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abstract We introduced an extension of homomorphisms of general weighted di‐

rected graphs and investigated the semigroups of surjective homomorphims and synthe‐
size graphs to obtain a generator of pricipal left (or right) ideal in the semigroup[ll]. This

study is originally motivated by reducing the redundancy in concurrent systems, for ex‐

ample, Petri nets. [10]. We have got the result that for a given graph our homomorphism
G has freeness determined by the connection and the cycles in G.

In a general weighted directed graphs (V_{i}, E_{i}, W_{i})(i = 1,2) , a usual graph homo‐

morphism  $\phi$ :  V_{1} \rightarrow  V_{2} satisfies W_{2}( $\phi$(u),  $\phi$(v)) = W_{1}(u, v) to preserve adjacency of

the graphs. Whereas we extend this definition slightly and our homomorphism is de‐

fined by the pair ( $\phi$,  $\rho$) based on the similarity of the edge connection. ( $\phi$,  $\rho$) satisfies

\mathrm{t}V_{2}( $\phi$(u),  $\phi$(v) ) = $\rho$(u) $\rho$(v)W_{1}(u, v) , where  $\phi$ :  V_{1} \rightarrow  V_{2},  $\rho$ :  V_{1} \rightarrow R+ and R_{+} is the

set of positive real numbers.

In this paper we investigate whether for a \mathrm{w}‐homomorphism ( $\phi$,  $\rho$) from a given di‐

graph G,  $\rho$ is uniquely determined or not. As a result, it is uniquely determined if

undirected graph \overline{G} obtained from G has no even cycles and no isolated vertices. Ad‐

ditionally we overview the lattice structure of graphs, which are ordered by surjective
\mathrm{w}‐homomorphisms.

1 Preliminaries

We introduced an extension ofhomomorphisms of general weighted directed graphs[11].
Here we overview the extension and give new examples of them with free parameters.

1.1 Graphs and Morphisms

In this section we summarize definitions of weighted digraphs, \mathrm{w}‐homomorphisms and

compositions. We denote the set of positive real numbers Uy R_{>0} and the set of nonneg‐
ative real numbers by R_{\geq 0}.

DEFINITION 1.1 A weighted directed graph (weighted digraph, for short) is a 3‐tuple
( V) E, W ) where

(1) V is a finite set of vertices,
(2) E(\subset V\times V) is a set of edges,
(3) W : (V\times V)\rightarrow R\geq 0 is a weightfiunction. \square 

According to custom, \langle u, v ) \in E \Leftrightarrow  W(u, v)\neq 0.
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DEFINITION 1.2 Let G_{i} = (V_{l}, E_{i}, W_{i})(i = 1,2) be the weighted digraphs. Then a

pair ( $\phi$,  $\rho$) is called \mathrm{a} (weak weightpreserving) homomorphism (for short, w‐homomorphism)
from G_{1} to G_{2} if the maps  $\phi$ :  V_{1}\rightarrow V_{2},  $\rho$ :  V_{1}\rightarrow R_{>0} satisfy the condition that for any

u, v\in V_{1},

W_{2}( $\phi$(u),  $\phi$(v))= $\rho$(u) $\rho$(v)W_{1}(u, v) . (1.1)

Especially if  $\rho$= 1_{V_{1}} , i.e.,  $\rho$(u) = 1 for any  u\in  V_{1} , then \mathrm{w} ‐homomorphism is called a

strictly weight preserving homomorphism (s‐homomorphism, for short). \square 

The \mathrm{w}‐homomorphism ( $\phi$,  $\rho$) is called injective (resp. surjective) if  $\phi$ is injective (resp.
surjective). In particular, it is called a  w‐isomorphism from G_{1} to G_{2} if it is injective and

surjective. Then \mathrm{G}_{1} is said to be w‐isomorphic to G_{2} and we write G_{1}\simeq_{\mathrm{w}}G_{2} . Moreover,
in case of G_{1} = G_{2} = G, a \mathrm{w}‐isomorphism is called an w‐automorphism of G . By
\mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{w}}(G) we denote the set of all the \mathrm{w}‐automorphisms of G . Similarily \mathrm{s} ‐isomorphism
\simeq_{\mathrm{s}} \mathrm{s} ‐automorphism and \mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{s}}(G) are defined.

