
3.3, there exist surjective w-homomorphisms z : G — G3, 2’ : G' = Gyand u : G5 —
GY such that 8’z N S'y = §'2 and S'zu N Slyu = S'7. Since zu € Sl'zu and
zu € S'yu hold, zu € Sz’ and thus zu = vz’ forsome v : G — G’ and v € SL.

(2) By the left-right duality of (1). O



COROLLARY 34 Let [G1], [G2] be elements in L([G;,,]). There exists the unique least
(resp. greatest) ~,, class [Gy] (resp. [Gr]) such that [Gy] 3 [Gi] (i = 1,2) (resp.
[G;] 3 [GL] (i = 1,2)), denoted by lub(|G1], [Ga]) (resp. glb([G1], [G2])).

Proof) By Proposition 3.6, [Gy] = lub([Gi], [G2]; [Girr]) is least. Again, [GL] =
glb([Gyl; [G1], [Ga]) is greatest. O

From this proposition we get the following theorem.

THEOREM 3.1 The ordered set (L([G]), J) forms a lattice with the least element
[Girr]-
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