EXAMPLE 1.1 Let G_{i} = (V_{i}, E_{x}, W_{l})(i = 1,2) be the weighted digraphs depicted in

Figure 1, W_{i}:V_{i}\rightarrow R_{>0} be the weight functions. That is,

V_{1}=\{u_{1}, u_{2}, v_{1}, v_{2}\}, V_{2}= { u_{3}, u_{4} ) v_{3} }.
W_{1}(u_{1}, v_{1})=1, W_{1}(u_{1}, v_{2})=2, W_{1}(u_{2}, v_{1})=3, W_{1}(u_{2}, v_{2})=6.
W_{2} (u_{3} , v3) =3, W_{2} (u_{4} , v3) =9 . Any other edges are of weight 0.

(a) Weighted digraph G_{1} (b) Weighted digraph G_{2}

Figure 1. Weighted Digraph G_{1} and G_{2}.

Let  $\phi$ be the following function from  V_{1} to V_{2}.

 $\phi$=\left(\begin{array}{llll}
u_{1} & u_{2} & v_{1} & \prime $\iota$ j2\\
u_{3} & u_{4} & v_{3} & v_{3}
\end{array}\right),
Then the following equations hold.

3= $\rho$(u_{1}) $\rho$(v_{1})\times 1
3= $\rho$(u_{1})p(v_{2})\times 2
9= $\rho$(u_{2}) $\rho$(v_{1})\times 3
9= $\rho$(u_{2}) $\rho$(v_{2})\times 6

Solving the these equations, we have the solution (  $\phi$ )  $\rho$), a \mathrm{w}‐homomorphism from G_{1}
to G_{2} , with one parameter r\in R_{>0}.

 $\rho$=(_{3/(2r)}^{u_{1}} 3/(2r)u_{2} v_{1}2r rv_{2)}.
口
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EXAMPLE 1.2 Let G_{i} = (V_{i}, E_{l}, W_{i})(i =2,3) be the weighted digraphs depicted in

Figure 2, W_{\dot{l}} : V_{i}\rightarrow R_{>0} the weight functions.That is,

V_{2}=\{u_{3}, u_{4}, $\tau$_{3}^{l}\}, V_{3}=\{u, v\}.
W_{2} ( u_{3} , v3) =3, W_{2} ( u_{4} , v3) =9.

W3 (u, v)=5 . Any other edges are of weight 0.

(b) Weighted Digraph G_{2} (c) Weighted Digraph G3

Figure 2. Weighted digraphs G_{2} and G_{3}.

Let  $\psi$ be the following function from  V_{2} to \mathrm{y}_{3}.

 $\psi$=\left(\begin{array}{lll}
u_{3} & u_{4} & v_{3}\\
u & u & v
\end{array}\right),
Then the following equations hold.

5= $\sigma$(u_{3}) $\sigma$(v_{3})\times 3
5= $\sigma$(u_{4}) $\sigma$(v_{3})\times 9

Solving the these equations, we have the solution ( $\psi$,  $\sigma$) , a \mathrm{w}‐homomorphism from G_{2}
to G_{3} , with one parameter s\in R_{>0}.

 $\psi$=\left(\begin{array}{lll}
u_{3} & u_{4} & v_{3}\\
u & u & v
\end{array}\right).  $\sigma$= (_{5/(3s)}u_{3} u_{4}5/(9s) v_{3}s )
口

1.2 Composition of the \mathrm{w}‐homomorphisms

We define the composition of the \mathrm{w}‐homomorphisms. In this manuscript, we denote

the composition  $\psi$ 0 $\phi$ of maps by  $\phi \psi$.

DEFINITION 1.3 Let G_{i} = (V_{i}, E_{i}, W_{i})(i = 1,2,3) be weighted digraphs, ( $\phi$,  $\rho$) :

G_{1}\rightarrow G_{2} and ( $\psi$,  $\sigma$) : G_{2}\rightarrow G_{3} Ue \mathrm{w}‐homomorphisms. Then the composition of these

\mathrm{w}‐homomorphisms are defined by the semidirect product

( $\phi$,  $\rho$)($\psi$_{)} $\sigma$)^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}( $\phi$,  $\rho$)\rangle\triangleleft( $\psi$,  $\sigma$)=( $\phi \psi$,  $\rho$\otimes( $\phi \sigma$)) ,

where  $\rho$\otimes( $\phi \sigma$) : V \rightarrow  Q(R) , u \mapsto  $\rho$(u) $\sigma$( $\phi$(u)) . The set Q(R)^{V} of maps from V to

Q(\mathrm{R}) forms abelian group under ffie operation \otimes:(f\otimes g)(v)=f(v)g(v) 口
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Indeed, checking the validity of the definition.

W_{3}( $\psi$( $\phi$(u)),, $\psi$( $\phi$(v)))
= $\sigma$( $\phi$(u)) $\sigma$( $\phi$(v))W_{2}( $\phi$(u),  $\phi$(v))
= $\sigma$( $\phi$(u)) $\sigma$( $\phi$(v)) $\rho$(u) $\rho$(v)W_{1}(u, v)
= $\sigma$( $\phi$(u)) $\rho$(u) $\sigma$( $\phi$(v)) $\rho$(v) $\nu$ V_{1}(u, v)
=(( $\phi \sigma$)\otimes $\rho$)(u)(( $\phi \sigma$)\otimes $\rho$)(v)W_{1}(u, v)

hold.

EXAMPLE 1.3 Let G_{i} = ( V_{i} ) E_{i} )  W_{l}\cdot ) (i = 1,2,3) be weighted digraphs depicted in

Figures 1.1 and 1.2. The following ( $\phi$,  $\rho$) is the \mathrm{w}‐homomorphism from G_{1} to G_{2} in

Example 1.1. ( $\psi$,  $\sigma$) is a \mathrm{w} ‐homomorphism from G_{2} to G3 in Example 1.2.

 $\phi$=\left(\begin{array}{llll}
u_{1} & u_{2} & v_{\mathrm{l}} & v_{2}\\
u_{3} & u_{4} & v_{3} & \mathrm{e}_{3}
\end{array}\right),  $\rho$= (_{3/(2r)}^{u_{1}} 3/(2r)u_{2} v_{1}2r rv_{2)},
 $\psi$= \left(\begin{array}{lll}
u_{3} & u_{4} & v_{3}\\
u & u & v
\end{array}\right),  $\sigma$= (_{5/(3s)}^{u_{3}} u_{4}5/(9s) v_{3)}\mathcal{S}^{\cdot}

Let

 $\xi$= $\phi \psi$= \left(\begin{array}{llll}
u_{1} & u_{2} & v_{1} & v_{2}\\
u & u & v & v
\end{array}\right).
Then if ( $\xi$,  $\tau$) is a \mathrm{w}‐homomorphism from G_{1} to G_{3} , the following equations must hold.

5= $\tau$(u_{1}) $\tau$(v_{1})\times 1
5= $\tau$(u_{1}) $\tau$(v_{2})\times 2
5= $\tau$(u_{2}) $\tau$(v_{1})\times 3
5= $\tau$(u_{2}) $\tau$(v_{2})\times 6

Therefore  $\tau$ is represented as below with one positive real parameter  t

 $\tau$=(_{5/(2t)}^{u_{1}} 5/(6t)u_{2} v_{1}2t v_{2)}t.
While calculating ( $\phi \psi$, ( $\phi \sigma$)\otimes $\rho$)

( $\phi \sigma$) ©  $\rho$= (_{ $\sigma$(u_{3})}^{u_{1}}  $\sigma$(u_{4})u_{2}  $\sigma$(v_{3})v_{1}  $\sigma$(v_{3})v_{2)\otimes}(_{3/(2r)}^{u_{1}} 3/(2r)u_{2} v_{1}2r rv_{2)}
= u_{1}5/(3s) 5/(9s)u_{2} v_{1}s v_{2)\otimes}s (_{3/(2r)}^{u_{1}} u_{2}3/(2r) 2rv_{1} rv_{2)}
= 5/(2rs)u_{1} u_{2}5/(6rs) ?)2rs1 rsv_{2)}

Thus we can check that the direct solution ( $\xi$,  $\tau$) and the composition ( $\phi \psi$, ( $\phi \sigma$)\otimes $\rho$)
are identical 口

For weighted digraphs G_{1} and G_{2} , we write G_{1} \sqsupseteq  G_{2} if there exists a surjective w‐

homomorphism from G_{1} to G_{2} . Since in Definition 1.3,  $\phi$ and  $\psi$ are sujective,  $\phi \psi$ is also.

Therefore  G_{1} \sqsupseteq G_{2}\supseteq G_{3} holds. The relation \sqsupseteq forms a pre‐order (a relation satisfying
the reflexive law and the transitive law) as shown below. Of course, the \mathrm{p}\mathrm{r}\mathrm{e}-order \supseteq \mathrm{i}\mathrm{s}

regarded as an order up to \mathrm{w}‐isomorphism.

73



PROPOSITION 1.1 [11] Let G_{1}, G_{2} , G3 be weighted digraphs. Then,
(1) G_{1}\supseteq G_{1}.
(2) G_{1}\sqsupseteq G_{2} and G_{2}\sqsupseteq G_{1} \Leftrightarrow  G_{1}\simeq_{\mathrm{w}}G_{2}.
(3) G_{1}\sqsupseteq G_{2} and G_{2}\supseteq$\zeta$_{J}^{\mathrm{v}_{3}} imply G_{1}\sqsupseteq G_{3}. 口

2 Freeness of \mathrm{w}‐homomorphism

Suppose that there exists two \mathrm{w}‐homomorphisms ($\phi$_{1}, $\rho$_{1}) and ( $\phi$_{2} ) $\rho$_{2} ) from G_{1} to G_{2}
for given two digraphs G_{1} and G_{2} . As we have seen in the examples in the previous
section, even though $\phi$_{1}=$\phi$_{2} holds, $\rho$_{1}=$\rho$_{2} is not necessarily true. Here we investigate
whether for a given \mathrm{w}‐homomorphisms ( $\phi$,  $\rho$) ,  $\rho$ is uniquely determined or not.

DEFINITION 2.1 Let  G= (V, E, W) be a weighted digraph. We call \overline{G}= (V,\overline{E})\mathrm{a}
unweighted undirected graph obtained from G , if

v_{i}v_{j}\in\overline{E} \Leftrightarrow  W(v_{\mathrm{i}}, v_{j})>0 or W(v_{j}, v_{i})>0,

where v_{l}v_{j} is an undirected edge, i.e. we identify v_{i}v_{j} with vjvi. 口

Let ( $\phi$,  $\rho$) be a \mathrm{w}‐homomorphism from G_{1} to G_{2} . To determine  $\rho$, we must solve the

equation of the form.

 W_{2}( $\phi$(v_{i}),  $\phi$(v_{j}))= $\rho$(v_{i}) $\rho$(v_{j})W_{1} ( v_{i} ) v_{j} ), (i\leqq j)

Put x_{i}=\log $\rho$(v_{i}) , x_{j}=\log $\rho$(v_{j}) ,  u\prime_{ij}=\log (  W_{2} (  $\phi$(v_{i}) )  $\phi$(v_{j})) ) -\log(W_{1}(v_{i}, v_{j} The

equation above is written in the form:

x_{i}+x_{j}=w_{ij}

Note that when both W_{1}(v_{i,},v_{j}) >0 and W_{1}(v_{j}, v_{i}) >0 imply w_{ij}=w_{ji} , two equations
x_{i}+x_{j}=w_{ij} and x_{j}+x_{i}=w_{ji} are identical.

So let n and m be the numbers of vertices and edges in the undirected graph \overline{G}_{1} =

(V, E Then these equations can be represented as Mx=w , where M is m\times n matrix

whose elements are 0 or 1, the row vector x consists of n variables, the row vector w

consists of m real numbers. It is easily seen that  $\rho$ is uniquely determined if the rank

 r=rank(M) of M is equal to n . Otherwise,  $\rho$ is not uniquely determined, and has  n-r

free parameters. So ( $\phi$, p) or  $\rho$ is said to be of freeness  n-rank(M) .

DEFINITION 2.2 Let G=(V, E, W) Ue a weighted digraph with V= { v_{1} ) v_{2} ,
. . .

) v_{n} }
of ordered vertices and \overline{G}=(V,\overline{E}) be a undirected graph obtained from G . The m\times n

matrix \mathrm{J}/I_{\mathrm{E}}(G) is called the edge matrix of G , if its (k, i) and (k,j) ‐components are 1

when v_{i}v_{j}(i\leq j) is ffie k‐ffi smallest edge in \overline{E}, offierwise 0 . 口

EXAMPLE 2.1 Consider \mathrm{w}‐automorphisms of digraphs depicted in Figure 3.

(1) Let (( $\beta$ ,  $\rho$) Ue the automorphism ofthe loop  L depicted in Figure 3(a).  2=p(v)p(v)\times
 2, x=\log $\rho$(v) . Therefore  $\rho$(v)=1.

[1 ] [x_{1} ] = [1\mathrm{o}g1 ] =[0]
(2) ( $\phi$,  $\rho$) is the automorphism of the digraph C_{2} depicted in Figure 3 (b).
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 $\phi$= \left(\begin{array}{ll}
?_{1} & v_{2}\\
v_{2} & v_{1}
\end{array}\right),  $\rho$= (tv_{1} v_{2}1/ オ ) .

\left\{\begin{array}{ll}
1 & \mathrm{l}\\
1 & 1
\end{array}\right\} \left\{\begin{array}{l}
x_{1}\\
x_{2}
\end{array}\right\} = [_{\log(2/2)}\log(2/2) ] = \left\{\begin{array}{l}
0\\
0
\end{array}\right\}
(3) ( $\phi$,  $\rho$) is the automorphism of the digraph C3 depicted in Figure 3 (c).

 $\phi$= \left(\begin{array}{lll}
v_{1} & v_{2} & v_{3}\\
v_{2} & v_{3} & v_{1}
\end{array}\right)  $\rho$= (_{2/3}v_{1} 3v_{2} v_{3}1/2) .

\left\{\begin{array}{lll}
1 & 1 & 0\\
1 & 0 & \mathrm{l}\\
0 & \mathrm{l} & 1
\end{array}\right\} \left\{\begin{array}{l}
x_{1}\\
x_{2}\\
x_{3}
\end{array}\right\} = \left\{\begin{array}{l}
\mathrm{l}\mathrm{o}\mathrm{g}2\\
\mathrm{l}\mathrm{o}\mathrm{g}(1/3)\\
\mathrm{l}\mathrm{o}\mathrm{g}(3/2)
\end{array}\right\}

(a) Loop L (b) Digraph C_{2}
(c) Digraph C3

Figure 3. Loop L.

口

FACT 1 If a undirected graph G is connected and has n vertices and m edges, then

n\leq m+1.

FACT 2 IfG is a tree with n vertices and m edges, then n=m+1.

FACT 3 Ifa undirected graph G with n vertices and m edges is connected an?dn =m+1,
then G is a tree.

THEOREM 2.1 Let G= (V, E, W) Ue a digraph and the undirected graph (V, \overline{E}) be

a tree with n vertices. Then the edge matrix \mathrm{J}M_{\mathrm{E}}(G) is an (n-1)\times n matrix. and any
\mathrm{w}‐homomorphism from G is of freeness 1.

Proof) We prove that the row vectors of M = M_{\mathrm{E}}(G) Uy induction on the number

m=n-1 of edges. If m=1 , then M has the only one nonzero row. Assume m>1 and

the claim is true for a tree with m-1 edges. Let v_{n} be a terminal vertex in G and G' be

the subgraph containing all element of V-\{v_{n}\}. M'=M_{\mathrm{E}}(G') has m-1 independent
rows.

M has the last row which cannot be represented as a linear combination of other rows.

Therefore the rank of M is m.

M= \left(\begin{array}{ll}
\mathrm{l} & \\
| & \\
| & \\
| & \\
| & \\
---.---.----\lrcorner\overline{0}..\overline{1}..0|^{-}1^{--} & \\
M'] & 0
\end{array}\right)
口
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THEOREM 2.2 Let G=(V, E, W) be a digraph and the undirected graph \overline{G}=(V,\overline{E})
be an n‐cycle. The edge matrix M=M_{\mathrm{E}}(G) is an n\times n matrix. If n is odd, then M is

of rank n . If n is even, then M is of rank n-1.

So a \mathrm{w}‐homomorphism from G is of freeness 0 if n is odd, of freeness 1 if n is even.

THEOREM 2.3 Let G=(V, E, W) be a digraph and the undirected graph \overline{G}=(V,\overline{E})
Ue a connected graph with n vertices. Let G Ue a connected digraph with n vertices The

rank of the edge matrix M_{\mathrm{E}}(G) is n-1 or n . So a \mathrm{w}‐homomorphism from G is of freeness

0 or 1.

COROLLARY 2.1 Let G = (V, E, W) be a digraph and the undirected graph \overline{G} =

(V, \overline{E}) be a connected graph with n vertices. If \overline{G} has an odd (resp. even) cycle, then

the rank of the edge matrix 1\downarrow,I_{\mathrm{E}}(G) is n(resp.n-1) and \mathrm{w}‐homomorphism from G is of

freeness 0 (resp. 1).

THEOREM 2.4 Let G= (V, E, W) be a digraph, \overline{G}=(V,\overline{E}) be the undirected graph
and V_{1}, V_{2} ,

. . .

, V_{N} be distinct connecting components with V=V_{1}+V_{2}+\cdots+V_{N} and

K Ue the number of isolated vertices. Let G_{i} be the subgraph of G containing all elements

of V_{i} and M_{i}=M_{\mathrm{E}}(G_{i}) . Then, the rank of W=M_{\mathrm{E}}(G) is the sum of rank(Mi).

W=\left(\begin{array}{llll}
M_{\mathrm{l}} & \cdots & 0 & \\
 & \ddots &  & 0\\
0 & \cdots & M_{N- K} & \\
 & 0 &  & 0
\end{array}\right)
口

3 Ideals in the semigroup S

In this section we define the set S of all surjective \mathrm{w}‐homomorphisms between two

weighted digraphs and \mathrm{a} (extra) zero element O. Introducing the multiplication by the

composition, S forms a semigroup.
For a surjective \mathrm{w}‐homomorphim x : G_{1}\rightarrow G_{2}, G_{1} is called the domain of x , denoted

by Dom(x) , and G_{2} is called the image(or range) of x , denoted by Im(x) . Especially
 Dom(0)=Im(0)=\emptyset . The multiplication of  x=( $\phi$,  $\rho$) and y=( $\psi$,  $\sigma$) is defined by

x\cdot y^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}\left\{\begin{array}{ll}
( $\phi \psi$, ( $\phi \rho$)\otimes $\sigma$) & \mathrm{i}\mathrm{f} Im(x)=Dom(y) .\\
0 & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
3.1 Green�s equivalences on the semigroup \mathcal{S}

Regarding to a general semigroup S without an identity, for convenience of notation,

S^{1}=S\cup\{1\} is the monoid obtained from a semigroup S by adjoining an (extra) identity
1, that is, 1\cdot s=\mathcal{S}\cdot 1=s for all s\in S and 1\cdot 1=1.

In general, Green�s equivalences \mathcal{L}, \mathcal{R}, J, \mathcal{H}, \mathcal{D} on a semigroup S, which are well‐

known and important equivalence relations in the development of semigroup theory, are
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defined as follows:

x\mathcal{L}y \Leftrightarrow S^{1}x=S^{1}y,
x\mathcal{R}y \Leftarrow\Rightarrow xS^{1}=yS^{1},
xJy \Leftrightarrow S^{1}xS^{1}=S^{1}yS^{1},
\mathcal{H}=\mathcal{L}\cap \mathcal{R},
D=(\mathcal{L}\cup \mathcal{R})^{*},

where (L\cup \mathcal{R})^{*} means the reflexive and transitive closure of \mathcal{L}\cup \mathcal{R}. S^{1}x (resp. xS^{1} )
is called the principal lefi (resp. right) ideal generated by x and S^{1}xS^{1} the principal
(two‐sided) ideal generated by x . Then, the following facts are generally true[7, 2].

FACT 4 The following relations are true.

(1) D=\mathcal{L}\mathcal{R}=\mathcal{R}\mathcal{L}

(2) \mathcal{H}\subset \mathcal{L} (resp. \mathcal{R}) \subset D\subset J

FACT 5 An \mathcal{H} ‐class is a group ifand only if it contains an idempotent e, that is e^{2}=e.

Now we consider the case of S=S in the rest of the maniscript. The following lemma

is obviously true.

LEMMA 3.1 [11] Let x:G_{1}\rightarrow G_{2}, y:G_{3}\rightarrow G_{4}\in S . Then,
(1) xS^{1}\subset yS^{1}\Rightarrow G_{1}=G_{3} and G_{2}\subseteq G_{4}.
(2) S^{1}x\subseteq \mathcal{S}^{1}y\Rightarrow G_{3}\sqsubseteq G_{1} and G_{2}=G_{4}.
(3) xS^{1}=yS^{1}=G_{1}=G_{3} and G_{2}\simeq_{\mathrm{w}}G_{4}.
(4) S^{1}x=\mathcal{S}^{1}y\Rightarrow G_{1}\simeq_{\mathrm{w}} G3 and G_{2}=G_{4} . 口

Remark that any reverse implications above are not necessarily true.

PROPOSITION 3.1 [11] The following conditions are equivalent.
(1) H is an \mathcal{H} ‐class and a group.

(2) H=\mathrm{A}\mathrm{u}\mathrm{t}_{\mathrm{w}}(G) for some weighted digraph G. \square 

PROPOSITION 3.2 [11] On the semigroup S, \mathcal{J}=D. \square 

3.2 Intersection of principal ideals

The aim here is that for given x, y\in \mathcal{S} we find a elements z such that S^{1}x\cap S^{1}y=S^{1}z
(resp. xS^{1}\cap yS^{1} = z\mathcal{S}^{1} ). x\mathcal{S}^{1}\cap yS^{1} = \{0\} (resp. S^{1}x\cap S^{1}y = \{0\} ) is a trivial

case (\sim $\gamma$=0) . We should only consider the non‐trivial case.

PROPOSITION 3.3 (Intersection of Principal Left Ideals) [11] Let G_{i}=(V_{l}, E_{i}, W_{i})(i=
1

, 2, 3) be weighted digraphs, x=($\phi$_{1}, $\rho$_{1}) : G_{1}\rightarrow G_{3}, y=($\phi$_{2}, $\rho$_{2}) : G_{2}\rightarrow G_{3} be ele‐

ments of \mathcal{S} . Then there exists \sim $\gamma$\in S such that S^{1}x\cap S^{1}y=S^{1}z. \square 

COROLLARY 3.1 (Diamond Property I) [11] Let G_{1}, G_{2} , G3 Ue weighted digraphs
with G_{i} \supseteq G3 (i = 1,2) . Then there exists a unique least weighted digraph G up to

\mathrm{w}‐isomorphism such that G\supseteq G_{i}(i=1,2) . \square 
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PROPOSITION 3.4 (Intersection of Principal Right Ideals) [11] Let G_{i}=(V_{i}, E_{i}.W_{i})(i=
0 , 1, 2) be weighted digraphs, x=($\phi$_{1}, $\rho$_{1}) : G_{0}\rightarrow G_{1}, y=($\phi$_{2,}.$\rho$_{2}) : G_{0}\rightarrow G_{2} Ue ele‐

ments of S . Then there exists z\in S such that x\mathcal{S}^{1}\cap yS^{1}=zS^{1} . 口

COROLLARY 3.2 (Diamond Property Il) [11] Let G_{i}(i = 0,1,2) be weighted di‐

graphs with G_{0}\sqsupseteq G_{i}(i=1,2) . Then, there exists a unique maximum weighted digraph
G up to isomoiphism such that G_{i}\sqsupseteq G(i=1,2) . \square 

We define the notion of irreducible forms of a weighted digraph with respect \mathrm{t}\mathrm{o}\supseteq.

DEFINITION 3.1 (Irreducible) A weighted digraph G is called \mathrm{a}\sqsupseteq ‐irreducible if  G\supseteq
 G' implies G \simeq_{w} G' for any weighted digraph G' . Then G is called an ;‐irreducible
form. 口

COROLLARY 3.3 [11] Let G, G' and G'' be weighted digraphs with G\supseteq G' and  G\sqsupseteq
 G Then one has: If G' and \mathrm{G}'' are ;‐irreducible, then G^{\mathrm{v};}\simeq_{w}G^{\mathrm{Y}} \square 

3.3 Lattice structures \mathrm{o}\mathrm{f}\simeq_{w}‐classes of weighted digraphs

As an application of the theory of principal ideals developed in the previous section,
we deal with lattice structures of equivalence classes ( \simeq_{w} ‐classes) of digraphs divided by
the \mathrm{w}‐isomorphism relation \simeq_{w} . By [G\mathrm{J} we denote the \simeq_{w} ‐class of a graph G . The set of

\mathrm{a}\mathrm{l}1\simeq_{w} ‐class is an ordered set because \sqsupseteq \mathrm{i}\mathrm{s} well‐defined and Lemma 1.1 holds.

Let G_{irr} be an \supseteq ‐irreducible form and  L([G_{irr}]) = \{[G] | G \supseteq G_{irr}\} through this

section. By Corollary 3.3, the class [G_{irr}] is the least element of L([G_{irr}]) because any
other \simeq_{w} ‐class in L([G_{irr}]) cannot contain an;‐irreducible form.

PROPOSITION 3.5 (conditional LUB and GLB) The following claims hold.

(1) Let [G1], [G2], [G3] \mathrm{b}\mathrm{e}\simeq_{w} ‐classes with [G_{i}] \sqsupseteq[G3] (i = 1,2) . There exists the

minimum [G] such that [G]\supseteq[G_{i}]\sqsupseteq[G_{3}](i=1_{i}2) , denoted by 1\mathrm{u}\mathrm{b}([G_{1}], [G_{2}]_{\text{）}} [G3]) .

(2) Let [G0], [G1], [G_{2}]\mathrm{b}\mathrm{e}\simeq_{w} ‐classes with [G_{0}] \supseteq [G_{i}](i = 1, 2) . There exists the

maximum [G] such that [G_{0}]\sqsupseteq[G_{i}]\sqsupseteq[G](i=1,2) , denoted Uy \mathrm{g}\mathrm{l}\mathrm{b}([G_{0}]; [G1], [G2]) .

Proof) Immediate from Corollary 3.1 and Corollary 3.2. 日

PROPOSITION 3.6 The following claims hold.

(1) Let [G1], [G2], [G3], [G_{3}']\mathrm{b}\mathrm{e}\simeq_{w} ‐classes with [G_{i}] \sqsupseteq[G3] and [G_{i}] \underline{=} [G_{3}'](i =

1
, 2). If [G_{3}]\sqsupseteq[G_{3}'] , then lub ([G_{1}], [G2]; [G_{3}])\sqsupseteq 1\mathrm{u}\mathrm{b}([G_{1}], [G2]; [G_{3}']) .

(2) Let [G0], [G_{0}'] , [G1], [G_{2}] be \simeq_{w} ‐classes with [G_{0}] \sqsupseteq [G_{i}] and [G_{0}'] \sqsupseteq [G_{i}](i =

1
, 2). If [G_{0}]\sqsupseteq[G_{0}'] , then \mathrm{g}\mathrm{l}\mathrm{b}([G_{0}]; [G1], [G2]) \sqsupseteq glb([GÓ]; [G1], [G_{2}] ).

Proof) (1) Put [G] =1\mathrm{u}\mathrm{b}([G_{1}], [G2]; [G3]) , G'=1\mathrm{u}\mathrm{b}([G_{1}], [G2]; [G_{3}']) . By Proposition
3.3, there exist suojective \mathrm{w}‐homomorphisms z : G\rightarrow G_{3}, z' : G'\rightarrow G_{3}' and u :  G_{3}\rightarrow

 G_{3}' such that S^{1}x\cap \mathcal{S}^{1}y = S^{1}z and S^{1}xu\cap S^{1}yu = Slz�. Since  zu\in \mathcal{S}^{1}xu and

zu\in \mathcal{S}^{1}yu hold, zu\in S^{1}z� and thus zu=vz' for some v : G\rightarrow G' and v\in S^{1}.
(2) By ffie left‐right duality of (1). 口
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COROLLARY 3.4 Let [G1], [G_{2}] Ue elements in L([G_{irr}]) . There exists the unique least

(resp. greatest) \simeq_{w} class [G_{U}] (resp. [G_{L}] ) such that [G_{U}] \sqsupseteq [G_{i}](i = 1,2) (resp.
[G_{i}]\sqsupseteq[G_{L}](i=1,2 denoted by 1\mathrm{u}\mathrm{b}([G_{1}], [G2]) (resp. glb ([G_{1}] , [G2])).

Proof) By Proposition 3.6, [G_{U}] = 1\mathrm{u}\mathrm{b}([G_{1}], [G2]; [G_{\mathrm{z}rr}]) is least. Again, [G_{L}] =

\mathrm{g}\mathrm{l}\mathrm{b} ( [G_{U}];[G_{1}] ) [G2]) is greatest. 口

From this proposition we get the following theorem.

THEOREM 3.1 The ordered set (L([G_{irr}]), \supseteq) forms a lattice with the least element

[G_{irr}].

References

[1] C. Berge. Principles ofCombinatorics, volume 72 ofMathematics in Science and Engineer‐
ing: A Series ofMonographs and Textbooks. Academic Press, 1971.

[2] J. Berstel and D. Perrin. Theory of Codes. Academic Press , INC., Orlando, Florida, 1985.

[3] C. Borgs, J. Chayes, L. Lovász, V. Sós, and K. Vesztergombi. Counting graph homomor‐

phisms. In Topics in discrete mathematics, pages 315‐371. Springer, 2006.

[4] M. Freedman, L. Lovász, and A. Schrijver. Reflection positivity, rank connectivity, and

homomorphism of graphs. Journal of the American Mathematical Society, 20(1):37-51,
2007.

[5] C. Godsil and G. Royle. Algebraic Graph Theory, volume 207 of Graduate texts in mathe‐

matics. Springer‐Verlag New York, Inc, 2001.

[6] P. Hell and J. Nesetril. Graphs and homomorphisms. Oxford University Press, 2004.

[7] J. Howie. Fundamentals of Semigroup Theory. Oxford University Press, INC., New York,
1995.

[8] M. Ito and Y.Kunimochi. Some petri nets languages and codes. Lecture Notes in Computer
Science, 2295:69−80, 2002.

[9] N. Jacobson. Basic Algebra. Vol. 1. Freeman, 1974.

[10] Y. Kunimochi. Algebraic properties of petri net morphisms based on place connectivity. In

P.Dömösi and S. Iván, editors, Proceedings ofAutomata and Formal Languages. AFL20l1,

pages 270‐284, 2011.

[11] Y. Kunimochi. Remarks on homomorphisms based on vertex connectitivity of weighted
directed graphs. RIMS Koukyuroku, 2008,:86−96, Nov. 2016.

[12] Y. Kunimochi, T. Inomata, and G. Tanaka. Automorphism groups of transformation nets (in
japanese). IEICE Trans. Fundamentals, \mathrm{J}79-\mathrm{A},(9):1633-1637 , Sep. 1996.

[13] G. Lallement. Semigroups and Combinatorial Applications. Pure and applied Mathematics.

A Wiley‐Interscience Publication, 1979.

79


